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Abstract Through the nonconcave penalized least squares method, we consider the
variable selection in the full nonparametric regression models with the B spline-based
single index approximation. Under some regular conditions, we show that the resulting
estimates with SCAD and HARD thresholding penalties enjoy

√
n-consistency and

oracle properties. We use some simulation studies and a real example to illustrate the
performance of our proposed variable selection procedure.
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1 Introduction

Single index model and its corresponding statistical inference methods have been
extensively investigated over last three decades by many statisticians. For example,
Powell et al. (1989) incorporated the average derivative method and kernel smooth-
ing technique to estimate the single index coefficients. Ichimura (1993) gave a least
squares estimate by virtue of kernel smoothing technique; Härdle et al. (1993) con-
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692 J. Li et al.

sidered the optimal smoothness of the single index function; Li (1991) discussed the
estimation of single index coefficients by sliced regression approach. Xia et al. (2002)
studied several index vector estimation methods by a minimum average variance esti-
mation method. Other estimation methods are included in Hall (1989), Klein and
Spady (1993), Horowitz and Härdle (1996), Carroll et al. (1997), Xia and Li (1999),
Hristache et al. (2001) etc.

Wang and Yang (2009) proposed a B spline-based estimation method for the fol-
lowing fully nonparametric heteroscedastic regression model

Y = m(X) + σ(X)ε, m(X) = E(Y |X) (1)

through the single index approximation

g(v) = E(Y |X ′β = v), (2)

where Y ∈ R is a response variable, X ∈ Rp is the corresponding covariate vector,
g(·) is a completely unspecified univariate function, termed by single index function,
β = (β1, β2, . . . , βp)

′ ∈ Rp is the regression parameter vector, termed by index
parameter vector; X ′ represents the transpose of X ; ε is the model random error
and usually assumed to follow a distribution with E(ε|X) = 0 and Var(ε|X) = 1.
For the model identification, it is also assumed that ||β|| = 1 with last nonzero
component positive. Hereafter || · || stands for the Euclid norm. There are mainly two
advantages of the model (1) with the approximation (2). For one thing, it can avoid
the model misspecification; For another one, it can also avoid the so-called “curse of
dimensionality” in the nonparametric regression estimation.

In applications, we usually include as many covariates as possible into the working
models to improve the modeling accuracy and then establish a high-dimensional sta-
tistical model. However, some of the included covariates may be unimportant, which,
in turn, may increase estimate variance and so may lead to wrong statistical inference.
Therefore variable selection is an important step before application of such models.
In the context of linear regression models, many variable selection techniques were
proposed and some of them have been extended into the context of semiparametric
and nonparametric models. For example, LASSO (Tibshirani 1996, 1997; Knight and
Fu 2000; Ciuperca 2014), SCAD (Fan 1997; Fan and Li 2001, Fan and Li 2002; Xu
et al. 2014; Neykov et al. 2014), Hard thresholding (Fan 1997; Antoniadis 1997; Fan
and Li 2002), Adaptive LASSO (ALASSO) penalty (Zou 2006; Zhang and Lu 2007;
Lu and Zhang 2007; Zhang et al. 2010), Dantzig selector (Candes and Tao 2007; Anto-
niadis et al. 2010) etc. Fan and Lv (2010) overviewed the variable selectionmethods in
details. Variable selection in the single indexmodels also has been studied by some sta-
tisticians. Kong and Xia (2007) proposed a separated cross validation-based variable
selection method; Zhu et al. (2011) considered the ALASSO approach for a general
class of single indexmodels; Zeng et al. (2012) studied the variable selection by a local
linear smoothing approximation. Wang (2009) incorporated Bayesian method into the
variable selection. Peng and Huang (2011) used a penalized least squares method and
local linear approximation to select the important variables in single index model. In
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B spline variable selection for the single index models 693

their methods, the bandwidth is a key for the convergence rate of resulting estimates
and the implementation may suffer from intensive computation.

In this paper, by combining the B spline-based estimation approach in Wang and
Yang (2009) and the nonconcave penalized least squares method in Fan and Li (2001),
we consider the variable selection in model (1) with the single index approximation
(2), which will be approximated by the B spline polynomial. One advantage of B
spline approximation technique is that given the index regression vector β, we can
choose a B spline basis and then the unknown single index function can be char-
acterized by the basis expansion coefficients. So we can obtain the approximated
estimate of the unknown multivariate function m(·) by estimating the base expansion
coefficients of g(·) using the commonly-used least squares method. Thus we can eas-
ily implement the proposed variable selection method in the current context. Under
some regular conditions, we will show that the resulting estimates with the SCAD
and HARD thresholding penalties enjoy the oracle and consistency properties. Using
the proposed method, we not only can select the important single index variables but
also can estimate the unknown single index functions and the regression parameters
simultaneously. Some simulation studies and a real data application will be given to
illustrate our proposed variable selection method.

The rest of this paper precedes as follows. In Sect. 2, wewill introduce our proposed
variable selection method for model (1) with the single index model approximation
(2), including B spline approximation technique, penalized least squares method, the
main theoretical results and an efficient implementation algorithm. Some numerical
studies will be given in Sect. 3. Some conclusions will be made in Sect. 4. We will
present the corresponding theoretical proofs in Appendix.

2 Method

2.1 Penalized B spline estimation

It is assumed that {(Yi , Xi )}ni=1 are the realizations of (Y, X) specified by the model
(1). Without loss of generality, we assume ||β|| = 1 with βp > 0 and the true value

β0 is in the upper unit hemisphere S p−1
+ = {β : ||β|| = 1, βp > 0}, otherwise, we

can interchange the positions of the last covariate and the one with positive effect.

Denote S p−1
c =

{
β = (β1, β2, · · · , βp)

′ : ||β|| = 1, βp ≥ √
1 − c2

}
with c ∈ (0, 1)

as a cap shape subset of S p−1
+ . With a proper value of c, it is obvious that β0 ∈ S p−1

c .

Since S p−1
+ is not a compact set, we assume β ∈ S p−1

c in what follows. To define a B
spline expansion of g(v), we also suppose that there exists a real positive number M
such that P(||X || ≤ M) = 1. Consequently, X ′β is bounded in some finite interval,
say [a, b], with probability 1 for all β ∈ S p−1

c .
Following Wang and Yang (2009), we can estimate β by minimizing the following

risk function

R(β) = E[Y − mβ(Xβ)]2
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or the corresponding empirical risk function,

R(β) = 1

n

n∑
i=1

[
Yi − mβ(Xβ,i )

]2
,

where Xβ = X ′β, Xβ,i = X ′
iβ,mβ(Xβ) = E(Y |Xβ) = E[m(X)|Xβ ].

To stable the following B spline polynomial expansion of mβ(·), Wang and Yang
(2009) used the rescaled centered Beta cumulative density function to transform the
covariate Xβ such as

Uβ = Fp(Xβ), Uβ,i = Fp(Xβ,i ), i = 1, 2, · · · , n,

where

Fp(v) =
∫ v/a

−1

�(p + 1)

�[(p + 1)/2]22p (1 − t2)
p−1
2 dt, v ∈ [−a, a].

Then, for fixed β, Uβ has a quasi-uniform[0, 1] distribution. So equally-spaced knots
can be used to smooth the unknown function in the B spline approximation of mβ(·).
In terms of Uβ , the empirical risk function R(β) can be rewritten as

R(β) = 1

n

n∑
i=1

[
Yi − γβ(Uβ,i )

]2
, (3)

where γβ(·) = mβ(F−1
p (·)) and it is suggested to be approximated by B spline approx-

imation.
Denote r as the order of B spline approximation. Let ξ1 = ξ2 = · · · = ξr =

a < ξr+1 < ξr+2 < · · · < ξr+N < b = ξr+N+1 = ξr+N+2 = · · · = ξ2r+N be
the knot points for the B spline approximation, where N = nv with 0 < v < 0.5
such that max1≤k≤N+1{|ξr+k − ξr+k−1|} = O(n−v). Usually we call {ξr+i }Ni=1 as the
inner knot points. The number of inner knots, N , can be chosen as a positive integer
number between n1/6 and n1/5 log−2/5(n). Denote {Bj (x)}dj=1 as the B spline basis

functions based on the knot set {ξi }2r+N
i=1 , where d = r + N is the dimension of B

spline basis. Following deBoor (1978), the B spline basis functions enjoy the following
properties: (i) Bj (x) = 0 for x /∈ [ξ j , ξ j+r ]; (ii) Bj (x) > 0 for x ∈ [ξ j , ξ j+r ]; (iii)∑d

j=1 Bj (x) = 1 for any x ∈ [a, b] and 0 otherwise. Consequently, for any 1 ≤ j ≤ d
and any x ∈ R, we have Bj (x) ∈ [0, 1].

Given the B spline basis {Bj (x)}dj=1, γβ(·) can be approximated by

γ̃β(v) = θβ,1B1(v) + θβ,2B2(v) + · · · + θβ,d Bd(v) = B(v)′θβ, (4)

where θβ = (θβ,1, θβ,2, · · · , θβ,d)
′ and B(x) = (B1(x), B2(x), · · · , Bd(x))′. Here-

after the subscript β indicates that the corresponding quantity depends on the value of
β. Plugging (4) into (3), the empirical risk function (3) can be approximated by

R̃(β) = 1

n

n∑
i=1

[
Yi − B(Uβ,i )

′θβ

]2
. (5)
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B spline variable selection for the single index models 695

According to the least squares method, θβ can be estimated by θ̂β = [B′
βBβ ]−1B′

βY
for the fixed β, where Bβ = [B(Uβ,1), B(Uβ,2), · · · , B(Uβ,n)]′ and Y = (Y1,Y2,
· · · ,Yn)′. Then the empirical risk function (5) can be estimated by

R̂(β) = 1

n

n∑
i=1

[
Yi − B(Uβ,i )

′θ̂β

]2
. (6)

Let β̂ be the minimizer of R̂(β). g(·) can be estimated by

ĝ(v) = γ̃
β̂
(F−1

p (v)) = B(F−1
p (v))′θ̂

β̂
. (7)

Considering the model restriction ||β|| = 1 with βp > 0, denote β(1) =
(β1, β2, · · · , βp−1). Then the index regression parameter vector β can be rewritten

as β =
(
β(1)′ ,

√
1 − ||β(1)||2

)′
with ||β(1)|| < 1, that is, the free index regression

parameters in (2) are just β(1). Let R∗(β(1)) = R̂(β(1),
√
1 − ||β(1)||2). Adding the

penalty term to the estimated risk function R∗(β(1)), the penalized risk function is
given by

Q(β(1)) = R∗(β(1)) +
p−1∑
j=1

pλ(|β j |), (8)

where λ > 0 is the tuning parameter and pλ(·) is a penalty function given λ.
Given a proper penalty function pλ(·), we can obtain the penalized least squares

estimate of β(1) by minimizing the function (8) with respect to β(1) . To achieve
effective variable selection formodel (1), the penalty function pλ(·) should be irregular
at the origin, that is, pλ(0+) > 0 (Fan and Li 2002). Let β̂

(1)
n be the minimizer of

(8) and then g(·) can be estimated by (7) with β̂n =
(

β̂
(1)′
n ,

√
1 − ||β̂(1)

n ||2
)
. With a

proper penalty function pλ(·) and a tuning parameter λ, some components of β̂
(1)
n are

shrunk to 0 and so the corresponding covariates will disappear in model (1), which
reaches the variable selection. In this paper, we consider three commonly-used penalty
functions: SCAD,Hard threshoulding and Lasso. Their formula and the corresponding
nice properties can be found in Fan and Li (2001).

In what follows, let β
(1)
0 be the true value of β(1). Without loss of generality,

we partition β
(1)
0 =

(
β

(1)′
10 , β

(1)′
20

)′
such that β

(1)
10 contains all the nonzero effects

in β
(1)
0 and β

(1)
20 = 0 contains all the zero ones. We also assume that the length

of β
(1)
10 is s. Correspondingly, β(1) and β̂

(1)
n also have the same partitions, namely,

β(1) =
(
β

(1)′
1 , β

(1)′
2

)′
, β̂(1)

n =
(
β̂

(1)′
1n , β̂

(1)′
2n

)′
, where β

(1)′
1 and β̂

(1)′
1n respectively consist

of the first s components of β(1) and β̂
(1)
n .

Denote

an = max{ ṗλn (|β(1)
j,10|) : β

(1)
j,10 �= 0} and bn = max{| p̈λn (|β(1)

j,10|)| : β
(1)
j,10 �= 0},
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696 J. Li et al.

where β
(1)
j,10 is the j th component of β

(1)
10 , ṗλn and p̈λn respectively are the first- and

second-order derivatives of pλn . Then we have the following results.

Theorem 1 Under conditions (A1)-(A6) in Wang and Yang (2009), if bn → 0, then
there exists a minimizer β̂

(1)
n of Q(β(1)) such that ||β̂(1)

n − β
(1)
0 || = Op(n−1/2 + an).

To present the oracle properties of β̂(1)
n denote


̃λn = diag
{
p̈λn (|β(1)

1,10|), p̈λn (|β(1)
2,10)|, · · · , p̈λn (|β(1)

s,10)|
}

and

b̃λn =
[
ṗλn (|β(1)

1,10|)sign(β(1)
1,10), ṗλn (|β(1)

2,10|)sign(β(1)
2,10), · · · , ṗλn (|β(1)

s,10|)sign(β(1)
s,10)

]′
.

Theorem 2 (Oracle properties) Assume that the penalty function pλn (·) satisfies that

lim inf
n→∞ lim inf

θ→0+ ṗλn (θ)/λn = c,

where c is a positive constant. Ifλn → 0,
√
nλn → ∞ and an = O(n−1/2), then under

the conditions of Theorem 1, the
√
n-consistent local minimizer β̂

(1)
n = (β̂

(1)′
1n , β̂

(1)′
2n )′

in Theorem 1 must satisfy:

(i) (Sparsity) P(β̂
(1)
2n = 0) → 1;

(ii) (Asymptotic Normality)

√
n(V + 
̃λn )

[
β̂

(1)
1n − β

(1)
10 + (V + 
̃λn )

−1b̃λn

]
→ N (0, A) (9)

where V and A are the sth leading submatrix of E[H∗(β(1)
0 )] and Cov[S∗(β(1)

0 )],
H∗(β(1)) and S∗(β(1)), the Hessian matrix and score function of R∗(β(1)), are given
in Sect. 2.2.

Remark 1 For SCAD and HARD thresholding penalties, when |βi | is large enough,
they are constant, which implies that b̃λn = 0 and 
̃λn = 0. So for the variable
selection based on SCAD and HARD thresholding penalties, we have

√
n

(
β̂

(1)
1n − β

(1)
10

)
→ N

(
0, V−1′

AV−1
)

.

Remark 2 For LASSO penalty, an = λn , which implies that there is a contradict
between an = o(n−1/2) for estimation consistency in Theorem 1 and

√
nλn → ∞ for

oracle properties in Theorem 2. Therefore the resulting consistent estimates based on
LASSO penalty can not enjoy oracle properties.
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B spline variable selection for the single index models 697

2.2 Implementation

For the minimization of Q(β(1)), we suggest to use the port optimization-based algo-
rithm in Wang and Yang (2009) with the objective function Q(β(1)) and the gradient
vector

S(β(1)) = ∂Q(β(1))

∂β(1)
= ∂R∗(β(1))

∂β(1)
+ bλ(β

(1)) = S∗(β(1)) + bλ(β
(1))

= −2

n

n∑
i=1

[
Yi − B(Uβ,i )

′θ̂β

]
Ḃ(Uβ,i )

′θ̂β Ḟp(X
′
iβ)Jβ(1) Xi + bλ(β

(1)),

(10)

wherebλ(β
(1))= [ ṗλ(|β1|)sign(β1), ṗλ(|β2|)sign(β2), · · · , ṗλ(|βp−1|)sign(βp−1)]′,

Jβ(1) = ∂β

∂β(1) = (γ1, γ2, · · · , γp)
T , γi (i ≤ p − 1) is a (p − 1)-dimensional zero

column vector with i th element being 1, γp = −β(1)/
√
1 − ||β(1)||2, Ḃ(v) =

(Ḃ1(v), Ḃ2(v), · · · , Ḃd(v))′, Ḃi (v), and Ḟd(·) are the first-order derivatives of the
B spline basis function Bi (v), and the Beta cumulative density function Fd(·).

In the view of Newton-Raphson iterative algorithm, β̂(1)
n can be seen as the values

of β(1) at the convergence in the following iteration,

β(1) = β
(1)
0 −

[
H∗(β(1)

0 ) + 
λ(β
(1)
0 )

]−1 [
S∗(β(1)

0 ) + bλ(β
(1)
0 )

]
,

where

H∗(β(1)) = ∂2R∗(β(1))

∂β(1)∂β(1)′ = H1(β
(1)) + H2(β

(1)) + H3(β
(1)),

H1(β
(1)) = 2

n

n∑
i=1

[Ḃ(Uβ,i )
′θ̂β Ḟp(X ′

iβ)]2 Jβ(1) Xi X ′
i J

′
β(1) ,

H2(β
(1)) = − 2

n

n∑
i=1

[
Yi − B(Uβ,i )

′θ̂β

]
B̈(Uβ,i )

′θ̂β [Ḟp(X ′
iβ)]2 Jβ(1) Xi X ′

i J
′
β(1) ,

H2(β
(1)) = − 2

n

n∑
i=1

[
Yi − B(Uβ,i )

′θ̂β

]
Ḃ(Uβ,i )

′θ̂β F̈p(X ′
iβ)Jβ(1) Xi X ′

i J
′
β(1) ,


λ(β
(1)) = diag

{
ṗλ(|β(1)

1 |)/|β(1)
1 |, ṗλ(|β(1)

2 |)/|β(1)
2 |, · · · , ṗλ(|β(1)

p−1|)/|β(1)
p−1|

}
,

B̈(v) = [B̈1(v), B̈2(v), · · · , B̈d(v)]′, B̈i (v) and F̈d(·) are the second-order derivatives
of the B spline basis function Bi (v) and the Beta cumulative density function Fd(·).
Thus the covariance of the estimate β̂

(1)
1n can be estimated by

Cov(β̂(1)
1n ) =

[
A(β̂

(1)
1n ) + Cλ(β̂

(1)
1n )

]−1
Cov

(
D(β̂

(1)
1n )

) [
A(β̂

(1)
1n ) + Cλ(β̂

(1)
1n )

]−1
,

(11)
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698 J. Li et al.

where A(β
(1)
1 ) and Cλ(β

(1)
1 ) are the sth leading submatrix of H∗(β(1)) and 
λ(β

(1))

with β
(1)
2 = 0; D(β

(1)
1 ) is a vector consisting of the first s components of S∗(β(1))

with β
(1)
2 = 0. This formula is consistent with the results of Theorem 2. Our numerical

studies show that the formula performs very well for the finite sample size.
To sum up, the implementation of the proposed variable selection can be summa-

rized as the following three steps.

Step 1 Given β ∈ S p−1
c , by use of Steps 1-2 in Wang and Yang (2009), we obtain the

transformed single index variable Uβ and the number of inner knots.
Step 2 Given the tuning parameter λ, we obtain the penalized estimate of β(1) by

minimizing R∗(β1) through the port optimization with the linear model least
squares estimate as the initial value of β(1) and the score function (10).

Step 3 With the penalized estimate of β(1) in Step 2, we can obtain the estimate of
single index function through (7) and the covariance matrix of β̂

(1)
1n can be

estimated through the formula (11).

Another issue for the variable selection procedure is the selection of tuning para-
meter λ. Following Wang et al. (2007), we use the following Bayesian information
criteria (BIC) to select the tuning parameter λ,

BIC(λ) = R∗(β̂(1)
n ) + d fn

log(n)

n
,

where d fn is the approximated degree of freedom for model (1) and it can be estimated
by the number of nonzero element in β̂

(1)
n . The advantage of BIC is that it tends to

identify the true model if the true model is included in the candidate model set.

3 Numerical studies

In this section, we present some simulation examples and an application to illustrate
our proposed variable selection method. We use the median of model prediction error
(MMPE), E[(β̂n − β0)

′
X (β̂n − β0)] with 
X = E(XX ′), over 500 runs to evaluate
the efficiency of our proposed variable selection procedure. The code was complied
using R. It’s available for any readers on requirement.

3.1 Simulation examples

We generate a sample {(Xi ,Yi )}ni=1 of (X,Y ) from the following model

Y = m(X) + σ(X)ε,

where X = (X1, X2, · · · , X5)
′ i.i.d.∼ N (0, 1), truncated by [−2.5, 2.5], m(X) =

X ′β + 4 exp{−(X ′β)2} + δ||X ||, ε ∼ N (0, 1) and β = (1, 0,−1, 0, 1)′/
√
3. When

δ = 0, this model is just the single index model. This model was ever used in Wang
and Yang (2009) and Xia et al. (2004).
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B spline variable selection for the single index models 699

Table 1 Variable selection results (I)

Penalty Lasso Hard Scad Oracle

n MMPE Corr. ICorr. MMPE Corr. ICorr. MMPE Corr. ICorr. MMPE Corr. ICorr.

100 0.0055 3.000 0.3520 0.0035 3.0000 0.0580 0.0059 3.0000 0.0368 0.0060 3.0000 0.0000

150 0.0039 3.000 0.2540 0.0022 3.0000 0.0520 0.0044 3.0000 0.0330 0.0038 3.0000 0.0000

200 0.0026 3.000 0.2300 0.0013 3.0000 0.0500 0.0029 3.0000 0.0240 0.0029 3.0000 0.0000

300 0.0020 3.000 0.2280 0.0012 3.0000 0.0480 0.0018 3.0000 0.0168 0.0015 3.0000 0.0000

Table 2 Variable selection results (II)

Model δ = 1, σ (x) = 1 δ = 0, σ (x) = 1−0.2 exp{||x ||/√5}
5+exp{||x ||/√5}

Penalty Scad Oracle Scad Oracle

n MMPE Corr. ICorr. MMPE Corr. ICorr. MMPE Corr. ICorr. MMPE Corr. ICorr.

100 0.0066 3.0000 0.0434 0.0066 3.0000 0.0000 0.0031 3.0000 0.0280 0.0035 3.0000 0.0000

150 0.0044 3.0000 0.0352 0.0046 3.0000 0.0000 0.0018 3.0000 0.0080 0.0020 3.0000 0.0000

200 0.0034 3.0000 0.0304 0.0032 3.0000 0.0000 0.0012 3.0000 0.0022 0.0015 3.0000 0.0000

300 0.0013 3.0000 0.0301 0.0019 3.0000 0.0000 0.0009 3.0000 0.0006 0.0010 3.0000 0.0000

In this study, we consider four sample sizes: n = 100, 150, 200, 300 and two cases

of σ(x): σ(x) = 1, σ(x) = 1−0.2 exp{||x ||/√5}
5+exp{||x ||/√5} . We run each case 500 times. The index

function g(v)will be approximated by the cubic B spline technique.We choose tuning
parameter λ in all the cases by BIC. We study all the three type of variable selection
for the single index models (δ = 0, σ (x) = 1). For the models away from single index
model and heteroscedastic single index model, we only present the variable selection
results based on SCAD penalty.

The summarized results are displayed in Tables 1, 2, 3 and 4. Table 1 shows the
variable selection results in the single indexmodel (δ = 0, σ = 1). Table 2 displays the
variable selection results based on SCAD penalty in the models with (δ = 1, σ (x) =
1.0) and

(
δ = 0, σ (x) = 1−0.2 exp{||x ||/√5}

5+exp{||x ||/√5}
)
. In the two tables, “MMPE”, “Corr.” and

“ICorr.” respectively stand for the median of model prediction errors, the average
number of nonzero effects correctly detected and the average number of zero effects
incorrectly detected by our variable selection procedures. Tables 3 and 4 summarize
the estimation results of nonzero effects β1 and β3 in the three model cases.

From Table 1, we can see that the variable selection procedure in all the cases
can select the same number of important variables. Moreover, the average number of
covariates incorrectly detected decreases as the increasing of sample size. In addition,
we also find that the medians of model prediction errors decrease as the increasing of
sample size and they are reasonably close to the oracle estimation results.Moreover, for
all the sample sizes, themedian of themodel prediction errorwithLasso penalty ismost
far away from themedian with oracle estimation while the median with SCAD penalty
is closest to the median with oracle estimation. Table 2 reveals that our proposed
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Table 3 Summarized estimation results (I)

Penalty n = 100 n = 150 n = 200 n = 300

β1 β3 β1 β3 β1 β3 β1 β3

Lasso

Bias −0.0119 0.0083 −0.0064 0.0044 −0.0076 0.0073 −0.0078 0.0063

SSTD 0.0695 0.0680 0.0368 0.0365 0.0291 0.0295 0.0247 0.0259

MSTD 0.0523 0.0582 0.0424 0.0432 0.0312 0.0312 0.0261 0.0268

Hard

Bias 0.0001 −0.0028 0.0005 0.0012 0.0013 −0.0007 0.0020 −0.0013

SSTD 0.0395 0.0407 0.0353 0.0324 0.0267 0.0259 0.0222 0.0229

MSTD 0.0435 0.0434 0.0404 0.0409 0.0380 0.0368 0.0339 0.0331

Scad

Bias −0.0014 0.0029 −0.0007 0.0011 −0.0026 0.0024 −0.0017 0.0033

SSTD 0.0401 0.0400 0.0345 0.0374 0.0318 0.0323 0.0253 0.0255

MSTD 0.0439 0.0422 0.0407 0.0405 0.0376 0.0386 0.0331 0.0337

Oracle

Bias 0.0014 −0.0022 0.0003 −0.0014 0.0023 −0.0026 0.0020 −0.0033

SSTD 0.0379 0.0421 0.0317 0.0317 0.0264 0.0289 0.0224 0.0232

MSTD 0.0443 0.0431 0.0402 0.0408 0.0364 0.0377 0.0339 0.0334

variable selection method also performs satisfactory for the true models away from
single index model and heteroscedastic single index model.

Tables 3 and 4 summarize the estimation results of nonzero effects β1 and β3. In
the table, “Bias”, “SSTD” and “MSTD” respectively represent the estimation bias,
sample standard deviation and mean of estimated standard deviation based on the
formula (11).

From Table 3, we can see that all the estimation biases are reasonably small and
perform very similarly to the oracle estimation especially for the variable selec-
tion methods with SCAD and HARD penalties. In most cases, their absolute values
decrease as the increasing of sample size. Ignoring the random error, “SSTD” can be
seen as the true value of standard deviation. All “MSTD” and “SSTD” are reasonably
as small as that based on the oracle estimation especially for large sample size cases.
Moreover, their values are vary close in all cases. In addition, “MSTD” and “SSTD”
based on the variable selection method with SCAD penalty perform most similarly
to the oracle estimation method even for relative small sample size. Table 4 suggests
that our proposed method also performs very well in estimation when the models are
away from single index models.

In a word, the variable selection procedure with all the three penalties can perform
very well and similarly to the oracle estimation according to the variable selection and
estimation. Moreover, the variable selection procedure with SCAD outperforms the
other two procedures. Therefore we suggest ones to use the variable selection with
SCAD penalty in applications.
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Table 4 Summarized estimation results (II)

Penalty n = 100 n = 150 n = 200 n = 300

β1 β3 β1 β3 β1 β3 β1 β3

δ = 1, σ = 1

Scad

Bias −0.0017 0.0024 −0.0103 0.0102 −0.0142 0.0064 −0.0085 0.0117

SSTD 0.0713 0.0773 0.0411 0.0421 0.0372 0.0355 0.0279 0.0286

MSTD 0.0750 0.0715 0.0458 0.0443 0.0322 0.0403 0.0246 0.0238

Oracle

Bias −0.0020 −0.0026 0.0040 0.0008 0.002 −0.0024 0.0029 −0.0012

SSTD 0.0740 0.0720 0.0367 0.0365 0.0335 0.0329 0.0265 0.0265

MSTD 0.0657 0.0671 0.0477 0.0467 0.0365 0.0365 0.0288 0.0295

δ = 0, σ = 1−0.2 exp{||x ||/√5}
5+exp{||x ||/√5}

Scad

Bias −0.0003 0.0014 −0.0004 −0.0002 −0.0014 0.0020 −0.0024 0.0022

SSTD 0.0306 0.0276 0.0231 0.0248 0.0104 0.0123 0.0085 0.0085

MSTD 0.0316 0.0267 0.0244 0.0250 0.0103 0.0140 0.0084 0.0082

Oracle

Bias 0.0003 −0.0044 0.0011 −0.0023 0.0020 −0.0028 0.0023 −0.0017

SSTD 0.0274 0.0289 0.0247 0.0243 0.0131 0.0115 0.0082 0.0086

MSTD 0.0349 0.0349 0.0274 0.0283 0.0102 0.0105 0.0086 0.0076

3.2 Application

In this section, we use our proposed variable selection procedures to analyze the body
fat data set (Penrose et al. 1985). This data set involves 252 observations with 13
covariates (age,weight, height, neck, chest, abdomen, hip, thigh, knee, ankle, biceps,
forearm and wrist). This data can be available from R package “mfp”. In this appli-
cation, the response variable is Percent body fat (estimated by Brozek’s equation:
457/Density −414.2). In the original data set, we exclude the observations with the
percentage body fat estimated as 0 and the density less than 1. Thus the data set used
in this application involves 250 observations. Before application, we first standardize
all the covaraites.

Under the restriction ||β|| = 1 with βd > 0, we use the model (1) with the single
index function approximation (2) and our proposed cubic B spline variable selection
procedure to select important variables. To compare the performance of our proposed
procedures, we also apply the cubic B spline-based estimation method to the analysis
of this data set. We summarize the variable selection results and estimates in Table 3,
in which “Lasso”, “Scad”, “Hard” and “BE” respectively stand for the estimate results
of variable selection procedures with Lasso, SCAD, Hard thresholding and B spline
estimation approaches. The plots of estimated single index function ĝ(·) are displayed
in Fig. 1.
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Fig. 1 The plots of estimated single index function ĝ(·)

Table 5 Summarized
estimation results for body fat
data

Covaraites Lasso Scad Hard BE

Age 0.4965 0.4706 0.4695 0.4389

Weight – - – 0.1990

Height – – – −0.1964

Neck – – – −0.0663

Chest – – – 0.0534

Abdomen 0.7308 0.7843 0.7806 0.6765

Hip – – – 0.1660

Thigh 0.3241 0.3172 0.3194 0.2662

Knee – – – −0.0647

Ankle – – – 0.0427

Biceps – – – 0.0562

Forearm – – – 0.0507

Wrist −0.2564 −0.2507 −0.2611 −0.3925

From the column labeled by “BE” in Table 3, we can see that the predictors Age,
Abdomen, Thigh and Wrist contains most of information in interpreting the percent
body fat while the other factors involves very little information. That is, the fat in
a body mainly focuses on Thigh, Abdomen, Forearm and wrist. Moreover, the age
also has something important with his percent body fat. From the first three columns
in Table 5, all the three variable selection procedures can identify the same impor-
tant factors. Therefore, we should take age and circumferences of abdomen, forearm,
wrist, thigh as the important factors to measure the percent body fat. In addition,
Fig. 1 displays the original data points and the B spline fitted lines. From upper-left
to below-right, they are from variable selection based on Lasso, SCAD, HARD and
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the B spline estimation. This figure significantly indicates that X ′β as a measurement
has a nonlinear effect on the percent body fat, which flexibly shows the relationship
between the percent body fat and the four main factors.

4 Conclusion

In this paper, we considered the variable selection for the model (1) with the single
index model approximation (4) by incorporating B spline expansion technique. Under
some regular conditions, we established the corresponding consistency and oracle
properties of resulting penalized estimates. Some numerical studies illustrated that
our proposed method performs very well for moderate sample size.

Our experiments shows that our proposed procedure performs very well when the
dimension of covariates is less than sample size. For the dimensionality larger than n,
some dimension reduction maybe needed such as SIS or ISIS methods. In many appli-
cations, some covariates can not be observed exactly and are prone to suffer frommea-
surement error. It is also interesting to consider B spline variable selection with covari-
ate measurement error. All the aspects will be investigated in our sequent research.
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Appendix

In this section, we prove Theorems 1, 2 under the Assumptions (A1)–(A6) in Wang
and Yang (2009).

Proof of Theorem 1 Let αn = n−1/2 + an . It is sufficient to show that for any given
ε ∈ (0, 1), there exists a large constant C such that

P

{
inf||u||=C

Q(β
(1)
0 + αnu) ≥ Q(β

(1)
0 )

}
≥ 1 − ε. (12)

Based on that pλn (0) = 0 and pλn (θ) > 0, we have

Q(β
(1)
0 + αnu) − Q(β

(1)
0 )

≥
[
R∗(β(1)

0 + αnu) − R∗(β(1)
0 )

]
+

s∑
j=1

[pλn (|β j0 + αnu j |) − pλn (|β j0|)]. (13)

By Theorems 1, 2 in Wang and Yang (2009), for any β(1) ∈ {β(1) : β(1) =
β

(1)
0 + αnu, ||u|| = C}, we have

R∗(β(1)) − R∗(β(1)
0 )
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= S∗(β(1)
0 )(β(1) − β

(1)
0 ) + 1

2
(β(1) − β

(1)
0 )T H∗(β(1)

0 )(β(1) − β
(1)
0 ){1 + OP (1)}

= 1

2
(β(1) − β

(1)
0 )T [H∗(β(1)

0 ) + OP (1)](β(1)−β
(1)
0 ) + OP (n−1/2) · ||β(1) − β

(1)
0 ||

= 1

2
α2
nu

T [H∗(β(1)
0 ) + OP (1)]u + OP (n−1/2αn||u||). (14)

Note that H∗(β(1)
0 ) is a positive definite matrix. The order for the first term in the

last equality of (14) is C2α2
n and for second one is α2

nC . Therefore, for a sufficiently
large C , the second term is dominated by the first term in the last equation of (14). On
the other hand, by Taylor’s expansion, the second term of (13) is bounded by

√
sαnan||u|| + α2

nbn||u||2 = Cα2
n(

√
s + bnC).

If bn → 0, the second term of (13) is dominated by the first term of (14). Thus, for
a sufficiently large C , (12) holds, which means that there exists a local minimizer in
the ball {β(1) : β(1) = β

(1)
0 + αnu, ||u|| ≤ C} with probability at least 1 − ε > 0.

Therefore, there exists a local minimizer β̂
(1)
n such that ||β̂(1)

n − β
(1)
0 || = OP (n−1/2 +

an). �


Proof of Theorem 2 (i) It is sufficient to prove that

Q((β
(1)′
1 , 0′)′) = min

||β(1)
2 ||≤Cn−1/2

Q((β
(1)′
1 , β

(1)′
2 )′) (15)

for any given β
(1)
1 satisfying ||β(1)

1 − β
(1)
10 || = OP (n−1/2) and any constant C .

Denote S∗
j (β

(1)) as the j th element of S∗(β(1)). By the Taylor expansion of S∗
j (β

(1))

for ||β(1) − β
(1)
0 || = OP (n−1/2) at β(1)

0 , we have

S∗
j (β

(1)) = S∗
j (β

(1)
0 ) +

p−1∑
i=1

∂2R∗(β(1)
0 )

∂β j∂βi
(βi − βi0) + Op(||β(1) − β

(1)
0 ||2). (16)

From (A.32) and Theorem 2 of Wang and Yang (2009), it can be obtained that

∂2R∗(β(1)
0 )

∂β j∂βi
= l j i + o(1) and S∗

j (β
(1)
0 ) = Op(n

−1/2),

where l j i ’s are defined in the Theorem 2 of Wang and Yang (2009). So for ||β(1) −
β

(1)
0 || = OP (n−1/2), from (16) we have

S∗
j (β

(1)) = Op(n
−1/2).

123



B spline variable selection for the single index models 705

Therefore, for ||β(1) − β
(1)
0 || = OP (n−1/2) and j = s + 1, s + 2, · · · , p − 1, we

have that

∂Q(β(1))

∂β j
= 1

n

{
nS∗

j (β
(1)) + n ṗλn (|β j |)sign(β j )

}

= 1

n

{
n ṗλn (|β j |)sign(β j ) + OP (

√
n)

}

= 1

n

{
nλn

[
λ−1
n ṗλn (|β j |)sign(β j ) + OP (

1√
nλn

)

]}
,

(17)

Since lim infn→∞ lim infθ→0+ ṗλn (θ)/λn = c > 0, 1√
nλn

→ 0 and |sign(β j )| = 1
for any β j �= 0,

lim inf
n→∞ lim inf

β j→0
|λ−1

n ṗλn (|β j |)sign(β j )| = c > 0

and so the second term in squared bracket of the last equation in (17) is dominated by
the first term when n is large enough. Hence the the derivative and β j have the same
sign. Therefore (15) holds.

(ii) From an = O(n−1/2) and Theorem 1, there exists a local
√
n-consistent mini-

mizer, β̂(1)
1n , of Q((β

(1)′
1 , 0′)′) satisfying

∂Q(β(1))

∂β
(1)
j

∣∣∣
β(1)=(β̂

(1)
1n ,0′)′

= 0 for j = 1, 2, · · · , s. (18)

Set β̂(1)
n = (β̂

(1)′
1n , 0′)′ and S∗

1 (β
(1)) as the vector consisting of the first s components

of S∗(β(1)), then

0 = ∂Q(β(1))

∂β
(1)
1

∣∣∣
β(1)=β̂

(1)
n

= ∂Q(β(1))

∂β
(1)
1

∣∣∣
β(1)=β

(1)
0

+ ∂2Q(β(1))

∂β
(1)
1 ∂β

(1)′
1

∣∣∣
β(1)=β(1)∗(β̂

(1)
1n − β

(1)
10 )

= S∗
1 (β

(1)
0 ) + bλn + ∂R∗(β(1))

∂β
(1)
1 ∂β

(1)′
1

∣∣∣
β(1)=β(1)∗(β̂

(1)
1n − β

(1)
10 ) + 
λn (β

(1)∗
1 )(β̂

(1)
1n − β

(1)
10 )

(19)

where β(1)∗ = (β
(1)∗′
1 , β

(1)∗′
2 )′ lies on the line segment between β̂

(1)
n and β

(1)
0 . From

Theorem 1 above, Theorems 1, 2 in Wang and Yang (2009), (9) holds. This completes
the proof. �
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