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Abstract In the framework of censored regression models the random errors are
routinely assumed to have a normal distribution, mainly for mathematical convenience.
However, this method has been criticized in the literature because of its sensitivity to
deviations from the normality assumption. Here, we first establish a new link between
the censored regression model and a recently studied class of symmetric distributions,
which extend the normal one by the inclusion of kurtosis, called scale mixtures of
normal (SMN) distributions. The Student-t, Pearson type VII, slash, contaminated
normal, among others distributions, are contained in this class. A member of this class
can be a good alternative to model this kind of data, because they have been shown its
flexibility in several applications. In this work, we develop an analytically simple and
efficient EM-type algorithm for iteratively computing maximum likelihood estimates
of the parameters, with standard errors as a by-product. The algorithm has closed-
form expressions at the E-step, that rely on formulas for the mean and variance of
certain truncated SMN distributions. The proposed algorithm is implemented in the R
package SMNCensReg. Applications with simulated and a real data set are reported,
illustrating the usefulness of the new methodology.
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1 Introduction

Regression models with censored dependent variable (hereafter CR models) are
applied in many fields, like econometric analysis, clinical essays, medical surveys,
engineering studies, among others. For example, in econometrics, the study of the
labor force participation of married women is usually conducted under the ordinary
Tobit model Greene (2012). In this case, the observed response is the wage rate, which
is typically considered as censored below zero, i.e., for working women, positive val-
ues for the wage rates are registered, whereas for the non-working women the observed
wage rates are zero (see Mroz 1987). In AIDS research, the viral load measures may
be subjected to some upper and lower detection limits, below or above which they are
not quantifiable. As a result, the viral load responses are either left or right censored
depending on the diagnostic assays used (see Wu 2010).

In general, for mathematical tractability reasons, it is assumed that the random
errors have a normal distribution Wei and Tanner (1990). However, it is well-known
that several phenomena are not always in agreement with this assumption, yielding
data with a distribution with heavier tails. The problem of longer-than-normal tails
(or outliers) can be circumvented by data transformations (namely, Box—Cox, etc.),
which can render approximate normality with reasonable empirical results. However,
some possible drawbacks of these methods are: (i) transformations provide reduced
information on the underlying data generation scheme; (ii) component wise transfor-
mations may not guarantee joint normality; (iii) parameters may lose interpretability
on a transformed scale and (iv) transformations may not be universal and usually vary
with the data set. Hence, from a practical perspective, there is a necessity to seek
an appropriate theoretical model that avoids data transformations, yet presenting a
robustified “Gaussian” framework.

To deal with the problem of atypical observations in regression models with com-
plete responses, proposals have been made in the literature to replace normality with
more flexible classes of distributions. For instance, Lange et al. (1989) discussed the
use of the Student-t distribution in multivariate regression models. In this case, the
degrees of freedom parameter is the natural choice to control kurtosis. Ibacache-Pulgar
and Paula (2011), proposed some local influence measures in Student-t partially linear
models. Villegas et al. (2012) proposed the generalized symmetric linear models, in
which a link function is defined to establish a relationship between the mean values of
symmetric distributions and linear predictors. Recently, Arellano-Valle et al. (2012)
advocated the use of the Student-t distribution in the context of truncated regression
models. More recently, Massuia et al. (2014) developed diagnostic measures for cen-
sored regression models using the Student-t distribution, including the implementation
of an interesting (and simple) expectation-maximization (EM) algorithm for maximum
likelihood (ML) estimation. They demonstrated its robustness aspects against outliers
through extensive simulations.

Although there are some proposals that overcome the problem of atypical obser-
vations in CR models, there are no studies taking into account, at the same time,
censored responses and observational errors modeled by a distribution in the scale
mixture of normal class, which is, maybe, the most important family of symmetric
distributions. SMN distributions are extensions of the normal one, incorporating kur-
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tosis. The Student-t (T), Pearson type VII (PVII), slash (SL), power exponential (PE),
contaminated normal (CN) and, obviously, the normal (N) distributions are included in
this class. Comprehensive surveys are available in Fang and Zhang (1990), Arellano-
Valle (1994) and Meza et al. (2012), among others. In this paper, we propose a CR
model where the observational errors have a SMN distribution (hereafter we will call
it the SMN-CR model). A fully likelihood-based approach is carried out, including
the implementation of an exact EM-type algorithm for ML estimation. As in Massuia
et al. (2014), we show that the E-step reduces to computing the first two moments of
certain truncated SMN distributions. The general formulas for these moments were
derived in closed form by Geng (2012). The likelihood function and the asymptotic
standard errors (SE) are easily computed as a by-product of the E-step and are used
for monitoring convergence and for model selection using the akaike information cri-
terion (AIC) or the bayesian information criterion (BIC). The theoretical justification
of the proposal rests on the facts that the SMN class stochastically attributes varying
weights to each subject, i.e., lower weight for outliers and thus controls the influence
of atypical observations on the overall inference. Moreover, every member of the SMN
class tends to the normal case, for example, as the Student-t degrees of freedom tends
to the infinity, it approaches normality.

The rest of the paper is organized as follows. Section 2 briefly outlines some prelim-
inary properties of the SMN and truncated SMN distributions. The SMN-CR model
is presented in Sect. 3, including the implementation of the ECME algorithm Liu and
Rubin (1994) for ML estimation, which is a simple extension/modification of the EM
algorithm. In Sect. 4, we derive approximate SE for the regression parameters of the
SMN-CR model. Sect. 5, presents some simulation studies to compare the perfor-
mance of our methods with other normality-based methods. In Sect. 6, advantages
of the proposed methodology is illustrated through the analysis of a real data set on
housewives wages, previously analyzed under normal errors. Section 7 concludes with
a short discussion on the issues raised by our study and some possible directions for
future research.

2 Preliminaries

Throughout this paper X ~ N(u, o) denotes a random variable X with normal
distribution with mean p and variance o2 and ¢ (-m, 02) denotes its probability
density function (pdf). ¢ (-) and @ (-) denote, respectively, the pdf and the cumulative
distribution function (cdf) of the standard normal distribution. In general, we use the
traditional convention denoting a random variable (or a random vector) by an upper
case letter and its realization by the corresponding lower case. Random vectors and
matrices are denoted by boldface letters. X | is the transpose of X. X LY indicates that
the random variables X and Y are independent.

We start by defining the SMN distributions, through their hierarchical formulation,
and then we introduce some further properties.

Definition 1 We say that a random variable X has a SMN distribution with location
parameter . and scale parameter o> > 0 if it has the following stochastic representa-
tion:
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X=p+U22Z, Z1lU, )

where Z ~ N(0,02),Uisa positive random variable with cdf H (-|v) and v is a scalar
or vector parameter indexing the distribution of U.

We use the notation X ~ SMN(u, o2, v). When © = 0 and o2 = 1 we have the
so-called standard SMN distribution. Note from (1) that X|U =u ~ N(u, ulo?).
Thus, integrating out U from the joint density of X and U will lead to the following
marginal density of X:

Ssmn (x|,bb,(72, v) = (27102)_% /Oou% exp{—(u/ZUz)(x — M)2}dH (ulv),
0
(2)

where H (-|v) is the cdf of U, which determines the form of the SMN distribution. U
is called the scale factor and H (-|v) is called the mixture distribution.

It is important to notice that there exists a relation between SMN distributions and
elliptical distributions. We say that the random variable X has a univariate elliptical
distribution with location parameter  and scale parameter o2, when its density is
given by

f@) =0""g @, 3)

where z = (x — M)2/0’2 and g : R — [0, co) satisfies fooo z’%g(z)dz < oo. It easy
to see that (2) has the form (3). The relation between SMN and elliptical distributions
will be used in Sect. 4, to obtain SE for the regression parameters.

Definition 2 Let X ~ SMN(u, 02, v) anda < b such that P(a < X < b) > 0. A
random variable Y has a truncated SMN distribution in the interval (a, b) if it has the
same distribution as X|X € (a, b). In this case we write ¥ ~ TSMN(, 1) (i, o2, v).

As an obvious consequence of Definition 2, we can obtain the density of ¥ ~
TSMN(, 5 (i, o2, v), given by

frsmn (v, o2, v; (a, b)) 4

b—u a—u -1
= fsun(lp, o2, v) [FSMN (?) — Fsyn ( . )] , a<y<b,

and frsmMn(ylu, o2, v; (a, b)) = 0 otherwise, where Fsyn(-) denotes the cdf of
the standard SMN distribution. Now we establish the following proposition, which is
crucial to the development of our proposed theory. It is a natural extension of Theorem
1 (and Corollary 1) of Geng (2012). In what follows E[-] denotes expectation, Ex[-]
denotes expectation relative to the distribution of X and, for the sake of notation
simplicity, we denote all pdf’s by f(-). Thus, for example, f (u, x) denotes the joint
pdf of U and X and f(u|X € A) denotes the pdf of U given the event {X € A}.

Proposition 1 Let X ~ SMN(O, 1, v) with scale factor U and mixture distribution
H(-|v). Then, fora < b, theE[U’XS|X € (a, b)]forr >1lands =0,1,2is given
by:
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E[U"|X € (a,b)] = t(a,b) [Ee (r, b) — Eq (r, a)],

E[U"X|X € (a,b)] = (a, b)[E (r—— a)—Ed,(r—%,b)}

E[UrX2|Xe(a b) =1(a,b) |Ee (r — 1,b) —Eo (r — 1,a) + aE, (r—%,a)

oy (7= 300) |

where
t(a,b) = (Fsun (b) — Fsun (@)™ '; ©)
Ey (r,h):E[U’d: (h U%)] =/Ooou’¢ (hu%)dH(uw); (6)
Eo (r,h):E[Urcb (h U%)] =/Ooourq>(hui) dH (ulv). %)

Proof Let A = (a, b). From Definitions 1 and 2, we have that X|U = u ~ N(O, u™h,
X|X € A~ TSMN 4(0,1,v) and X|U = u, X € A~ TN 4(0, u~"), that is, a trun-
cated normal distribution in A4, being 0 and u~! the mean and variance, respectively,
before truncation. Then,

E[U'X*|X €Al = Ey[U Ex[X’|U=u,XecA]|X € A]

- /OO WEx [X*|U =u, X € A] f(u|X € Adu.  (8)
0

The pdf in the integral sign takes the following form:

fwlX € A) =/f(u,x|X € Aydx ©9)
= / f@lX =x,X € A)f(x|X € Aydx
=1(a, b)/f(u|X =x, X € A) f ()] 4(x)dx (10)
- r(a,b)/f (u, x) 14 (x)dx (11)

= 1(a, b)/ e (xlO, u—l) dx = t(a,b) f (u)/ ¢ (2)dz
A A
— 2(a,b) f (u) [CD (bu%) —® (au%)],

where A* = (au 3 , bu %) and T4 (-) is the indicator function of the set A. Equation (10)
is obtained using the pdf’s expression of X|X € A. Equation (11) is consequence of
the fact that, if {x € A}, then {X € A, X = x} = {X = x}, implying that f(u, x) =
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fwlX =x)f(x) = fwlX =x,X € A)f(x). If {x ¢ A} then [ 4(x) = 0 and the
integrands in (10) and (11) are equal to zero. By (8) and Lemma 1 given in Appendix
A, it follows that

— fors =0,

E[U"1X € A] = /Oou’f(up( € A)du
0

— 7(a, b)Ey {U’ [@ (bU%) e (an)]};

— fors =1,

. 0o ,r @
E[U X|XGA]=/O Ta

— fors =2,

o au""2¢ (auf) —bu’_%d)(bu%)
E[U7X?1X e 4] =/ w4 1
0

x fulX € A)du
= (@ 0)Ey {U [0 (bU7) - @ (aU?)]

y U [a¢ (aU%) — be (bU%)]}.

m}

When the distribution of U is available, this proposition gives closed form expres-
sions for the expected values E [U’XS|X € (a, b)], where s =0,1,2andr > 1.

Now we compute the quantities Eg (r, h) and Eg (r, h) for some elements of the
SMN family. They are useful for implementing the ECME algorithm. For the sake of
completeness, a detailed proof of these results is sketched in Appendix B.

— Pearson type VII distribution: in this case we consider U ~ Gamma(v/2, §/2),
with v > 0 and § > 0, where Gamma(a, b) denotes the Gamma distribution with
mean a/b. The density of the random variable X, defined in (1), takes the form

v+1

1 x2\ 2
)= —"—"F"\(1+— ,
fevii(x|v,d) B/, 1/2)«/5( + 8)

where § > 0 and v > 0 are shape parameters and B(a, b) represents the beta
function. We use the notation X ~ PV II(0, 1; v, §). In this case, we have that

@ Springer



Linear censored regression models with scale mixtures... 253

r (v+2r) —r
Eo (r,h) = —— (—) Fpyrr(hlv +2r,6);
v _ (v+2r)
(U-’EZV) (§)2 (/’l2+3) 2
I (3)v2r \2 2 '
where I' (a) is the gamma function and Fpy(-) is the cdf of the Pearson type

VII distribution. When § = v we have the Student-t distribution with v degrees of
freedom. Also, we have the Cauchy distribution when § = v = 1.

— Slash distribution: here the distribution of the scale factor U is Beta(v, 1), with
v > 0. The density of the random variable X, defined in (1), is given by

1
fuxv) = v/ 1 et )du.
0

We use the notation X ~ SL(0, 1; v). In this case, we have that

Eo (r, h) = (m) Fsp(hlv +7);
v R\ 2
E,ﬂr,h)zm(?) F(v—f-r,?),
b —t

where I (a, b) = fo e~'t%~1dt is the incomplete gamma function, see Lemma 6
in Geng (2012), and Fgy (-) is the cdf of the slash distribution.

— Contaminated normal distribution: here U is a discrete random variable taking
one of two states 1 or y. In this case the probability function of U is given by

u=l7 with probability &;
~ | 1 with probability 1 — &,

It follows immediately that the density of the random variable X, defined in (1),
is given by

fen(xKIE. v) = E¢(x]0, ¥ 7) + (1 — £)p (x).

So, we have that

Eo (r,h) = y" Fen(hlE, y) + (1 = y") (1 =) @ (h);
By (rh) =&y"¢ (hyy) + (1 =5 (h),

where Fey (+) is the cdf of the contaminated normal distribution.

As a direct consequence of Proposition 1, in Appendix A we present an important
corollary, which is useful for implementing the ECME algorithm.
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3 The SMN censored linear regression model
3.1 The model
Consider first a linear regression model where the responses are observed with errors

which are independent and identically distributed according to some SMN distribution.
To be more precise, let us write

-

Yi=x/ B+ei, & ~SMN@©,62,v), i=1,....n, (12)
where the Y; are responses, 8 = (B, ..., 8 p)—r is a vector of regression parameters
and XiT = (xi1, ..., Xip) is a vector such that x;; is the value of the j-th explanatory

variable for the subject i. By Definition 1, we have that ¥; ~ SMN(XiT B, o2, v), for
i =1,...,n. We call it the SMN regression (SMN-R) model.

We are interested in the case where left-censored observations can occur. That is,
the observations are of the form

ki if Y < ki

Y, if Y >k, (3)

Yobsi =

i = 1,...,n, for some threshold point «;. This is called the SMN-CR model. For
convenience, we have chosen to work with the left censored case, but the results
are easily extensible to other censoring types. If we make x; = 0 and assume that
€ ~ N(O, 02), which corresponds to U; = 1 in Definition 1,i =1, ..., n, we obtain
the Tobit censored response model studied by Barros et al. (2010). In addition, if U; ~
Gamma(v/2,v/2) we obtain the Student-t censored regression model developed by
Massuia et al. (2014).

It is important to emphasize the difference between censored and truncated data.
Citing Lee and Scott (2012), data are said to be censored when the exact values of
measurements are not reported. For example, the needle of a scale that does not provide
a reading over 200 kg will show 200 kg for all the objects that weigh more than the
limit. Data are said to be truncated when the number of measurements outside a certain
range is not reported.

Let 6 = (ﬂT, o2, v)T be the vector with all parameters in the SMN-CR model.
Supposing that there are (possibly) m censored values of the characteristic of interest,
we can partition the observed sample yqps in two subsamples of m censored and
n — m uncensored values, such that yobs = {x1, ..., Kms Ym+1, ---, Yn}. Then, the
log-likelihood function is given by

B m K,'—X;rﬂ n e )
UOlyor) = D tog | Fsuw [ = )|+ X tog [ fsun (ilxT 8. 0% v)].

i=I i=m+1
(14)

To estimate the parameters of the SMN-CR model, an alternative is to maximize this
log-likelihood function directly, a procedure that can be quite cumbersome. Alterna-
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tively, the standard algorithm in this case is the so-called EM algorithm of Dempster
et al. (1977) or some extension like the ECM Meng and Rubin (1993) or the ECME
algorithms Liu and Rubin (1994). Our choice is to use the ECME algorithm, a classical,
reliable, widespread tool to obtain maximum likelihood estimates.

3.2 Parameter estimation via an EM-type algorithm for the SMIN-CR model

In this section we develop an EM-type algorithm for maximum likelihood estimation
of the parameters in the SMN-CR model. In order to do this, we need a representation
of the model in terms of missing data. First, note that using Definition 1, we have the
following hierarchical representation:

YU = u; ~N(x?/3,u;102); Ui ~ H(-]v). (15)

If the observation i is censored, we can consider y; as a realization of the latent
unobservable variable Y; ~ SMN(XlTﬁ, o2, v), i = 1,...,m. The key to the
development of our EM-type algorithm is to consider the complete-data z =
{Yobss ¥1s -+ -» Ym, U1, ..., Un}, that is, we treat the problem as if the missing data
yL = {y1,..., Yym} and u = {uy, ..., u,} were in fact observed. Then, using repre-
sentation (15), we obtain the complete-data log-likelihood, given by

n n 1<
Le(®lz) = =2 log(2m) — ~log(o?) + 5 > log(u;)
i=1

— "
— 53 2 i = x| B 4 D log (f (wilv)). (16)
i=1

i=1
where f(-|v) is the density of the random variable U.
In what follows the superscript (k) indicates the estimate of the related parameter

at stage k of the algorithm. In the E-step of the algorithm, we must obtain the so-called
Q-function,

0(010™) = Eyw [€c (01Z) |yobs].

where E,« means that the expectation is being affected using 0% for 6. Observe that
the expression of the Q-function is completely determined by the knowledge of the
following expectations

i (0) = Egw [Ui Y [yobs;]. 5 =0,1,2,
as well as

Eyw[log (U;) |yobs;1 and Eyw [log (f (U;|v)) [yobs; |-
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Thus, dropping unimportant constants, the Q-function can be written in a synthetic
form as

n 1 - 7
0(016') = = log(e™) = 5 2[52,» (00 — 281, (0%)x] B + £0: (6©) (x B) ]
i=1
l n n
+ 5 2 Egw l10g (Ui 1yobs; 1 + D Eguw llog (f (Uil9) Iyovs ] (A7)
i=1 i=1
At each step, the conditional expectations &; (0 (k)) can be easily derived from the
results given in Proposition 1. Thus, for an uncensored observation i, we have that
Yobs; = Y; ~ SMN(x;' B, 0%, v) and, therefore,

i (0®) = ¥ Eyw [Us]yi], (18)

where Ey« [U;|y;] can be obtained using results in Osorio et al. (2007). Thus, for
example,

o IfY; ~ PVII(xl.Tﬂ, o2, v,38), we have

wv+1)
E,wlUilyil = ————————;
o IfY; ~ SL(xiTﬂ, o2, v), we have

r(v+15.a0%.5)/2)
r(v+05.a209,5)/2)

Eyw [Uilyi] =

o IfY; ~ CN(xlTﬂ, o2, v, y), we have

(k)
1—v+ vy].SeO.S(l—y)dz (0 m)

E,w[Uilyil = |
0 ilYi 1—v+ vyo‘SeO.S(l7y)d2(0(k)‘yi)

where d(0(k), yi) = (yi — x;rﬁ(k)) /o).
For a censored observation i, we have Y; < k;, so that
£i(09) = By U, Y]1Y: < i, (19)
which can be obtained for the different distributions using the results given in Propo-
sition 1, along with the results given in Egs. (6) and (7) with r = 1.
When the M-step turns out to be analytically intractable, it can be replaced with a

sequence of conditional maximization (CM) steps. The resulting procedure in known
as ECM algorithm Meng and Rubin (1993). The ECME algorithm Liu and Rubin
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(1994), a faster extension of EM and ECM algorithm, is obtained by maximizing
the constrained Q-function with some CM-steps that maximize the corresponding
constrained actual marginal likelihood function, called CML-steps. Therefore, our EM-
type algorithm (ECME) for the SMN-CR models can be summarized in the following
way (see Appendix C for details):

E-step: Given § = 0(1‘), fori =1,...,n;

— If observation i is uncensored then, for s = 0, 1, 2, compute &; (0 (k)) given in
(18);

— If observation i is censored then, for s = 0, 1, 2, compute &; (0(")) in (19).

CM:-step: Update 8©) by maximizing Q(0 |0(k)) over @, which leads to the following
expressions,

ﬂ(k+1)_(250 0®)x ) Zx,gl, 0®); (20)

i=1

o2 = L3 e (0%) — 26110 B0 + 00 (09) (57 B4+
n i=1
2D

CML-step: Update v®) by maximizing the actual marginal log-likelihood function,

obtaining
, T‘B(k+l)
v&+D = argmax, Zlog Fsun i

n
(k+1)
+ > log [fSMN(y,-|x,-Tﬂ<’<+“,a2 ,v>]}. (22)

i=m+1

This process is iterated until some distance involving two successive evaluations of
the actual log-likelihood £(0]y,ps), like

11€(0%F D yons) — £(8© 1yons)Il or
1EO% D 1yons) /€(0yons) — 111,
is small enough. We have adopted this strategy to update the estimate of v, by

direct maximization of the marginal log-likelihood, circumventing the computation
of Egw [1og(U;)|yobs; 1 and Ega [log(f (U; [v)) | yobs; I-

4 Approximated standard errors for the fixed effects

Standard errors of the ML estimates can be approximated by the inverse of the observed
information matrix, but there is generally no closed form, see Meilijson (1989) and
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Lin (2009). Considering 6 = (,8, o2, v), the empirical information matrix is defined
as

n

L (01Yobs) = DV (Yobs: 10) V' (Yobs; 16)
i=1

1
==V (Yors 1) VT (Yobs 10),

where VT (yop510) = 37| v (Yobs, |0). It is noted from the result of Louis (1982)
that, the individual score can be determined as

v (yobsi |9) =

0£(0yobs;) _E 0€.(01z;)
90 h 90

Yobs; » 0} : (23)

Thus, substituting the ML estimates of 6 in (23), the empirical information matrix
L. (0]yops) is reduced to

n
L (01yons) = D ViV, . (24)
i=1

where V; = (Vﬂi,’\?az,- , V,,,-) is an individual score vector and

Vg =E :%’;'Z"Nym,ﬁ_ — Giz (xi1® — &0 @xix B).
S L
= o + 551 (E4@) ~ 260 @)X B+ En @ BY?) and
Vi =E _%ﬁ'mwohﬁ. . [WWOMﬁ] : (25)

where £.(0|z;) is the log-likelihood formed from the single complete observation
Zi = (Yobs; » Vis u;) " and &;(0%) = Eguw [U; Y7 |yobs; ] It is important notice that the
values of Eq. (25) depend of the distribution of U. Thus for example:

o For the Student-t distribution:
We consider U ~ Gamma(v/2, §/2), with v > 0, then

- N e (P 1 g
u=v(3)+3 (ke (5) 1)
| -
+3 (E[log (U I¥obs; 0] — i (8)) .

where 1 (x) represents the digamma function of x.
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e For the Slash distribution:
We consider U ~ Beta(v, 1) with positive shape parameter v, then

R 1
Voi = = +E [log i) |YUbSi’T9]'

It is important to stress that the SE of v depends heavily on the calculation of
E [log U») |ygbxi,/0], which relies on computationally intensive Monte Carlo inte-
grations. In our analysis, we focus solely on comparing the SE of 8 and 2.

5 Simulation studies
5.1 Robustness of the EM estimates (simulation study 1)

The goal of this section is to compare the performance of the estimates for some
censored regression models in the presence of outliers on the response variable. We
consider the cases normal, Student-t, contaminated normal and slash, and denote them
by N-CR, T-CR, CN-CR and SL-CR, respectively. The computational procedures were
implemented using the R software R Core Team (2015).

We performed a simulation study based on the N-CR model. Specifically, we con-
sidered model (12) with x,T =(1,x;)andg; ~N@©O,02),i=1,...,n. We generated
1000 artificial samples of size n = 300, considering BT =B, B)=(1,4),62=2
and fixing the left censoring level at p = 8, 20 and 35 % (that is, 8, 20 and 35 % of
the observations in each data set were left censored, respectively). We generated inde-
pendently the values x;, fori = 1, ..., n, from a uniform distribution on the interval
(2, 20). These values were fixed throughout the simulations.

To assess how much the EM estimates are influenced by the presence of outliers,
we replaced the observation yi50 by y150(9) = yis0 — ¢, withd = 1,2, ..., 10. Let
B\i (¥) and ,B\, be the EM estimates of 8; with and without contamination, respectively,
i = 1, 2. We are particularly interested in the relative changes

RC(B:(®)) = |(B: () — Bi)/Bil

We define the relative changes for o2 analogously.

For each replication we obtained the parameter estimates with and without outliers,
under the following models: N-CR, T-CR and SL-CR, both with v = 3, and CN-CR
with vT = (£, ) = (0.3,0.3). Table 1 and Fig. 1 depict the average values of the
relative changes across all samples and different censoring levels. In the N-CR case,
we observe that influence increases dramatically when 9 increases. However, for the
SMN-CR models with heavy tails, as the T-CR and the SL-CR, these measures vary
little, which indicates that they are more robust than the N-CR model in the presence
of discrepant observations. For the CN-CR model with censoring level p = 20 % and
35 % we can observe that the relative change increases as ¥ increases, specially for
the parameter .
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Fig. 1 Simulation study 1. Average relative changes on estimates for different contaminations ¥ and
censoring level: p = 8 % (First line), p = 20 % (Second line) and p = 35 % (Third line) respectively

5.2 Asymptotic properties (simulation study 2)

We also conducted a simulation study to evaluate the finite-sample performance of the
parameter estimates. We generated artificial samples from the SMN-CR model (12),
WithXiT =(,x),i=1,...,n.

We considered the censoring levels p = 10, 25 and 45 %. The sample sizes were
fixed at n = 50, 100, 150, 200, 300, 400, 500, 700 and 800. The true values of the
regression parameters were taken as 81 = 1.5, o = 4 and o2 = 0.5. As considered
in Labra et al. (2012), the variable x; ranges from 0.1 to 20 and these values were
maintained throughout the experiment. For each combination of parameters, sample
sizes and censoring levels, we generated 1000 samples from the SMN-CR model,
under four different situations: N-CR, T-CR (v = 3), SL-CR (v = 4) and CN-CR
(vT = (0.5, 0.5)).

In order to analyze the performance of the estimates obtained using our proposed
EM-type algorithm, we computed the bias and the mean squared error (MSE) for each
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combination of sample size, level of censoring and parameter value. For §;, they are
given, respectively, by

1000

Bias () = 105 >~ (A7~ )
j=1
1000

MSE (8i) = 1()1% > (Bf"’) - ﬂi)z,

j=1

where B\;] ) is the estimate of B; for the j-th sample. We define bias and MSE for o
in the same manner. The result considering p = 10 % is shown in Fig. 2. We can
see a pattern of convergence to zero of the bias and MSE when n increases. As a
general rule, we can say that bias and MSE tend to approach to zero when the sample
size increases indicating that the estimates based on the proposed EM-type algorithm
do provide good asymptotic properties. This same pattern of convergence to zero is
repeated considering different levels of censoring p (see Appendix D for details).

5.3 Consistency of the estimates of the standard errors for the MLE’s of the
parameters (simulation study 3)

Now we show, via simulation study, that the method suggested in Sect. 4 to approximate
the SE of the MLE of the regression parameters has good asymptotic properties. We
fixed a SMN-CR model (N-CR and T-CR or SL-CR with v = 4 respectively) and a
censoring level (5, 10, 20, 30 or 50 %). For each one of these fifteen combinations of
model and censoring level, we generated 1000 samples of size n = 100 with 8; = 2,
B> = 1 and o2 = 1. For each sample, we obtained the MLE’s of 8 = (81, B2, 02),
the estimates of their SE using the technique proposed in Sect. 4 and an approximate
95 % confidence interval assuming asymptotic normality. Table 2 presents the sample
standard errors of 5, i.e., the value

1000 2

| . | 1000
MC SE = 599 Z @) - 000 (Z 9,») ,

=

i=

The results from this table show a reasonable MC coverage for both 8 and o2, although
the values for o2 tend to be lower the nominal level (95 %). Taking into account the
moderate sample size (n=100), we consider these results quite satisfactory.

6 Application
In this section, we provide an application of the results derived in the previous sections

using the data described by Mroz (1987). The data set consists of 753 married white
women with ages between 30 and 60 years old in 1975, with 428 women that worked
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at some point during that year. The response variable is the wage rate, which represents
a measure of the wage of the housewife known as the average hourly earnings. It is
important to stress that if the wage rates are set equal to zero, these wives did not
work in 1975. Therefore, these observations are considered left censored at zero. Four
predictor variables were considered: the wife’s age, years of schooling, the number
of children younger than six years old in the household and the number of children
between six and nineteen years old. These data were analyzed by Arellano-Valle et al.
(2012) using a truncated Student-t regression model. We analyzed it with the aim
of providing additional inferences by using the SMN distributions in the context of
censored models. We fitted a regression model with an intercept parameter 81 and
applied the EM-type algorithm for censored data explained in Sect. 3.2, considering
again the N-CR, T-CR, SL-CR and CN-CR models for comparative purposes.

Table 3 shows the parameter estimates, together with their corresponding SE. Table
4 presents some model selection criteria, together with the values of the log-likelihood.
The AIC Akaike (1974), BIC Schwarz (1978) and EDC Bai et al. (1989) criteria
indicate that the three models with longer tails than the N-CR model seem to produce
more accurate estimates. The SE of the T-CR, SL-CR and CN-CR models are smaller
than that of the N-CR model.

In order to identify atypical observations and/or model misspecification, we ana-
lyzed the transformation of the martingale residual, ry7;, proposed by Barros et al.
(2010). These residuals are defined by

rMT, = sign(rMi)\/—Z [FM,- + é; log (51‘ - ’”Mi)]’

i =1,...,n, where ry, = §; + log S(y,-,b\) is the martingale residual proposed by
Ortega et al. (2003)—see more details in Therneau et al. (1990), with §; = 0, 1
indicating whether the i-th observation is censored or not, respectively, sign(r ;)
denoting the sign of ry; and s(yiﬁ) = Py(v; > yp representing the survival function
evaluated at y;, supposing that it is being affected using the EM estimate 9 for 6.

The plots of 7ys7; with generated confidence envelopes are presented in Fig. 3. From
this figure, we can see clearly that the SMN-CR models with heavy tails fit better the
data than the N-CR model, since, in that cases, there are fewer observations which lie
outside the envelopes.

The robustness of the three models with longer tails than the N-CR model can
be assessed by considering the influence of a single outlying observation on the EM
estimate of 0. In particular, we can assess how much the EM estimate of 6 is influenced
by a change of V units in a single observation y;. Replacing y; by y;(V) = y; + V,
we define E(V) as the EM estimate of §; after contamination, i = 1,...,5, and
analyze the behavior of the relative changes, as we did in Sect. 5.1. In this study
we contaminated the observations y759 (censored) and y;7 (uncensored), considering
vVel{ol,...,10}.

Figure 4 displays the results of the relatives changes of the estimates for different
values of V. We omitted the plot concerning 8, because the relative changes patterns
are not so distinguishable in this case. As expected, the estimates from the models
with longer tails than the N-CR model are less affected by variations on V, no matter
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Table 4 Real data

Criterion N-CR T- CR SL-CR CN-CR
log-likelihood —1481.6550 —1440.1450 —1436.2860 —1432.0850
AIC 2975.3110 2894.2910 2886.5730 2880.1710
BIC 3003.0550 2926.6590 2918.9410 2917.1630
EDC 2996.2400 2918.7080 2910.9900 2908.0760

Values of some model selection criteria

N-CR T-CR

E 9 E
=3 2‘
o o o7
©
7
h A
© 00
° 7
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Standard normal quantile Standard normal quantile
SL-CR CN-CR
° °
E =
3 3
S .
o
3 !
©
7
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Standard normal quantile Standard normal quantile

Fig. 3 Real data. Envelopes of the martingale-type residuals, ry/; , for the SMN-CR models

if the observation is censored or not. Thus, it is clear that the SMN-CR models with
heavy tails are more robust, providing more accurate estimates when the data have
departures from normality.

7 Conclusions

We have proposed a robust approach to linear regression models with censored obser-
vations based on SMN distributions, called SMN-CR models. This offers a high degree
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of flexibility, allowing us to deal properly with censored data in the presence of outliers.
A novel ECME algorithm to obtain approximated maximum likelihood estimates is
developed using formulas for the moments of the truncated SMN distribution, leading
to closed-form expressions for the E-step. We applied our methodology to real data
set (freely downloadable from R) as well as to simulated data, in order to illustrate
how the procedures can be used to evaluate model assumptions, identify outliers, and
obtain robust parameter estimates. From these results, it is encouraging that the use
of SMN-CR models with heavy tails offer a better fitting, a better protection against
outliers and more precise inferences than the N-CR model.

Although the SMN-CR models considered here have shown great flexibility to
model symmetric data, its robustness against outliers can be seriously affected by the
presence of skewness. Recently, Lachos et al. (2010) proposed a remedy to accommo-
date skewness and heavy-tailedness simultaneously, using SMSN distributions. We
conjecture that our methodology can be used under CR models, and should yield
satisfactory results at the expense of additional complexity in implementation. An
in-depth investigation of such extensions is beyond the scope of the present paper,
but it is an interesting topic for further research. Finally, the proposed EM-type algo-
rithm has been coded and implemented in the R package SMNCensReg Garay et al.
(2013), which is available for download at CRAN repository. A great advantage of
this package is that all the censoring possibilities are taken into account: left, right and
interval.
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Appendix 1: Lemmas and corollary

The following Lemmas, provided by Kim (2008) and Geng (2012), are useful for
evaluating some integrals used in this paper as well as for the implementation of the
proposed EM-type algorithm.

Lemmal IfZ ~ TN ) (0, 1), then

o) — @ ¢ (a)
o ® b)) — P (a)

’

k+ 1 E[Z5] - E|7]
fork =-1,0,1,2,...
Proof: See Lemma 2.3 in Kim (2008).

Lemma 2 Let U be a positive random variable. Then Fspyn (a) = Ey [CD (aU%)] ,

where Fsyn () denotes the cdf of a standard SMN random variable, that is, when
w=0andc?*=1.
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Proof: See Lemma 3 in Geng (2012).
The following Corollary is a direct consequence of Proposition 1 given in Sect. 2.

Corollary 1 Let Y ~ SMN(u, 02, v) with scale factor U and A = (a, b). Then, for
r>1,

E[U"]Y e A|=E[U"|X € A*];
E[U'Y|Y € A] = uE[U"|X € A*] + 0E[U"X|X € A*];
E[UTY2)Y € A] = 2B [U71X € A] 4+ 2u0E [U7 X|X € A°]
+o2E [U’X2|X e A*],
where X ~ SMN (0, 1, v) and A* = (a*, b*), with a* = (a — ) /o and b* =
b—nw)/o.

Appendix 2: Derivations of quantities Ey (r, k) and Eg (r, h) for SMN
distributions

In this Appendix, we calculate the expressions for the expected values Ey (, h) and
Eo (r, h), for r, h > 0, given in Proposition 1.

Pearson type VII distribution (and the Student-t distribution)

In this case U ~ Gamma(v/2,§/2), withv > 0 and § > 0. To facilitate the notation,
let us make o] = (v + 2r)/2 and @y = (h> + 8)/2. Then,

[ee) 8% %—l r h2 S
E¢(r,h)=/ u—uexp[—¥}du
0

v 2 -
r (%) 52 (h 2+5) 2 /oo aglu/{al—l} { /}d )
o exp 1 —aou u
I 0 p 2

V27T (%) 2 T (1)
D(22) 5\ (h2 48\ T
= =2 (= — : 26
V27T (%) (2) ( 2 ) 20

where the integrand in (26) is the pdf of a random variable U’ with distribution
Gamma (a1, o03).

oou%_ld)(hu%)(sg us
E([)(V,h):/ - exp[——]du
0 2

_F(%zr) S\~ [ /s al@(hu’{%})u’{aﬁl} u's o
D) (5) /0 (5) Ty P 2 ™

@ Springer




272 A. M. Garay et al.

LS (2) e fo o)
k<l

Fé) —) Fpyrr(hlv +2r,8), (27)

2
where in (27) the expectation is computed with respect to U’ ~ Gamma (a1, 8/2)
and Fpyyj(-) represents the cdf of the Pearson type VII distribution. Then, the result
follows from Lemma 2. When § = v, i.e., the Student-t distribution, we have that
Egy (r, h) and Eo (7, h) are given by

_ +2r)

r(&2) YR 4y 2
Ey (r, h ;
o (1) = %)«/2]‘[() ( 2 )

vt

2r

r(
Eo (1 h) = F( )(g)_erV”(hlv—i-Zr,v).

T

Slash distribution

In this case U ~ Beta(v, 1), with positive shape parameter v, and

E ( h) ! r 1 [ h2 ] V—ld v / v+r—1 I h2 ]d
r, = u X ——Uu¢vu U= — u €X ——Uu u,
¢ Nl e V2 Jo 172
h2 —(v+r) h2
— Yy lv+r =), (28)
«/271 2

thus, considering y* (a, x) = fox e~ 't~ 1dt, we obtain Eq. (28).

1 1
Eo (r, h) =/ u @ (huf) vu""du
0
1
= - —Ur - /O @ (hu/{%}) VT ey an 29)
v
= rFSL(h|V +7), (30)

where the integrand in (29) is the expectation of the random variable ® (hU ’{%}), with
U’ ~ Beta(v +r, 1). Using Lemma 2, we obtain Eq. (30), where Fsy (-) is the cdf of
the slash distribution.

Contaminated normal distribution

1
Eg (r.h) = u" ¢ (huf) [V o) + (1= v)Ty )]

= vy’ (hy?) + 1 =) (hy?);

@ Springer



Linear censored regression models with scale mixtures... 273

Eo (1) = " ® (hu? ) [vT) (o) + (1 = W) (0]
— D (hy%) FA—0)oh) =y [vcb (hui) F1—nd (h)]
+A—v) (1—7") ()
=y Fen(hlv, y) + 1 —v) (1 —y") @ (h),

where Fcy(+) is the cdf of the contaminated normal distribution.

Appendix C. Details of the EM-type algorithm

In this Appendix, we derive the EM algorithm Egs. (20)—(22). Let§ = (ﬂT, o2, v)be
the vector with all parameters in the SMN-CR model and consider the notation given
in Sect. 3.2. Denoting the complete-data likelihood by L(:|yobs, ¥z, ) and pdf’s in
general by f(-), we have that

L(@yobs, Yr. W) = f(Yobs, YL, W) = f(Yobs, i |u) f (1)
= foylwf) =[] £Gilui) £ @ilv).
i=1

Dropping unimportant constants, the complete-data log-likelihood function is given
by

£c(01yobs, Yo, w) = log(L(0yobs, YL, W)

n 1 < I <
=3 log(o'z) + 3 Zlog (ui) — 352 Zui(yi - X;I'ﬂ)z
i=1 i=1

n
+ > log (f (ui[v)).
i=1
The Q-function at the E-step of the algorithm is given by
Q616" = Egv [€c (8]Yobs, Y. U) I¥obs] .

so we have

n 1 «
0010") =~ 10g (07) = = >~ {Eyo Ui ¥ uns ]

=

— 2B, [U; Y; | Yobs; 1% B + Eguo [Us |y0bs,~](X,Tﬁ)2}

1 n n
+ 5 2 Eawllog (Ui lyabs 1 + 2 Egwr llog (£ (Uil9)) [yobs ]

i=1 i=1

The expectations &;; (0 (k)) =Eyw[UiY]|yobs;]1, s =0, 1,2, used in the E-step of the
algorithm, are computed considering the two possible cases: (i) when the observation
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i is uncensored and (ii) otherwise. In the former case we solve the problem using
results obtained by Osorio et al. (2007). In the later case we use Proposition 1. Then,

we have
n

n 1
01 = = Togte®) = 523 3 [en(0) ~ 26 0)sTB + Eu 0V )T )]

1 n n
+ 5 2 Egw 102 (Un) [yobs; 1 + 2 Egao [log (f (Ui19)) [yobs, ]

i=1 i=1

In the CM-step, we take the derivatives of Q (0 |0(k)) with respect to g and o2, i.e.,

00(010%) 1 1o 0@V TRl
Tap = o 2 [xe ") — a8
30(010®) n

- 2
boT = 307+ 5o Z; [£20(6%) =26 (6%)xT B + €0 (6°) (x B)*].

30(016")

B

n -1 p
ﬂ(k+l) = (ZSO,-(O("))X,'XI-T) iné‘u(o(")).
i=1

i=1

The solution of =0is

30(016")

952 =0is
o

The solution of

G20+ _ % > [Ezi (00) =21 (6W)x BTV + &y (9(k))(XiTﬂ(k+l))2] '

i=

For the CML-step, we estimate v by maximizing the marginal log-likelihood, cir-
cumventing the (in general) complicated task of computing E,« [log (U;) |yobs; | and
Egw [log (f (Uilv)) [Yobs; 1, 1.e.,

. m Ki — XTﬂ(k+1)
v( +D = argmaxv Zlog FSMN W

i=1

n
(k+1)
+ > log I:fSMN(yi|XiTﬂ(k+1)’02 V)”

i=m+1

Appendix D. Complementary results of the simulation studies: asymptotic
properties

Figures 5 and 6 depict the average bias and the average MSE of ,B\l, B} and o2 for the
levels of censoring p = 25 % and p = 45 %, respectively.
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