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Abstract This paper extends regression modeling of positive count data to deal with
excessive proportion of one counts. In particular, we propose one-inflated positive
(OIP) regression models and present some of their properties. Also, the stochastic
hierarchical representation of one-inflated positive poisson and negative binomial
regression models are achieved. It is illustrated that the standard OIP model may
be inadequate in the presence of one inflation and the lack of independence. Thus, to
take into account the inherent correlation of responses, a class of two-level OIP regres-
sion models with subjects heterogeneity effects is introduced. A simulation study is
conducted to highlight theoretical aspects. Results show that when one-inflation or
over-dispersion in the data generating process is ignored, parameter estimates are
inefficient and statistically reliable findings are missed. Finally, we analyze a real data
set taken from a length of hospital stay study to illustrate the usefulness of our proposed
models.

Keywords Hierarchical representation · Maximum likelihood · Positive negative
binomial · Positive poisson · Zero truncated

1 Introduction

Related to the structure of count data, several regression models, such as the nega-
tive binomial (NB) and its zero-inflated version (e.g., Yau et al. 2003; Garay et al.
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2011) are introduced in the literature. In practical applications, the positive poisson
(PP) regression model is also being used to analyze positive, or zero-truncated, count
outcomes (e.g., Matthews and Appleton 1993; Xie and Aickin 1997; Zuur et al. 2009).
A useful modeling strategy in the presence of over-dispersion in zero-truncated data
is addressed by Sampford (1955) and then is extended by many others, such as Gurmu
(1991). Some properties of the positive negative-binomial (PNB) distribution is given
by Lee et al. (2003). Other count regression models are also introduced to allow over-
dispersion caused by unobserved heterogeneity and excess zeros produced by rare
event occurrences. Various popular approaches to deal with these issues are often
verified based on zero-inflated poisson (Lambert 1992) and zero-inflated NB models
(e.g., Yau et al. 2003). Recently, Lim et al. (2014) propose a zero-inflated poisson
mixture model for heterogeneous count data with excess zeros. An extensive review
of the related literature on the NB model including a number of applications taken
from a wide variety of disciplines is provided by Hilbe (2011).

The application of count data has been extensively discussed by many authors and
variety of regression models are proposed to analyze certain real-life count data sets
(e.g., Gschlößl and Czado 2008; Cordeiro et al. 2012). In our knowledge, in almost
all proposed cases, there is currently a gap in the existing research literature when the
count response exhibits excess frequency of ones while analyzing positive outcomes.
These features have motivated the introduction of new regression models for count
data. Thus, we first introduce an alternative regression model, namely the one-inflated
positive poisson (OIPP), to deal with occurrence of excess ones. It is discussed that
over-dispersionmay be the result of excess ones or some other causes. If extra variation
remains even after handling excess ones, we then introduce the one-inflated positive
negative-binomial (OIPNB) regression model. This model allows the variance to be
larger than the mean through an additional parameter to handle over-dispersion. In
general, the proposed models are shown to be constructed by a mixed strategy such
that it mixes a distribution degenerated at one with a baseline PP or a NB distribution.
Hence, this paper provides a useful approach in modeling positive count outcomes
focusing mainly on data that exhibits over-dispersion.

In fitting zero-truncated count models, one-inflation and the lack of independence
may exist simultaneously as a consequence of the inherent correlation structure and
the underlying heterogeneity. Thus, this paper introduces a two-level OIP regression
model as an alternative to handle clustered observations. This extension is motivated
by methodologies addressed in fitting zero-inflated models (e.g., Hall 2000; Wang
et al. 2002; Hur et al. 2002).

A simulation study is conducted to illustrate the importance of modeling strategies
for one-inflation in positive counts and to show the impact ofmodelsmis-specification.
The simulation is designed for two OIPP and OIPNB models. The average root mean
squared error (RMSE) is used to assess the overall performance of estimates, while
the average model bias is used to assess the impact of correctly identifying the OIPP
or the OIPNB models on statistical inference.

The data set we re-analyze in this paper is originally taken from the US national
Medicare inpatient hospital database which is prepared yearly from hospital filing
records. Several researchers used these count data and fitted some models mainly
without any concern on the positiveness of counts. In specific, Hardin and Hilbe
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Regression modeling of one-inflated positive count data 793

(2007) and Hilbe (2011) fitted poisson and NB models. They also analyzed the data
set using the zero-truncated version of poisson and NB models. In the present paper
we fit the proposed OIPP andOIPNB regressionmodels and report that these are better
fitted to the data.

The rest of paper is organized as follows. Section 2 introduces the OIP distribu-
tion and highlights some of its properties. Specifically, we derive the probability mass
function of the OIP distribution in general, and find its corresponding recursive for-
mula. Specific properties of the OIPP and OIPNB distributions are provided as special
cases. Section 3 introduces OIP regression models and derives associated likelihood
equations. Also, the stochastic hierarchical form of the OIPP and OIPNB distributions
are achieved. Section 4 proposes a two-level OIP regression model with heterogeneity
effects to address fitting of correlated data. A simulation study for large samples is
conducted in Sect. 5 to highlight theoretical aspects. Section 6 aims to analyze length
of stay in hospital data.

2 The specification of OIP distributions

Motivation to introduce OIP distributions arises originally from the fact that a vari-
ety of positive or zero-truncated count data involves excess ones. Here, the one and
subsequent counts are generated by different mechanisms.

Definition 1 Let for each subject Y , a Bernoulli trial be used to determine two data
generating processes for only a one response, with probability p, and a positive distri-
bution, with probability 1−p, for subsequent counts. This introduces the probability
mass function (pmf) of OIP random variable as

fOIP (1) = p + (1 − p) fP (1) ,

fOIP (Y = y) = (1 − p) fP (y) , y = 2, 3, · · · , (1)

where fP (y) = P(Y = y) denotes the pmf of a positive count at point y.
In general, the pmf of a positive count is derived in terms of its underlying un-

truncated distribution. That is, for a given un-truncated pmf, f (y), we have fP (y) =
π f (y) for y = 1, 2, · · · , where π = (1− f (0))−1 with π > 1. Putting this in Eq. (1)
gives the OIP pmf. The OIP poisson and OIP NB distributions are two special cases
of the family of OIP distributions though the OIPNB can be thought to arise as an
extension of either the PNB or the OIPP distributions.

The pmf of an OIPP random variable Y is defined by setting fP (·) in Eq. (1) to

fPP (y) = πP
exp (−μ) μy

y! , y = 1, 2, · · · , (2)

where πP = (1 − exp (−μ))−1. We denote Y ∼ OIPP(μ, p).
Similarly, for the pmf of an OIPNB we set fP (·) in (1) to

fPNB (y) = πNB
�(y + κ)

�(κ)�(y + 1)
tκ (1 − t)y , y = 1, 2, · · · , (3)
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where t = κ
κ+μ

, πNB = (1 − tκ)−1, and μ denotes the mean of corresponding NB
distribution. We denote Y ∼ OIPNB(κ, μ, p).

Let Y follows an OIP distribution. Some basic properties of the family of OIP
distributions are shown below in which any clear proof is omitted.

i. The cumulative distribution function (cdf) is

FOIP(y) = p + (1 − p)π {F(y) − F(0)} , (4)

where F (·) is the cdf of un-truncated count distribution.
ii. Let M(r) be a moment generating function (mgf) which exists for all values r and

F (0) be a probability at zero of a un-truncated count distribution. Then the mgf is

MOIP (r) = per + (1 − p) π {M (r) − F (0)} . (5)

iii. Provided that MOIP (r) exists in a neighbourhood of r = 0, the m-th moment of
Y is given by

EOIP
(
Ym) = p + (1 − p) πE

(
Ym)

, m = 1, 2, 3, · · · , (6)

where it is assumed that E (Ym) < ∞.
iv. For all values r which the expected value exists, the probability generating function

(pgf) G of Y is defined as follows

GOIP (r) = pr + (1 − p) π {G (r) − F (0)} , (7)

where G (r) is the pgf of un-truncated count distribution.
v. Provided that GOIP (r) exists in a neighbourhood of r = 1, the m-th factorial

moment is given by

EOIP
{
(Y )m

} =
{
p + (1 − p) πE (Y ) , m = 1

(1 − p) πE{(Y )m}, m = 2, 3, · · · ,
(8)

showing that there is a linear relationship between EOIP{(Y )m} and the m-th fac-
torial moment of the un-truncated distribution, e.g. E

{
(Y )m

} = μm for poisson

and E
{
(Y )m

} = �(κ+m)
�(κ)

(
μ
κ

)m for the NB distribution.
vi. Let the recursive equation for an un-truncated distribution be

f (y + 1) = C (θ, y) f (y) , y = 0, 1, · · · , (9)

where θ denotes corresponding parameters vector andC (θ, y)be a known function
of θ and y. Then,

fP (y + 1) = C(θ , y) fP (y) ,

123



Regression modeling of one-inflated positive count data 795

Fig. 1 Differences between the variance and expectation of a the OIPP and b the OIPNB distributions

for y = 1, 2, · · · . Similarly

fOIP (y + 1) = C(θ , y) fOIP (y) , (10)

for y = 2, 3, · · · .
To see this, for y = 1, 2, · · · , multiplying Eq. (9) by π gives a recursive equation
of positive random variable. For y = 2, 3, · · · , multiplying Eq. (9) by π (1 − p)
gives a recursive equation of the OIP random variable.

vii. The expectation and variance are shown to be

EOIP (Y ) = p + (1 − p) πE (Y ) ,

VarOIP (Y ) = p + (1 − p) π
{
Var (Y ) + E2 (Y )

}
− E2

OIP (Y ) , (11)

where E(Y ) and Var(Y ) are, respectively, themean and variance of the underlying
un-truncated distribution, e.g., E(Y ) = Var(Y ) = μ for poisson and E(Y ) = μ,
Var (Y ) = μ

{
1 + μ

κ

}
for the NB distribution.

In Fig. 1 we have provided a comparison between the variance and expectation
of the OIP models to illustrate evidence of how they deal with over-dispersion
or under-dispersion. Figures display the difference dOIP (p) = VarOIP (Y ) −
EOIP (Y ), as a function of p, for the OIPP and OINB distributions. When the
quantity dOIP (p) is positive (negative) then the OIP distribution carries out over-
dispersion (under-dispersion). Specifically, Fig. 1a indicates that the quantity
dOIPP (p) is positive for some values of μ over the interval p ∈ (p0, p1] for some
p0 and p1, which shows over-dispersion, whereas is negative outside of these inter-
vals showing under-dispersion. In our case, using some numerical approaches to
solve dOIPP (p) = 0 we obtain p0 = 0.142, 0.036 and p1 = 0.749, 0.890 for
μ = 3, 4, respectively. Also, Fig. 1a illustrates that the OIPP may always handle
under-dispersion for some values of μ, e.g., 2. We also observe in Fig. 1a that as p
tends to 0 the OIPP becomes equivalent to the PPmodel which is known to display
under-dispersion (Winkelmann (2008). chap. 5). Besides, Fig. 1b confirms that the
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OIPNB cannot always cover over-dispersion while the proportion of ones, p, gets
some large values.

Example 1 Suppose that Y follows an OIPP distribution then we obtain

GOIPP (r) = pr + (1 − p)
exp(μr) − 1

exp(μ) − 1
, (12)

and
fOIPP (y + 1) = μ

y + 1
fOIPP (y) , y = 2, 3, · · · . (13)

Example 2 Let Y be distributed as an OIPNB then

GOIPNB (r) = pr + (1 − p) πNBt
κ

{
1

[1 − r (1 − t)]κ
− 1

}
, (14)

for |r | < 1
1−t . Also,

fOIPNB (y + 1) = (κ + y) μ

(μ + κ) (y + 1)
fOIPNB (y) , y = 2, 3, · · · . (15)

Proposition 1 The OIPNB reduces to the OIPP distribution as κ → ∞.

Proof Tending κ to infinity, we obtain πNB → πP , where πNB and πP are previously

defined. Also, the pmf of NB
(
κ, κ

κ+μ

)
tends to f pois (μ). Then Proposition (1) is

proved. ��
Thus the OIPP is a special case of the OIPNB distribution. Figure 2a confirms the
result for p = 0.5 and μ = 1. Using the graphical techniques we provide more com-
parisons between two distributions. Figure 2b shows the difference d(y) = fOIPNB(y)
− fOIPP(y), for κ = 0.5, 1, 2, μ = 1 and p = 0.5. The comparison is performed
for same means, i.e., a re-parametrization is done accordingly to make means equal.
We see that the sign pattern of d(y) is {+,−,+} as y increases on its support. The
inequality fOIPNB (1) > fOIPP (1) holds showing that for a large number of ones the
OIPNB density is more appropriate than the OIPP density with the samemean. Similar
pattern was additionally seen for other different values of parameters. An expectation
was illustrated for κ closed to zero showing that the third sign was closer to zero.

The influence of other parameters on the probability of an one outcome is illustrated
as follows. Let Y be distributed as OIPP or OIPNB, then an increase in μ reduces the
probability of an one outcome and an increase in p increases the probability of an one
outcome. These results were obtained readily by the differentiation of fOIPNB (1) (or
fOIPP (1)) with respect to all model parameters. Figure 2c, d confirm these results.
By setting μ = κ = 1, Fig. 2c shows that as p increases the probability of an one
outcome increases. Similarly by putting p = 0.5 and κ = 1, Fig. 2d shows that as μ

increases the probability of an one outcome decreases.
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Fig. 2 a Probability mass functions of the OIPNB and OIPP b Differences between the OIPNB and OIPP
densities, d(y) c Probability of an one outcome as p increasesd Probability of an one outcome asμ increases

3 The specification of OIP regression models

Let the Yi (i = 1, 2, · · · , n) be independent responses, distributed as OIP and the
i-th subject is associated with a m-dimensional vector xi of covariates. In fitting
related regressionmodels, covariates are typically incorporated using the link function
log (μi ) = x′

iβ, where β is an m-dimensional vector of coefficients. Also a logistic

scheme is used to account for predicting pi , i.e. log
(

pi
1−pi

)
= w′

iγ , where wi and

γ denote k-dimensional vectors of covariates and coefficients, respectively. Note that
the logistic models answer the question that how a covariate which induces change in
μi affects the probability of one. The complete data likelihood is given by

L (θ, γ ; y) =
∏

yi=1

{pi + (1 − pi ) fP (yi )}
∏

yi>1

(1 − pi ) fP (yi ) , (16)
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where θ denotes a parameter vector of the associated positive distribution which
includes β. Under independent sampling scheme, taking the first derivative of the
log-likelihood function gives the likelihood equations

∂l (θ, γ ; y)
∂γ

=
n∑

i=1

1 − fP (1)

pi + (1 − pi ) fP (1)
pi (1 − pi )wi −

n∑

i=1,yi>1

piwi , (17)

and
∂l (θ, γ ; y)

∂θ
=

n∑

i=1

SP (θ , 1)

pi + (1 − pi ) fP (1)
+

n∑

i=1,yi>1

SP (θ, yi )

fP (yi )
, (18)

where SP (θ , ·) denotes the first partial derivative of the pmf with respect to θ , and
P denotes any positive distribution, such as poisson and the NB. The above likeli-
hood equations are given generally for every underlying distribution of the OIP count
outcomes. Deriving the maximum likelihood estimates (MLEs) of model parameters
from Eqs. (17) and (18) requires implementing advanced numerical techniques, such
as Newton-Raphson. To obtain local maxima, the Hessian matrix, i.e., the matrix
of second derivatives, has to be negative definite. After some algebraic operations

are performed, the second derivatives of the log-likelihood, ∂2l(θ,γ ; y)
∂θθ ′ , ∂2l(θ,γ ; y)

∂θ∂γ
and

∂2l(θ,γ ; y)
∂γ 2 can readily be obtained but they are not tractable and available in closed

forms. Thus details are omitted to save space. To solve likelihood equations simul-
taneously we recommend the use of optimization procedures in statistical software
packages, such as NLP or NLIN in SAS, or, NLM in R. They are capable to report
parameter estimates, their standard errors, and further statistical measures.

Corollary 1 Under independent sampling scheme and setting the PP density to fP
in (16), the MLE of β is found by solving Eq. (18) and putting

SPois (β, yi ) = (
yi − μiπi,P

)
xi .

Corollary 2 Denote P in (16) the PNB distribution and let θ = (β, κ). Under inde-
pendent sampling scheme likelihood equations are derived by setting

SNB (κ, yi ) = (1 − ti )2

μi

⎧
⎨

⎩

yi−1∑

j=0

( j + κ)−1 + κ

ti
− yi

1 − ti
+ πi,NBκtκ−1

i

⎫
⎬

⎭
, (19)

for parameter κ and

SNB (β, yi ) = {
yi ti − πi,NBκ (1 − ti )

}
xi , (20)

for parameter β.

Letting a logistic regression model for predicting pi the use of advanced numerical
maximization methods are required to solve the first order conditions for β, γ and κ .
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Proposition 2 Let the Yi (i = 1, 2, · · · , n) be independent count variables that each
follows the OIPP or OIPNB distribution. Then an increase in the covariate xi reduces
the probability of an one outcome provided that the associated regression coefficient,
β, is positive, and increases it otherwise. Also, the covariate zi in the logit model is
directly related to the probability of an one outcome. That is, as the value of zi increases
(decreases) the probability of an one outcome increases (decreases) for positive γ .

Proof In the OIPP model

∂

∂μi
fOIPP (1) = (1 − pi ) π2

i,P exp(−μi ) {1 − μi − exp(−μi )} , (21)

and in the OIPNB model

∂

∂μi
fOIPNB (1) = (1 − pi ) t

κ
i (1 − ti )π

2
i,NB

{
ti (κ + 1) − tκ+1

i − κ
}

. (22)

To show the effect of a change in covariate xi when μi = exp
(
x′
iβ

)
, we use the chain

rule which obliged the above expressions to be multiplied by ∂
∂xi j

μi = μiβ j , where
β j is an element in the vector β corresponding to xi . Equations (21) and (22) are
negative thus the effect at the probability of one is negative. An increase in xi j reduces
the probability of an one outcome if β j > 0, and increases it otherwise. Similarly, the
derivative with respect to the covariate zi j for the OIPP regression model is given by

∂

∂zi j
fOIPP (1) = {

1 − πi,P μi exp (−μi )
} exp

(−z′iγ
)

{
1 + exp

(−z′iγ
)}2 γ j , (23)

and for the OIPNB model is

∂

∂zi j
fOIPNB (1) = {

1 − πi,NBκtκi (1 − ti )
} exp

(−z′iγ
)

{
1 + exp

(−z′iγ
)}2 γ j , (24)

where γ j is an element in γ . Since signs of expressions (23) and (24) are positive thus
γ j has a positive effect on the probability of one. That is, an increase in zi j increases
the probability of an one outcome when γ j > 0, and reduces it otherwise. ��

In below we introduce new stochastic hierarchical representations for both OIPP
and OIPNBmodels. These are shown to be mixtures of known distributions that assist
researchers to generate variants of these models or enable them to use in Bayesian
approaches.

Theorem 1 Let the Yi , i = 1, ..., n, be independent counts. Consider the hierarchical
representation
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Yi |ωi , ui
ind∼ poisson

(
μi (1 − ωi ) + log

(
1 − uiμ

∗
i

))
, (25)

ωi
i id∼ Bern (p) , (26)

ui
iid∼ Uni f (0, 1) , (27)

where ui and ωi are mutually independent and μ∗
i = 1 − exp {−μi (1 − ωi )}. Then

the shifted count variable Yi + 1 is distributed as O I PP (μi , p).

Proof By integrating out the ui from the joint density of (Yi , ωi , ui ) we can directly
show that

f (yi |ωi ) = {μi (1 − ωi )}yi+1 e−μi (1−ωi )

(yi + 1)!μ∗
i

, yi = 0, 1, · · · . (28)

Furthermore,

f (yi ) = p f (yi |ωi = 1) + (1 − p) f (yi |ωi = 0) .

It is easy to show that f (yi |ωi = 1) takes 1 for yi = 0 and zero otherwise and
f (yi |ωi = 0) is of the form (28)withμ∗

i = 1−exp (−μi ). Then the proof is completed
after simple statistical calculations are made. ��
Theorem 2 Suppose that the Yi , i = 1, ..., n, are independent counts. Consider the
hierarchical stochastic representation

Yi |νi , ωi , ui , λi
ind∼ Pois

(
νi + log

(
1 − uiν

∗
i

))
,

νi |λi , ωi
ind∼ Gamma (κ + 1, λi + ξi ) , (29)

λi |ωi
ind∼ F (λi |ωi ) ,

ωi
ind∼ Bern (p) ,

ui
iid∼ Uni f (0, 1) ,

where ui and ωi are mutually independent, ξi = κ
μi (1−ωi )

, ν∗
i = 1 − exp (−νi ), and

F (λi |ωi ) =
1 −

(
1 + λi

ξi

)−κ

1 −
(
1 + 1

ξi

)−κ
, 0 < λi < 1,

is the cdf of λi given ωi . Then the shifted count variable Yi + 1 is distributed as
OIPNB (κ, μi , p).

Proof The marginal pmf for each Yi , for i = 1, · · · , n, is obtained directly from the
joint density of variables (Yi , νi , λi , ui , ωi ) by integrating out νi , λi , ui , and summing
over the binary variable ωi . First, the integration over ui gives the explicit solution
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Regression modeling of one-inflated positive count data 801

f (yi |νi , ωi , λi ) = ν
yi+1
i e−νi

(yi + 1)!ν∗
i
, yi = 0, 1, · · · .

Then the conditional pmf of Yi given ωi is derived by integrating with respect to the
distribution functions of νi and λi as

f (yi |ωi ) =
∫ 1

0

∫ ∞

0
f (yi |νi , ωi , λi ) dF (νi |ωi , λi ) dF (λi |ωi )

= � (yi + κ + 1)

� (yi + 2) � (κ)

1

1 − tκi
tκi (1 − ti )

yi+1 , (30)

for yi = 0, 1, · · · , where ti = κ
κ+μi (1−ωi )

. Finally, we have

f (yi ) = p f (yi |ωi = 1) + (1 − p) f (yi |ωi = 0) .

It is straightforward to show that f (yi |ωi = 1) = 0 for yi = 1, 2, · · · and
f (0|ωi = 1) = 1. Also, f (yi |ωi = 0) is of the form (30), where ti reduces to κ

κ+μi
.

After some simple algebraic operations are donewe readily show that the shifted count
variable Yi + 1 follows OIPNB (κ, μi , p). ��

Hierarchical representation (29) is useful to generate variants from the OIPNB model
since one can simply generate variants from all knowndistributions in (29). In addition,
one may use the inverse transform sampling to generate λi or apply the transforma-
tion λi = (bi−1)κ

μi (1−ωi )
, where bi follows the upper-truncated Pareto distribution with

parameters κ , 1 and 1 + μi (1−ωi )
κ

(e.g. Aban et al. 2006).

4 A two-level OIP regression model

One main motivation to extend an OIP model is in the case when correlation exists
between outcomes. Correlation due to clustering raises challenges. Clustering may
be due to similarities among subjects. One inflation and lack of independence may
occur simultaneously, which render the standard OIP model inadequate. To account
the inherent correlation of subjects, we introduce a class of two-level OIP regression
models with the heterogeneity effects.

Let the Yi j (i = 1, 2, · · · , n, j = 1, 2, · · · , ni and
∑n

i=1 ni = N gives the total
number of subjects) be OIP distributed random variables of the j-th subject in the i-th
cluster. In the regression setting, both logi t (pi j ) and log

(
μi j

)
are assumed to be linear

functions of covariates. The covariates appearing in these two parts are not necessar-
ily the same. In addition, random heterogeneity effects νi and ui for i = 1, 2, · · · , n
are introduced into the linear predictors to account for possible correlation between
subjects within the same cluster. These random components control unexplained vari-
ations in the model. The linear predictors are defined as
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802 F. Hassanzadeh and I. Kazemi

log
(
μi j

) = x′
i jβ + ui , (31)

and

log

(
pi j

1 − pi j

)
= z′

i jγ + νi , (32)

where xi j and zi j are vectors of covariates, β and γ are the corresponding vectors of
regression coefficients. Let u = (u1, u2, · · · , un)′ and ν = (ν1, ν2, · · · , νn)

′. Usual
assumptions are that the effects u and ν are independent and distributed, respectively,
as N

(
0, σ 2

u In
)
and N

(
0, σ 2

ν In
)
, where In denotes an n × n identity matrix. Although

other distributions such as log-gamma can be adopted, but normally distributed random
effects are the preferred choice in many applications. In order to capture the possible
dependence between the two processes, we let the effects bi = (ui , νi ) be drawn from
a bivariate distribution with density function h(·). The likelihood function is

L (·) =
n∏

i=1

∫

R2

n j∏

j=1

fOIP
(
yi j |bi

)
h (bi ) dbi (33)

No closed form solution of the underlying integral is available. With modern comput-
ing power, direct computation by numerical approximations are quite straightforward.
In particular, an appropriate approximation technique to numerically evaluate the inte-
gral involved in the marginal likelihood is Gauss-Hermite quadrature. This is adopted
as a useful tool in mixed modeling contexts (e.g. Liu and Pierce 1994) when a normal
density is specified to the random-effects. There are several reliable procedures in
standard statistical packages, such as SAS and R, to provide Gauss–Hermite quadra-
ture calculations. Between them, proc nlmixed in SAS includes adaptive Gaussian
quadrature by default to allow exact likelihood computation.

5 A simulation study

Now we conduct a simulation study to highlight the importance of accounting for
one-inflation and to illustrate the impact of mis-specification on model fitting. The
simulation is conducted as follows. The data set is sampled by one of the OIPNB
or OIPP regression models. A total number of 1000 data sets with 500 subjects has
been generated. The covariates X1 and Z are generated independently from standard
normal distributions and X2 from a Bernoulli (0.5) distribution. For each subject,
i = 1, 2, · · · , 500,μi = exp(β0 + β1X1i + β2X2i )was calculated by fixing β0 = 0.5
and β2 = −β1 = 1 for all experiments. Also let logi t (pi ) = γ0 + γ1Zi , and set
γ0 = −0.5 and γ1 = 0.5. When the data generating process is according to the
regression model OIPNB, we set four different values for κ , 0.2, 0.6, 1 and 2. We
know as κ becomes large the OIPNB tends to OIPP and as p takes small values the
distribution becomes close to the PNBdistribution. Also, when simultaneously p takes
small values and κ gets large then the OIPNB becomes close to the PP distribution.
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Table 1 Bias and RMSE of model parameters under fitted models when the true model is OIPP

OIPNB OIPP PNB PP

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

β0 0.023 0.070 0.022 0.069 −0.204 0.345 −0.349 0.354

β1 0.002 0.029 0.001 0.028 −0.176 0.038 0.057 0.062

β2 −0.007 0.063 −0.006 0.062 0.163 0.223 −0.043 0.073

γ0 −0.030 0.131 −0.030 0.013

γ1 0.021 0.135 0.021 0.014

Table 2 Bias and RMSE of model parameters under fitted models when the true model is OIPNB

Model κ = 0.2 κ = 0.6 κ = 1 κ = 2

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

OIPNB β0 −0.042 0.771 −0.028 0.270 −0.006 0.181 −0.002 0.128

β1 0.010 0.116 0.004 0.094 0.003 0.081 0.002 0.066

β2 0.001 0.113 −0.007 0.175 0.001 0.152 −0.001 0.124

γ0 0.001 0.177 −0.009 0.188 −0.003 0.174 −0.003 0.153

γ1 0.013 0.151 0.011 0.156 0.007 0.151 0.008 0.144

κ 0.009 0.116 −0.010 0.201 0.025 0.276 0.097 0.477

OIPP β0 1.434 1.425 0.764 0.765 0.530 0.533 0.318 0.324

β1 0.241 0.242 0.218 0.220 0.167 0.169 0.105 0.111

β2 −0.230 0.233 −0.216 0.160 −0.166 0.148 −0.105 0.121

γ0 0.611 0.619 0.560 0.570 0.453 0.466 0.291 0.313

γ1 −0.128 0.163 −0.115 0.223 −0.094 0.176 −0.057 0.134

PNB β0 −4.471 4.923 −4.876 5.461 −4.712 5.445 −3.473 4.257

β1 −0.069 0.121 −0.137 0.170 −0.189 0.215 −0.241 0.263

β2 0.060 0.203 0.118 0.224 0.176 0.260 0.230 0.298

κ −0.196 0.197 −0.594 0.595 −0.991 0.992 −1.952 1.953

PP β0 0.749 0.750 0.121 0.130 −0.097 0.205 −0.064 0.082

β1 0.219 0.220 0.187 0.188 0.140 0.142 0.100 0.103

β2 −0.201 0.204 −0.174 0.181 −0.129 0.140 −0.085 0.102

However, in practical applications one may fit any of these models to positive one-
inflated count data incorrectly and thus it is required to investigate the impact of this
mis-specification. This importance is illustrated below.

For each replication, data are simulated according to the chosen regression model
and all parameters are estimated using the PNB, PP and OIPP or OIPNB as alternative
regression models. The average bias and the RMSE of estimates are obtained. Results
of the simulation are summarized in Tables 1, 2, 3.

Estimation results are reported in Table 1 when the true model is specified as OIPP.
Here, based on RMSE, the PP and PNB models perform poorly relative to OIPP and
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Table 3 Information criterion values for various fitted models

True Model OIPNB OIPP

κ = 0.2 κ = 0.6 κ = 1 κ = 2

OIPNB AIC 2146.49 1798.07 1721.06 1662.99 1470.22

BIC 2171.78 1823.36 1746.35 1688.27 1495.51

OIPP AIC 6104.59 2929.45 2413.73 2023.94 1468.40

BIC 6125.66 2950.52 2434.80 2045.01 1489.47

PNB AIC 2261.08 1862.27 1779.28 1734.66 1690.12

BIC 2277.94 1879.13 1796.14 1751.52 1706.98

PP AIC 9869.77 4484.54 3631.57 3034.54 2315.74

BIC 9882.41 4497.18 3644.22 3047.19 2328.38

OIPNBmodels. The estimate of κ under the OIPNB is very large (>4E7) showing that
the OIPNB reduces to the OIPP. Thus two OIPP and OIPNB models perform equally
well and they have lower estimated biases with the RMSEs less than the alternative
models. In overall, the average biases indicate that ignoring the one-inflated nature of
data may result in under-estimation of the intercept and under- or over-estimation of
the other parameters which may lead to non-significant findings.

Estimation results for the OIPP, PNB and PP fitted models are reported in Table 2
when the truemodel is specified asOIPNB. In this case, no alternativemodel is selected
as the best fitted model by using the RMSE criterion. The RMSE indicates that the
OIPP, PNB and PP models perform unsatisfactory relative to the OIPNB model. The
bias and RMSE for all parameters of OIPP and PP models decrease when κ increases.
These models under-estimated β2 and over-estimated β0 and β1, whereas the PNB
model over-estimated β2 and under-estimated β0 and β1 in overall. The PNB model
produces the most bias and RMSE for κ and the constant term. Also, in this model,
for a large value of κ , the bias and RMSE of parameters (except intercept) become
large. The Akaike information criterion, AIC = −2 log L(θ̂) + 2p, and the Bayesian
information criterion, BIC = −2 log L(θ̂) + p log n, where L(θ̂), p, and n denote the
likelihood, number of parameters, and sample size, respectively, are used to select the
best fitted model. Smaller values of these criteria indicate better fit. In the comparison
of all models, the AIC and BIC values are computed and shown in Table 3. It is seen
that the previous results are confirmed by using these criteria. In fact, the OIPP and
OIPNBmodels are comparable in fitting the OIPPmodel but not in the OIPNBmodel.
This finding does suggest the importance of identifying the over-dispersion for the
un-truncated distribution. Also findings indicate that the PNB and PP models are not
suitable in comparison to the OIPNB and OIPP models. That is, ignoring one-inflated
nature of data leads to an erroneous significant finding.

6 An empirical application with two modeling strategies

As already mentioned, the data are taken from the US national Medicare inpatient
hospital database. It is emphasized in previous studies that the length of stay (LOS) in
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hospital is a key element in the consumption of hospital resources and very important
for hospital planning. Thus, the response variable is considered as the LOS in which,
regardless of how little time a patient has spent in hospital, at least one day is credited.
The data set consists 1495 observations on patients registered to a Health maintenance
organization (Hmo), patient identifies themselves as Caucasian (White), patient died
(Died) and type of admission (Type) variables. Type is a factor variable with three
levels, elective admission (Type1), urgent admission (Type2), emergency admission
(Type3). We set Type1 as the reference category. In below we report results of two
regression modeling strategies to highlight the theoretical methodologies. The first
is undertaken within the framework of cross-sectional data analysis which assumes
that count responses are independent. The second strategy is organized through the
two-level modeling setting to take into account the correlation between subjects.

6.1 Cross-sectional data analysis

We adopt the following log-linear link function

log (μi ) = β0 + β1Type2i + β2Type3i + β3Hmoi + β4Diedi ,

and the logit function

log

(
pi

1 − pi

)
= γ0 + γ1Type2i + γ2Type3i + γ3Hmoi + γ4 Diedi ,

for i = 1, 2, · · · , 1495. The variance of the LOS variable is 78.022 which is signifi-
cantly larger than the mean 9.854. A fit of the PP model gives the variance 9.841 and
the mean 9.854. Also the observed proportion of one counts is equal to 8.43 % while
the PP model predict it in average 0.15 % which is notably less than actually observed
in the data. The OIPP model predicts the probability of ones more than the PP model,
however it does not account for the extra variation by receiving the variance 15.731
and the mean 9.856. For the PNB model, the estimate of the dispersion parameter κ is
equal to 0.533 (se = 0.0293)with the corresponding p value< 0.001 which indicates
strong evidence of over-dispersion. This suggests that employing the OIPNB model
may be suitable to fit the data.

We fit the OIPNB regression model and make comparison to the OIPP, PP and
PNB models. Table 4 shows the parameter estimates and their standard errors in
fitting various models. Model performance is evaluated by using four criteria. The
Hannan–Quinn information criterion, HQIC = −2 log L(θ̂) + 2plog {log(n)}, and
the consistent Akaike information criterion, CAIC = −2 log L(θ̂) + p {log(n) + 1},
where L(θ̂), p, and n denote the likelihood, number of parameters, and sample size,
respectively, are also used to select the best fitted model. Smaller values of these
criteria indicate better fit. We also report BIC and AIC values for each fitted model.
Results show that the PP model performs very poor relative to the other models since
it accommodates only positive data while the OIPNB is the preferred model as it fairly
deal with extra variation of positive and one-inflated data.
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Table 4 Estimates and criteria values of the OIPNB, OIPP, PNB and PP regression models

OIPNB OIPP PNB PP

β0 2.249 (0.027) 2.298 (0.012) 2.224 (0.032) 2.264 (0.012)

β1 0.212 (0.051) 0.218 (0.021) 0.268 (0.055) 0.250 (0.021)

β2 0.716 (0.076) 0.708 (0.026) 0.767 (0.083) 0.750 (0.026)

β3 −0.065 (0.054) −0.074 (0.024) −0.075 (0.058) −0.076 (0.024)

β4 −0.081 (0.043) −0.088 (0.018) −0.252 (0.045) −0.249 (0.018)

κ 2.426 (0.135) 1.878 (0.103)

γ0 −8.091 (3.020) −3.600 (0.217)

γ1 −1.200 (0.498) −0.576 (0.283)

γ2 −1.007 (0.597) −0.757 (0.449)

γ3 0.133 (0.314) 0.035 (0.264)

γ4 6.578 (3.022) 2.354 (0.238)

AIC 9373 12,675 9487 13,703

BIC 9431 12,728 9520 13,730

HQIC 9394 12,695 9499 13,713

CAIC 9442 12,739 9525 13,735

Standard errors are in parentheses

In this analysis, the regression coefficients of the Hmo and the patient died are not
statistically significant while the type of hospital admission is positively significant.
Thus, patients admitted to the urgent and emergency have longer length of stay than
those with the elective admission. The sign of estimates in these models is important
since it can determine not only the influence of covariates on the length hospital stay
in days but also can control whether a specific patient stays in hospital one day or
more. This helps hospital managers to predict the number of beds at hospital. The
sign of estimates for admitted patients to the urgent and emergency is positive in
model part whereas is negative in the logit part. These reasonable findings show that
these admitted patients stay in hospital longer than one day in comparison to those
patients admitted elective. Also, the estimate of γ is positively significant in the logit
part illustrating that the number of days for patient who died approaches to one day
at hospital.

6.2 A two-level one-inflated regression model

The original data set includes 54 different insurance providers. All patients are nested
into these providers. It is possible that some providers may provide facilities that
tend to keep the length of hospital stay long. Thus, we may fit one-inflated models
to take into account the correlation of patients with the same insurance provider.
We also aim to see if extra variation is caused by correlation due to the existence
of the provider heterogeneity in models. Table 5 presents results of fitting two-level
regression models. In fitting OIP models we observed that the scale parameter of
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Table 5 Estimates and criterion values from the two-level regression models

OIPNB OIPP PNB PP

β0 2.254 (0.048) 2.295 (0.053 ) 2.225 (0.050) 2.242 (0.059)

β1 0.204 (0.053) 0.211 (0.025) 0.269 (0.058) 0.263 (0.024)

β2 0.305 (0.114) 0.151 (0.049) 0.354 (0.123) 0.155 (0.049)

β3 −0.077 (0.056) −0.074 (0.026) −0.104 (0.059) −0.094 (0.026)

β4 −0.097 (0.043) −0.122 (0.018) −0.276 (0.043) −0.275 (0.018)

κ 2.739 (0.159) 2.104 (0.120)

γ0 −8.068 (3.192) −3.653 (0.227)

γ1 −1.221 (0.487) −0.588 (0.290)

γ2 −1.361 (0.798) −0.775 (0.462)

γ3 0.178 (0.343) 0.049 (0.266)

γ4 6.673 (3.194) 2.395 (0.248)

σ 2
u 0.066 (0.023) 0.134 (0.030) 0.070 (0.024) 0.168 (0.037)

AIC 9333 11,974 9453 12,840

BIC 9397 12,032 9490 12,872

HQIC 9356 11,996 9467 12,852

CAIC 9409 12,043 9497 12,878

Standard errors are in parentheses

the provider heterogeneity effect in the logit part insignificant. Thus, only a random
provider effect was arranged in the first part of themodel. That is, for i = 1, 2, ..., 1495
and j = 1, 2, ...,54,

log
(
μi j

) = β0 + β1Type2i j + β2Type3i j + β3Hmoi j + β4Diedi j + ui ,

where ui ∼ N
(
0, σ 2

u

)
and

log

(
pi j

1 − pi j

)
= γ0 + γ1 Type2i j + γ2Type3i j + γ3Hmoi j + γ4Diedi j .

Results suggest that the two-level OIPNB model fits better than other mentioned
models. In this model, the patient died is negatively significant showing that patients
who died had less length of stay to persistent patients. The effect of covariates on the
LOS and one day stay, or more, are rather similar to those obtained under the cross-
sectional regressionmodelswhile the standard errors for someof covariates are slightly
increased. It appears that there is indeed an excess correlation of responses within
insurance providers which takes into account extra variation. Finally, the estimate of
σ 2
u illustrates considerable heterogeneity in providers.

7 Concluding remarks

Traditional regression models for the analysis of count data are often unfitting in the
presence of over-dispersion and zero-truncation issues. In the present paper, the posi-
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tiveness and the one-inflation are addressed by utilizing some OIP regression models.
These proposed models allow two separate mechanisms to the prediction of one-
inflated counts by adopting a logit function and to the generation of subsequent counts
by implementing discrete distributions, such as poisson orNB.A two-level OIP regres-
sion model is also introduced to take into account the correlation between subjects and
to model excess one counts. These OIP models can provide insight into the source of
excess ones and extra variation. They perform attractive alternative to zero-truncated
models for count data since the corresponding marginal likelihoods are available in
closed forms while the MLE of model parameters require the implementation of
advanced numerical methods. The extension of our methodology straightforwardly
can be applied further to various applications of count data that directly employ mixed
poisson distributions with different mixing priors, such as the log-normal (e.g. Izsák
2008) or the inverse-Gaussian (Dean et al. 1989; Rigby et al. 2008). In these cases the
associated marginal likelihoods are complex and need further work to make statistical
inference. Moreover, hierarchical stochastic representations of two proposed models
OIPP and OIPNB allow to utilize substituting enhanced estimation approaches, such
as Gibbs sampling in a Bayesian perspective, that are computationally simpler than
the marginal likelihood technique. These are topics of our future research.
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