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Abstract We consider one-parametric families of copulas for which the complement
function for independence satisfies an anti-symmetric property. The Spearman rank
correlation and Kendall’s tau of an anti-symmetric family of copulas are necessarily
odd functions of the parameter. Extending the parameter range of the FGM copula to
the whole real line and truncated it from above and below using the Hoeffding-Fréchet
bounds generates a comprehensive anti-symmetric extension of the FGM copula. The
detailed analytical representation of the extended FGM copula, the absolutely contin-
uous and singular components, as well as the Spearman rank correlation and Kendall’s
tau dependence functions are derived. Several additional examples illustrate the anti-
symmetric copula construction.
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1 Introduction

One of the most popular parametric families of copulas is the FGM family defined by

Colu,v) =uv+a-u(l —u)v(l —v), (u,v)e]l0, 1]2, ael[—1,1],
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and studied in Farlie (1960), Gumbel (1960) and Morgenstern (1956) (see also Eyraud
(1938)). A survey of properties, generalizations and applications of the FGM copula is
found in Balakrishnan and Lai (2009), Sect. 2.2 (see also Joe 2015, Sect. 4.29). A main
drawback of this family is its limited range of correlation [—1/3, 1/3]. Several FGM
extensions have been proposed by Sarmanov (1966), Huang and Kotz (1984, 1999),
Lai and Xie (2000), Bairamov et al. (2001), Bairamov and Kotz (2003), Rodriguez-
Lallena and Ubeda-Flores (2004), Kim and Sungur (2004), etc. Among them, only
a few become close to a comprehensive family. Amblard and Girard (2002, 2011)
extend the range of variation of Spearman’s rho to the interval [—3/4, 3/4] while
Amblard and Girard (2009) extend it to [—3/4, 1]. Replacing parameters by matrices,
Amblard et al. (2013) reach values of Spearman’s rho arbitrarily close to 1 without a
singular component. For fixed correlation as close to =1 as desired, it is also possible
to construct absolutely continuous copulas with the prescribed correlation, as shown
by Ferguson (1995). However, the obtained class of copulas is not parametric and does
not include the FGM copula. In the present paper, we solve the comprehensive FGM
extension problem in a simple new way.

Let M (u, v) = min(u, v) and W(u, v) = max(u + v — 1, 0) be the Hoeffding-
Fréchet bounds. We claim that the truncated bivariate functions defined by

Co(u,v) = min{M @, v),uv+o-u(l —u)v(l —v)}, o €l0,oc0),
Co(u,v) = max{Wu,v),uv+aoa-u(l —u)v(l —v)}, «a € (—o0,0],

yield a comprehensive family of copulas. Its Spearman rho and Kendall tau are odd
functions of the parameter and takes values in [—1, 1]. A short account of the content
follows.

Section 2 is about anti-symmetric copulas. A family of copulas Cy (u, v) is called
anti-symmetric if its complement function for independence, defined by C, OJ; (u,v) =
Cq(u, v) —uv, is anti-symmetric in at least one of two ways. Flipped copulas generate
anti-symmetric copulas with odd Spearman and Kendall tau dependence measures, as
shown in Theorem 2.1 and Corollary 2.1. We show that the linear Spearman copula,
studied by the author (see Hiirlimann 2012 and references therein), is anti-symmetric.
Several additional examples illustrate this construction. In particular, the copula by
Cuadras and Augé (1981) and the Chogosov copula, studied by Peyre (2013), are
extended herewith to comprehensive families. In Sect. 3, we show that the above
truncated FGM functions define a comprehensive and anti-symmetric copula, called
Hoeffding-Fréchet extended FGM (HF-FGM) copula. Moreover, we obtain the ana-
lytical representation of the copula, including its absolutely continuous and singular
components. The Sects. 4 and 5 derive formulas for its Spearman rho and Kendall’s
tau dependence functions.

2 Anti-symmetric copulas with odd Spearman rho and Kendall tau
dependence functions

To fix ideas, we consider one-parametric families of copulas Cy (u, v), (u,v) € I 2,
I = [0, 1], indexed by a parameter o with values in a symmetric range [—c, —ag] U
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[, c], @9 = 0, 0 < ¢ < oo. By abuse of notation, if ¢ = oo then @ € (—o0, —ap] U
[cg, 00). The convenient notation x = 1 — x is used throughout. The independent
copulais denoted by IT(u, v) = uv. The Hoeffding-Fréchet upper bound is M (u, v) =
min(u, v) and the Hoeffding-Fréchet lower bound is W (4, v) = max(u+v—1, 0). Up
to asign change, the following notion is also used in Sungur et al. (2007), Definition 2.1.

Definition 2.1 Let C(u, v) be any copula. The complement function of the copula
C for the independent copula, here called complement function for independence,
denoted by C(u, v), is the signed distance between the copula and the independent
copula defined by

Ct(u,v) = C(u, v) — uv. .1)

We are interested in copulas with odd Spearman rho and Kendall tau dependence
functions.

Definition 2.2 The one-parametric family of copulas Cy(u, v) is called an anti-
symmetric family if the complement function for independence satisfies one of the
following two properties:

(AS1) CL (u,v) = —Cy(u,v), Yacel—c, —ay]Ula,c]
(AS2) CL (u,v) =—Cl@,v), Yae[—c, —ap]Ula,c]

The complement function for independence can be used to extend a family of copulas
Cq(u, v) with a given parameter range to an anti-symmetric family of copulas with
wider parameter range.

Theorem 2.1 Let Cy(u, v) be a copula with parameter range o € [ag, c], ag > 0.
The extensions to the parameter range [—c, —o] defined by C(_I; (u,v) =u—Cgy(u, v)

and C(_zo)l (u, v) = v — Cy(u, v) generate anti-symmetric families of copulas.

Proof Given a random vector (X, Y) with copula C(u, v) it is well-known that
COwu,v) =u—C(u,v)and C?(u, v) = v — C(i, v) are the copulas of (X, —Y)
and (—X, Y). These copulas satisfy the properties (AS1) and (AS2) of anti-symmetric
copulas. O

The extended copulas CY;(u, v) are sometimes called flipped copulas (see De
Baets et al. 2009; Klement et al. 2014; Nelsen 2006, Exercise 2.6, Theorem 2.4.4 and
Exercise 6.9). O

Corollary 2.1 Spearman’s rho and Kendall’s tau of anti-symmetric families of copu-
las are odd functions such that pg)(—a) = —ps(a) tl(;)(—ot) =—1x(@), i=1,2,
o € [ao, c], ap = 0.

Proof By Theorem 5.1.9 in Nelsen (2006), Spearman’s rho and Kendall’s tau of a ran-
dom vector (X, Y') are concordance measures and satisfy ps(X, —Y) = ps(—=X,Y) =
—ps(X,Y) and g (X, =Y) = ¢ (—X,Y) = —1x (X, Y). The result follows from
the proof of Theorem 2.1. O
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Example 2.1 linear Spearman copula

LetCo(u,v) = (1—-0)-Tl(u,v)+6-M(u,v), 6 € [0, 1], be the Fréchet copula (e.g.
Nelsen 2006, Exercise 2.4, Example 5.6, Joe 1997, family (B11), Joe 2015, Sect. 4.30).
Its complement function for independence equals CGl (u,v) =0 - I(u,v) with

Uv, u>0v
I(u,v):[m_)’ u<v
9 —

2.2)

Theorem 2.1 implies that

C(_lg(u, V) = uv — C;‘(u, ) =uv—0-1(u, )
=(1—-6) -Mu,v)+6-W(u,v), 0 €[0,1],
ngg(uav)=uv—Ci‘(ﬁ,v)=uv—0-I(ﬁ,v)
=1—-6) -Tu,v)+60-Wu,v), 0 €[0,1].

One has C(_le) (u,v) = C(_Ze) (u, v), but this must not be true in general (see Example
2.2). The extended one-parametric family Cy (u, v), 6 € [—1, 1], is an anti-symmetric
comprehensive family of copulas, called linear Spearman copula. It has been studied
extensively by the author (see Hiirlimann 2012 and references therein).

Example 2.2 Comprehensive anti-symmetric extension of the Cuadras-Augé copula
Cuadras-Auge (1981) consider the weighted geometric mean of the copulas M (u, v)
and IT(u, v) to define for 6 € [0, 1] the copula (e.g. Nelsen 2006, Exercise 2.5)

1"Qv, u=>v

Co(u,v) = M(u,v)? - Tl(u,v)! =% = { (2.3)

uvl_e, u=<wv

From Theorem 2.1 one gets

ull—u=%9), u>"v v(l—v7P2), v>u
c®w,v) = i L, CBu, ) = _ .
u(l — vlf‘g), u<v v(l — ul’e), v<u

Since C(fe) (u,v) = C(Je)(v, u) # C(Je)(u, v) the anti-symmetric construction yields
here two non-symmetric copula extensions (see Nelsen 2006, p. 38, for the notion
of symmetric copula). Moreover, one knows that ps(6) = 36/(4 — 0) and 7 () =
6/(2—0) both with values in [0, 1] (e.g. Nelsen 2006, Examples 5.5 and 5.7). It follows
that the anti-symmetric extensions are comprehensive families. Note that the Cuadras-
Augé copula is a special case of the important two-parameter family by Marshall and
Olkin (1967) (see Nelsen 2006, Sect. 3.1.1).

Example 2.3 a comprehensive anti-symmetric extended copula of Hoeffding-Fréchet
type
Durante (2006), Chapter 4, proposes the following interesting family of copulas

Cr(u,v) = M(u,v) - f(max(u, v)),
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where the function f is a differentiable function (up to finitely many points) from / to
I. This function defines a copula under the necessary and sufficient conditions stated
in Theorem 4.1.1 of Durante (2006). A simple member of this family is Example 4.1.3
there, namely

Cy(u, v) = min{M (u, v), cuv}, « €[l,00). 2.4)

With (2.2) one has M (u, v) = uv + I(u, v), Cq(ut, v) = uv + min{/ (u, v), (o0 —
1)uv}, and the complement function for independence reads Cj (u, v) = min{/ (u, v),
(¢—1)uv}. Through application of Theorem 2.1 one obtains the anti-symmetric copula
extension, valid for o > 1:

W u,v) = uv — C(u, v) = wv — min{I (u, v), (& — ud}
= max{uv — I (u, v), u(1 — av)} = max{W(u, v), u(l — a + av)}.
2.5)
From (2.4) and (2.5) one sees that the function auv, respectively u(1 — o 4+ «v), has
been truncated from above, respectively below, in order to satisfy automatically the
Hoeffding-Fréchet bounds, which are necessary conditions for a genuine copula. One
observes that C; = C_1 =TI, Cooc = M, C_ = W, and this type of Hoeffding-
Fréchet extended copulais a comprehensive anti-symmetric family. Moreover, through
direct calculation, one obtains its Spearman rho as ps(a) = 1 — a3 (120 — 6% —
5), @ > 1, and clearly ps(—«) = —ps(a) on (—oo, —1] U [1, 00).

Example 2.4 Hoeffding-Fréchet comprehensive extension of Chogosov’s copula
Consider the bivariate function from /2 to I defined by

Co(u, v) = min{M (u, v), uv + 6/ (uu)(vv)}, 6 €[0,1]. (2.6)

This so-called Chogosov law is indeed a copula, as shown in Peyre (2013), Proposition
3.5 (see also Peyre 2010a,b). The complement function for independence is given
by Ci-(u, v) = min{l (u, v), 0/(uit)(v0)}. Again, the Hoeffding-Fréchet extended
Chogosov copula is obtained from Theorem 2.1 and reads

C(_le)(u, V) = uv—Cj;(u, v) = max{W(u, v), uv—0+/(uur)(vv)}, 6 €l0,1]. (2.7)

Since I(u,v) = I(u,v) one sees furthermore that Cile)(u, v) = C(fe)(u, v) and
this anti-symmetric family is uniquely determined. Moreover, one knows that Cp =
I, ¢; = M, C_y = W. Therefore, the extended Chogosov copula is an anti-
symmetric comprehensive family.

3 Hoeffding-Fréchet comprehensive extension of the FGM copula
We apply the recipe in the last two examples to obtain a comprehensive extension of

the FGM copula. Consider the following general pattern to generate anti-symmetric
families of copulas. Let f, (u, v), gq(u, v) be two non-negative real functions defined
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on 12 with parameter o € [, c], ®p > 0. We are interested in those f,, gq, for
which the following functions

Co(u, v) = minf{M (u, v), fo(u, v)},

C_q(u,v) = max{W(u, v), go (4, v)}, « € [ap,c]. @1
define an anti-symmetric comprehensive family of copulas. Example 2.3 is gen-
erated by the functions fy(u,v) = auv, gu,v) = u(l —a 4+ av). Since
fi(u,v) = gi(u,v) = wuv yields the independent copula, Example 2.3 can be
viewed as a Hoeffding-Fréchet extended independent copula, abbreviated HF-TT. Sim-
ilarly, the Hoeffding-Fréchet extended Chogosov copula from Example 2.4 can be
abbreviated as HF-Chogosov. Without any attempt to characterize the class (3.1) com-
pletely, we undertake a first analysis of the family generated by the “FGM functions”
FEOM (4, v) = uv + a(uit) (v0), go(u, v) = FEM (U, v), a € [0, 00).

For ease of notation, the Hoeffding-Fréchet extended FGM copula is abbreviated
HF-FGM. Its upper part for « € [0, 00) is abbreviated HFU-FGM and its lower
part for ¢ € (—o0, 0] is abbreviated HFL-FGM. In the next results, we derive explicit
representations of these copulas and show that the HF-FGM family is a comprehensive
family of copulas. Clearly, it suffices to focus on |«| > 1 because Cy (1, v) = uv +
a(uu)(vv), a € [—1, 1], coincides with the FGM copula.

Lemma 3.1 Let « € [1, 00) and set a* = %(1 + V1 —4a~Y) in case a > 4. The
function h(x) = a~' — xx, x € I satisfies the following properties:

(P1) If ae[l,4]thenh(x) >0, Vxel

(P2) If a>4thenh(x)>0, Vxe[0,a"]U[aT,1]

(P2) If a>4thenh(x) <0, Vxela™,at]

Proof This elementary exercise is left to the reader. O

Next, depending on « € [1, 00), it will be useful to partition the unit square />
into six (two by two symmetric) domains (the dependence upon « is omitted). For
o € [1, 4] the domains are

Di=fvel0,1—a ', uel@r) L, 1},Dr={wel0,1—a],
ue v, (@) '},
Dy={vell— a_l, 1], u € [v, 1]}, and for @ € [4, c0) they are
D ={vel0,a U[et, 1 —a™ !, uel@d) 1 Ufvela,at], uelv, 1]},
Dr={wel0,a JU[a,1—a "], uelv, (@) "},
Di={vell—a ' 1], uelv 1]}

Furthermore, in both cases set D; = {(_u, V) K (v,_u) € D;}, i =1,2,3. For each
o € [1,00)one has Dy UDyU D3 UDyUDy,UDs3 = 12 Figure 1 illustrates for a
special case. O
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Fig. 1 Domains Dy and Dy U D3 for the special case o = 2

Proposition 3.1 For o € [1, 00) the HFU-FGM and HFL-FGM functions are given
by

[ v, (u,v) € Dy
Cou,v) = u, (u,v)e Dy,
uv + a(ui)(vd), (u,v) € Do U D3 U Dy U Ds.
[u—ﬁ, (u,v) € Dy
C_ow,v) =140, (u,v)e€ Dy,
| v — a(uit)(v0), (u,v) € DU D3 U Dy U Ds.

m}

Proof Consider the HFU-FGM function. By symmetry of u, v, it suffices to show the
result for the domains D and D, U Ds. First, assume that « € [1,4] and u > v. The
equality Cy (¢, v) = v holds if, and only if, one has v < uv+a(uu)(vv), thatis cuv >
1, or equivalently u € [(@d)~ 1, 1]. A necessary condition for thisis v € [0, 1 — o 1.
Since max{v, (@v)~'} = (av)~! by the property (P1) of Lemma 3.1, one sees that
Cy(u,v) =v < (u,v) € Dj.Itfollows that on the complement D, U D3 of Dy in the
part {v < u} below the diagonal {v = u} one must have faFGM(u, v) <v=M(u,v),
which implies that Cy (1, v) = uv + a(uu)(vv) on Dy U D3. Now, let o € [4, 00)
and # > v. Similarly to the above one has Cy (1, v) = v if, and only if, one has
u € [max{v, (@v)~'}, 1]. Again, one must have v € [0, 1 —a~!]. The property (P2) of
Lemma 3.1 shows thatv < (om'))_l occursif, and only if, onehas v € [0, o~ JU[a™, 1—
o~ 1. This shows that C, (1, v) = vifv € [0, JU[at, 1 —a™1], u € [(ad)~ !, 1].
The reverse inequality v > (av)~! holds by property (P3) of Lemma 3.1 if, and only
if, one has v € [a@~, a™]. Since necessarily ™ < 1 —a~! one has also Cy (1, v) = v
ifvela,a’], u e [v, 1] Together, one gets Co(u,v) =v < (u,v) € D;.In
virtue of the same argument as above one concludes that Cy, (1, v) = uv + o (uir)(vv)
on D, U D3. The proof for the HFL-FGM function is similar. O
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Theorem 3.1 (Hoeffding-Fréchet extended FGM copula). The Hoeffding-Fréchet
extension of the FGM function defines the following copula:

Cq(u, v) = min{M (u, v), fFM(u,v)}, « €0, ),

Co(u, v) = max{W(u,v), ffMwu,v)}, aec(~o0,0]. G2
Proof For a € [0, o0) the function C_4(u, v) is the anti-symmetric extension of
Cy(u,v). With Theorem 2.1 it suffices to show that C,(u, v) is a copula, where
one can assume that « € [1, 0o). The proof is similar to Peyre (2013), Sect. 3.3,
who shows that the Chogosov law (2.6) is a copula. With Proposition 3.1 the HFU-
FGM function has a non-vanishing absolutely continuous joint density on the support
{D> U D3 U D, U D3}° (the notation D° stands for the inner of the domain D), which
is given by

Cca(x,y) 1= 82Cy(x, ) /0xdy = 1 + (¥ — x)(F — V). (3.3)

The mass of the singular component is concentrated on the boundary d D; between
the domains D and D> U D3, and the boundary 8 D; between D and D> U D3 (cf.
Fig. 1). Let 0D (?), 9D (1), denote curve parameterizations of the boundaries and
leteq(¢), &1(t), describe the jump sizes of C}, (v) := dCq(x, v)/dx at the boundaries.

u
Then, the formula C, (1, v) = ng(v)dx implies the decomposition Cg (1, v) =
0

Ac(u,v) + Sc(u, v) into the absolutely continuous component

Ac(u,v) = // cq(x, y)dxdy

(D,UD3UD,UD3)N[0,u]x[0,v]
and the singular component

Sc(u,v) = / e1(t)dt + / g1(t)de.
9Dy (1)N[0,u]x[0,v] a Dy (1)N[0,u]x[0,v]

To show that Cy (u, v) generates a copula one must verify that the density is positive
wherever defined and that the jumps are non-negative. This is done in two parts.
Example 3.1 works out the necessary steps in a special case.

Part I: The density is positive

One must show that co (4, v) = 1 + a(ii — u)(¥ — v) > 0 on {D, U D3 U D, U D3}°.
We begin with the case o € [1, 4]. Obviously, if u < %, v < % oru > %, v > %,
then (# — u)(v —v) > 0 and ¢, (u, v) > 01s trivially fulfilled. There remains the two
cases v > % >uyand u > % > v. In the first case, one has (u, v) € {Dz U [)3}° and

distinguishes between two sub-cases.
Sub-case (a): (u, v) € Bg

One uses the inequalities v < land u > 1 — alto get the affirmation as follows:
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cou,v)=1+a(1-2u)(1-2v) > 1 —a+2cu > 1—a+2a(1—a_1) =a—1>0.

Sub-case (b): (u, v) € l_)g

Since v < (ait)~!, one has —v > —(ait)~!, hence ¢y (u, v) > 1 + (1 — 2u)(ax —
ou —2)i~ ! First, let « € [2,4]. Ifu < 1 —20"', one gets & —au —2 > o —
01(201_1 —1)—2 =2(x¢ —2) >0, and co(u,v) > O follows. If u > 1 — 2071,
then cy (4, v) > 0 if, and only, if one has (1 — 2u)(¢ — au — 2) < 1 — u, which is
equivalent with g (1) = u® — %(1 —a MHu+ %(1 —a~1) > 0. Since the discriminant
of the latter quadratic equation is negative, the condition holds. Now, let & € [1,2].
Since ¢ — oy —2 < a —2 < 0 the requirement ¢, (1, v) > 0 is again equivalent with
q(u) > 0 and holds because its discriminant is negative.

The remaining case u > % > v follows similarly (symmetry in the variables u, v).
The assertion for o € [1,4] is shown. Now, let @ € [4, 00). Again, only the two
cases v > % >y and u > % > v are relevant. In the first case, one has (u,v) €
(D> U D3}°. If (u, v) € D; the same proof as under the Sub-case (a) above holds. Let
now (u,v) € l_)g. Onehasu <o ,orat <u<l—a ' andu <v < (i)' If
u <o ,thenalsou < a~ < 1—2a ! because & > 4. In this situation, the inequality
—u >2a ' — limpliesthate —au —2 > a —aRa™! —1) =2 =2(a —2) > 0,
hence ¢, (1, v) > 0. Since the inequality at <u< % <1—alis impossible for

o > 4, the case v > % > u is done. The remaining case u > % > v follows similarly.

Part II: The singular component is non-negative

In virtue of the given formula for the singular component, it suffices to show that
the jump sizes of Cy(v) = 9Cq(u, v)/9u located on D1 N [0, u]x[0, v] and aD; N
[0, u]x[0, v] are non-negative. Consider first the case & € [1, 4]. One notes that d D1]
corresponds to the condition aud = 1 while Dy corresponds to aitv = 1. These
boundaries are the graphs of the functions

v=viw)=1— ()", wela' 1],
01w) -(1) | a4
v=o1(u) = (qu)™ ', uel0,l —a ]
From Proposition 3.1 one obtains
0, (u,v)e DY,
ACq (1, v)/du= J v+ a(ii —u)(vd), (u,v) € {DrUD3}°U{DyUD3}°, (3.5)
1, (u,v)eDS.

Located on the segments d D1 (¢) N [0, u]x[0, v] and 8[)1(t) N [0, u]x[0, v] of (3.4)
the jumps have the following non-negative sizes:

e1(t) = vi(t) + a(f — Hu (D1 (1) = vi ()it~ >0, 2
E1(t) = 01(t) — a(f — DUV (1) = V1 ()E ! = 0. G0

Now, consider the case o € [4, 00). The boundaries are the graphs of the functions
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1— ()™, uela Vo™l —a) 1,
u, uele Lo ld—a) atl,

1 —(au)™t, uelat, 1]

v=uvi(u) =
3.7)

[ (i)™, uel0,0],

v=uvi(u)=qu, uc [(M_,Ol+],

(i)', uelet,1—a 1.

Since the jump sizes are of the same form (3.6) with changed values, the resulting
singular component is non-negative. The proof of Theorem 3.1 is complete. O O

Example 3.1 Absolutely continuous and singular components of the HFU-FGM cop-
ula

To illustrate the proof of Theorem 3.1 consider the case @ = 2 and fix a point in
the unit square, say (u, v) = (0.75, 0.25) € D;. With the parameteriztion d D (¢) =
{(¢, 1 —1/2t) : t € [0.5, 1]} and the jump size ¢1(t) = (1 — 1/2t)(1 —¢t)/t, t €
[0.5, 1], one obtains from the fact that d D1 (¢) N[0, u]x[0, v] = {(t, 1 — 1/2¢) : t €
[0.5, 2/3]} the singular and absolutely components as

2/3 0.50.25
Sc(u,v) = /el(t)dt=0.01486, Ac(u,v)://ca(x,y)dydx
0.5 0 0
2/3 0.25
+/ / cq(x, y)dydx = 0.23514,
0.5 1—-1/2x

which shows that Cy, (u, v) = Ac(u, v) + Sc(u, v) = v = 0.25 as should be because
(u,v) € Dy.

Finally, we show that the HF-FGM family is a comprehensive anti-symmetric family
with Sperman’s rho and Kendall’s tau attaining the whole range of values [—1, 1].

Theorem 3.2 Spearman’s rho and Kendall’s tau of the HF-FGM copula are
monotone increasing functions satisfying the limiting property limgy—s 100 ps(ct) =
limy s 400 Tk (@) = 1. Therefore, the HF-FGM copula is an anti-symmetric com-
prehensive family.

Proof If 0 < o < B the property ps(a) < ps(B) follows from the representation

ps(e) =12 [;> [ Cq(u, v)dudv—3, the fact that Co (u, v) < Cg(u, v), and Corollary

2.1. To show that limy_, o0 ps(®) = 1, write 2 = Dy U D_ with Dy = {u >

v} and D_ = {u < v}. Then one has ps() = 12 - (J4 () + J_(x)) — 3 with

Ji(@) = [[Cq(u,v)dudv and Jy (o) = J_() by symmetry of the copula. For
Dy

a > 4 use Proposition 3.1 to decompose the double integral J () into three parts
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Ji(a) = I1 (o) + Ir(a) + I3(x) such that

o~ l—a! 1 at 1
Il(a)z/ / vdudv + / / vdudv—i—//vdudv, (3.8)
0 (av)~! at  (ap)! a= v
o~ (ab)™! l—a~ ! (av)~!
L (a) :/ / {uv + a(uu)(vv)}dudv + / / {uv 4+ a(uu)(vv)}dudv,
0 v at v
3.9)
1
I(x) = / /{uv+a(uﬁ)(vf))}dudv, (3.10)
l—a~l v

Now, if « — oo one has o~ — 0, a«t — 1, and one sees that lim /;(a) =
o—> 00

11
ffvdudv = é and llm L(x) = 11m I() = 0, hence hm ps(a) = 24 -

hm Ji(@)—3=1.1Tt follows that the HF-FGM copula is comprehenswe Invoking

now Theorem 5.1.9 of Nelsen (2006) implies the statement about Kendall’s tau. The
result is shown. O

4 Spearman’s rho for the HF-FGM copula

For @ > 0 Spearman’s rho can be expressed as a piecewise continuous function

p1(a), «a €]0,1],
ps(a) = 1 p2(a), o €[1,4], 4.1
(), a€[4,00).

Table 1 displays some typical values. A graphical comparison with Kendall’s tau
follows later in Fig. 2. One notes that the first two pieces already yield the improved
range of variation pg(«) € [0, 0.95288] compared to ps(«) € [0, 1/3] for the FGM
copula.

Table 1 Values of Spearman’s

rho for the HFU-FGM copula ps(@) ¢ ps(@)
1 0.33333 10 0.99776
1.50494 0.5 20 0.99974
2.41309 0.75 50 0.99998367
4 0.95288 75 0.99999519
6.25720 0.99 100 0.99999798
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Fig. 2 Kendall’s tau versus Spearman’s rho

Theorem 4.1 (Analytical formula for Spearman’s rho). The functions pj(a), j =
1,2, 3, are given by p1(a) = %oz (FGM copula) and

p(@) = pr(e) + 3o (1) 426 — o) (51)7 + 10 (1) — £ (3t g,

p3(@) = pa(@) +8((1 =) = @) =31 + ) ((1 — ) = @)

o (1= o) = @5) = da (1= ) = @)

at(1—a't)

—1207 oot — 1 -2 | + 4 AT F iG]

Remark 4.1 The piecewise continuous property is immediately verified. It is trivial
that p(1) = p;(1), and one has p3(4) = py(4) because a™ = 1 — o™ = % in
case o = 4. The representation has been chosen this way to control and validate the

derivation of the formulas.

Proof 1t suffices to show the cases j = 2,3. As shown in the proof of Theorem

i=1

J [ Co(u, v)dudv, j = 2,3.1tis convenient to use the following definite integral
D;

notations:

3
3.2, one can write pj(a) = 24 - Jy(o) — 3, with J (o) = > [i(a), [i(a) =

X

Fr(x) =/vkdv=ik+1/(k+l), k=1,2,...,5,
0

X
o x—1—1Inx, k=1,
Gk(x)z/v(v) kdv = ’x1—1+lnx Py “4.2)
0

The defined functions are normalized such that Fi(1) = 0, &k = 1,2,...,5, and
Gi(l) = 0, k = 1,2. Furthermore, we set AkF(cx) = Fiah) — Fr(a), k =
2,....5, Af(a) = Gk(e™) — Gr(a™), k=1,2.
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For j = 2 rearrangement of integrals yields J; (@) = I1 () + Kz (o) — K3(«) with

L(a) = /
0

11

Ka(a) = //{uv + a(uin) (o) }dudv = §(1 + %),
0
1

Ks@) = /
0
l—a™

+a- / {é(v — 2 %a‘zv(ﬁ)_l + %a‘%(ﬁ)_z} dv
0
=P @™ - a7 1Go@™)
t+o-{tF@™) = tRe™) - 1a2Gi@™) + a7 3G (@7 D).

l—a!

1
/vdudv: / v{l — (@d) Ndv=Fi@ ) —a 'Gi@™),
D

0

(

l—a~!

1
/{uv~|—a(uﬁ)(vf))}dudv= / 3 {1 = (@v) "} vdv

(av)~! 0
1

Inserted into py (o) = 24 {I; (@) + K»(a) — K3(a)} — 3 one obtains
02(0) = p1(@)+43 — @) Fila H+daF (e — 127G (@™ H+4a2Gr (™),

which implies the desired expression for p» () taking into account the notations. For
Jj = 3 rearrange the equations (3.8)—(3.10) to get J4+ (o) = I1 () + K1 (o) + Ko () —
K3 () with

1 l—a~ ! 1

1—at — l—a™ 1
Il(a)z/ /vdudv+/ /vdudv+ / /vdudv

0 (av)~! l—a~ (ap)~! l—at v
at ol
= [Aw -] +[A0) —aGiw)]
+ [Fi(v) — W% = File™)+ A @) —a 'Gi@a™H—a ' (),
o (a)”! l—a™

Kl(a):/ / {uv + o (uit) (v0)} dudv = / 3 {@v)2 — v} vdv
0 v 0

1 — =\ — 1 ,—3 =\—2 1.3 5.4 1.5
+o- {50‘ 2u(D) 1—501 v(V) T —5v7 + 2T = 3v }dv
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= 307 %Ga(@h) — 3 F3(a™)
+a-{1a2G1e@N) ~3a T GaeH ~ L P+ ERh) - 1) |

1

1
Kr(a) = / {uv + a(uu)(vv)} dudv = / %(v —vdHdv

at

1

1—a~

1
vad [ o= bt - bt ot - Boa
l—o—
=4 —3F(@)+iR0@) +a- {71—2 —tFi(@) + tF(a7) + A F3(a)

— 3R +3Fs@0),

-1

I—a=! 1 1—a
K3(a) = / / {uv + a(uu)(vv)} dudv = / % {1- (0“-))—2} vdv
ot (@) 1o
R
+a- / (gv—gv> — 30 20(@® ! + 32 v(@) Hdv
l—a~

=1 {F@™") - F@)}

o2 {Gala™) = Gal@ )} +a- {1 {Fie™) - Fie))
s 1R = R}

—3a2{Gi@™H) = Gi@)} + Ja 3 {Ga(@™") = Ga(@)}.

Gathering all terms together, one obtains the expression

Ji(@) = L)+ Ki(@) + Ko@) — K3(@) = (5 + %)+ 5 (1—%) Fi (7))
+4¢F () + Al ()
— 1A+ a)Af (@) +2AF (@) — $aL @) — o7 {Gi@™) + Al ()}
+ia2{Ga@™) + AT (@)}

Inserting into the equation p3(a) = 24 - J4 (o) — 3 and making use of the above
expression for py(«), one obtains the formula

p3(@) = pa(a) +24A5 (@) — 12(1 + @) AL (@) + 200 Af () — 8 AL ()
1207 'AY (@) + 42 AY ().

Finally, taking into account the notations one obtains the stated expression. O
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Table 2 Values of Kendall’s tau

for the HFU-FGM copula ¢ K (@) © ™ (@)
1 0.22222 1451507 0.99
1.50034 0.33333 10 0.97832008
226755 05 20 0.99481454
3.56467 0.75 50 0.99918889
4 0.82218 100 0.99979864

5 Kendall’s tau for the HF-FGM copula

For @ > 0 Kendall’s tau can be expressed as (see Table 2 and Fig. 2 for illustration)

71(a), «€]0,1],
k(@) =1 (@), oecll, 4], 5.1)
(), o €[4, 0).

Theorem 5.1 (Analytical formula for Kendall’s tau). The functions tj(a), j =
1,2, 3, are given by 71 () = %a (FGM copula) and
n(@) = 1i(@)—5a(5)? — 251 — 22+ (S +4(1 + 2 + 55) In(w),
13(@) = 12(0) —2((1 —a™)* = (@) + (1 + )’ (1 —H)* = (@)
—da(l +a)((1 —a™)’ — (@h))
+ 3a(8 +27a) (1 —a )b — (@h)®) — 4o ((1 — &™) — (@)7)
+o? (1 —a™)® = (@)
4 {2a+ 1= —ah? = (@) - 1n(1§;+)} — 47! {ﬁ_"‘;)
—2at 414 21n(%)}

N2y tN2

2 (@h)2(l—at)? a+(1 a+)

Proof With Nelsen (2006), formula 5.1.12, and Proposition 3.1, one has (symmetry in
u, V) Tj(e) =1-4- ff ac"‘(“ v) ac“(“ ”)dudv =1-8-[ [ {u+oa@i)v—o)
DyUDs3
{v+a(—u)(vv)} dudv
Write 7j(a) = 1 — 8- (J2 + J3), with J>, J3, the integrals over the domains
D, Dj. It suffices to show the cases j = 2, 3. Similarly to the proof of Theorem 4.1,
consider the notations

Fe(x)= [ vkdv=xVk+1), k=1,2,...,7,

Gi(x) = [ V(@) Fdv, i=1,2, k=1,2,3. (5.2)

[
/
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The defined functions are normalized such that for all indices, one has Fi(1) = 0
and G} (1) = 0. Comparing with (4.2) one sees that G,lc(x) = Gr(x), k =1,2.

Furthermore, we set AF((x) Fi(a®) — F(a™), k = 1 ..,7, Ai’G(a) =
Gi(a™) — Gi(a™), k = 1, 2 3 and G3(x) = x — 1 — 35> —Inx, G3(x) =
*1—x+2 Inx, G3(x) = —2x7' 43 —Inx.

For j = 2 rearrangement of 1ntegrals yields J2 + J3 = Kr(a) — K3(e), with

1

11 1
Kg(a)://uvdudv—i—a-//{(2u—3u2)(vﬁ)—(u—u2)v2} dudv

0 v
1

1
o? /(u —3u? +2u3)(vv —v v)dudv —/ Lw = v3)dv

!
/

v 0
+o- —% —v3+%v4—%v5)dv—%a2
-/v‘ (1 —5v+ 90> —7v3 + 2v4)dv
0
=1_ 1,
= 8 36Y
1 l—a~! 1
Ks(a) = / / uvdudv+a - / / [Cu=3u @0~ @—u?} dudv
0 (ap)~! 0 (ap)!
-~ 1
+a?. / / (u = 3u® + 2u®)(v0? — v*V)dudv
0 (ad)~!
1—a~!
= / 3 {v—a2v(®) 2} dv
0
-
/ {—a*zv(ﬁ)*wa*%(ﬁ)*z}dv
0
1—a~!
[ - o+ o) a
0
=t 3. =v—1 1 4 =2
5 (=302 v+ a7 v(®) " — 32 (D)
o 0/ +%a’2v2(f))*l —a W)+ %0!74112(17)73}@)

@ Springer



A comprehensive extension of the FGM copula 389

= %Fl(a_l) — %a‘zGé(a_l)
+a-{—fFe ) —a?Gl@™ ) +a?Gle™)
+3a72G3 (@) — Jo 2 G}
, [t ?Fie@ ) +e?Gl@™) - e *Gh@™)
tot 1,220 1y _ 320 —1y o 1 —4-2. —1\ [ "
+7307°Gi(@™) —a G5 ) + 507 7G3(@)

Inserted into 72() =1 — 8 - {K»> () — K3(x)}, one obtains
D) = 11(0) — 3aF () +4G3 (@™ —4a7'G3 (@) + 322G (a7,

which implies the desired expression for 72 () taking into account the notations. For
Jj = 3 rearrange the equations to get J» + J3 = Kj(«) + K2 (o) — K3(w) with

o~ (ap)! o (an)~!
Ki(a) = / / wvdudv + o / / {Qu = 3u®)(vD) — (u — u?)v*} dudv
0 0 v

v
+

o~ (ap)”! l—a
+a2~/ /(u—3u2+2u3)(m72—vzf))dudv:/ @) 2 —v?}vdv
0 v b

l—a™

+o- / {ofzv(z_))*' — 01731)(17)72 —v 4+t v — (%(aﬁ)*z
0

—%(on'})*3 — %vz + %vg) vz}dv

l—at {%ofzv - %ofzvz(f))*l —aBv@) M a2 + %of“v(t_))*2
+a?. A f%a_4v2(ﬁ)_3
0 —%vs(l — 504+ 902 — Tv3 + 2vH)}dv
a7 2Gl(@h) —a3Gi@t) — F3(ah)
+2F4(at) = Fs(at)
—3072G3 (@) + 3¢ 3Gi@h)
+3Fa(e) = 1 Fs(@h)
s [ fa72F (@)= 102G o) —a 3Gl +a 3G a ) + 14 Gl (@) } ’
—ta™*G(ah)— § {F3(at)—5F4(a™) +9Fs (@) —TFs () +2F (™)}

= 1a2Gl (@) - 1F00) +a-

1 1 11
Ka(a) = //uvdudv+cx~ //{(ZM—3u2)(v1_))—(u—u2)v2}dudv
at ‘

v at v

11

+a2~//(u—3u2+2u3)(v172—vzﬁ)dudv: / T —vdHdv
at v

l—a

@ Springer



390 'W. Hiirlimann

I—a~

1
1
+o- / (7%v27v3+%v47%v5)dv7%a2- f V(1 =50+ 9% — 703 + 2vH)dv
o

=1_
=8

Fi(@)+3F3@ ) +a- {—Tg+ng<a*>+F3<a*> —3F) + %Fs<or>}

l—

+%a

[S)

A{F3(@) = 5Fy(@™) + 9Fs(a™) — TFs(@™) + 2F (@)},

lI-a=! 1 l-a~! 1
Ki(o) = / / uvdudv + « - / / {(2u —3u®) (D) — (u — uz)vz} dudv
ot (av)! ot (av)!
lI-a=! 1 1—a~!
+ao?- / (u = 3u® 4+ 2u®)(v0? — v*D)dudv = / v — o 2(@) 2} dv
ot (ab)-! 1Zam
I—a~!
+a- / {(—a 2@ o v@) D)= (02— 22202 @0) 2+ a2 () ) fdu
l—a—

1—a! — _ —
) / —%ofzv-i—%cx*zvz(v) Ty 3v(v) 1

et . —a 22— %oﬁ“v(ﬁ)*z + %a*4v2(ﬁ)*3}dv
= 5 {Fie™) = Fi@)) - 30 (G (@) = Gy (@)
—a 2 {Gl(a™ ) =Gl }+a 3 {Gla™) =G} -t {Rle™H—F @)}
o H +1a72{G3@™H - Gi(@)} - a3 {G (@) - Gi(e)} }
s { —1a2{Fi(@™) = Fi(@7) = GHa H+GHa )} +a3{Gl@™H -Gl ] ‘
—Gia™H + G} — ta{Gl@™) = GL(@™) — Gia™) + GEaD)}

+

Inserting the above into the equation t3(o) = 1 — 8 - {K () + K2(a) — K3()},
rearranging terms, and using the expression for 72 («), one obtains the formula

(@) = na(a) — 4AT (@) +4(1 + )’ A (@) — 20a(1 + )AL (@)
+2a8+270)AF (@) — 2802 AL (@)
+802 AL () + 44T (@) — 4o AT (@) + 2227 % ().

Finally, taking into account the notations one obtains the stated expression. O

Let us conclude with a brief outlook on the used methodology and its relationship
with current developments. In the literature, various notions of bivariate symmetry
play an important role, e.g. marginal, radial and joint symmetry, as well as exchange-
ability, are quite common (e.g. Nelsen 2006, Sect. 2.7). For example, two random
variables are exchangeable if, and only if, its copula is symmetric. Our construction
relies on the specific anti-symmetry of Definition 2.2. One can ask whether and how
bivariate anti-symmetry might be defined and used for more general bivariate copu-
las. One might relate such a notion to various concepts of bivariate asymmetry and
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non-exchangeability (e.g. Joe 2015, Sect. 2.15) as reflected in recent papers by Kle-
ment and Mesiar (2006), Nelsen (2007), Durante (2009), Durante et al. (2010), Genest
etal. (2012), Dehgani et al. (2013), Rosco and Joe (2013), and Genest and NeSlehova
(2014).
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