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Abstract For the partially linear varying-coefficient model when the parametric
covariates are measured with additive errors, the estimator of the error variance is
defined based on residuals of the model. At the same time, we construct Jackknife
estimator as well as Jackknife empirical likelihood statistic of the error variance.
Under both the response variables and their associated covariates form a stationary
a-mixing sequence, we prove that the proposed estimators and Jackknife empirical
likelihood statistic are asymptotic normality and asymptotic x? distribution, respec-
tively. Numerical simulations are carried out to assess the performance of the proposed
method.
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1 Introduction

Consider the following partially linear varying-coefficient errors-in-variables (EV)
model

Yi = X7 B+ Wa(T)) + €, ;

=1,2,...,n, 1.1
& =X +e, T " (1)
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where Y; are the scalar response variables and (Xir , Wl.f, T;) are covariates, a(-) =
(@1(-), -+ ,a4(-))* is a gq-dimensional vector of unknown coefficient functions,
B = (B1,---,Bp)" is a p-dimensional vector of unknown parameters, €; are ran-
dom errors. Because of the curse of dimensionality, we assume that 7; is univariate;
e; are independent and identically distributed (i.i.d.) with mean zero and covariate
matrix ¥., and are independent of (¥;, X;, W;, T;). In order to identify the model,
¥, is assumed to be known. When X, is unknown, one can employ the approaches
proposed by Liang et al. (1999) to estimate it.

When X; are observed exactly, the model (1.1) boils down to the partially linear
varying-coefficient model, which has been studied by many authors, for example, Fan
and Huang (2005) proposed a profile least square method to estimate the unknown
parameter and studied the asymptotic normality of the estimator. Besides, based on the
estimator, they introduced the profile empirical likelihood ratio test and showed the test
statistic asymptotically x 2 distributed under the null hypothesis. In addition, Ahmad
et al. (2005), You and Zhou (2006), Huang and Zhang (2009), Wang et al. (2011),
Bravo (2014) extensively explored partially linear varying-coefficient models; Zhou
et al. (2010), Wei et al. (2012), Singh et al. (2014) for similar research related to EV
models.

For the model (1.1), You and Chen (2006) studied the case where the covariates
were observed with measurement errors and proposed estimators for the parametric
and nonparametric component respectively. When the covariates in nonparametric part
are measured with errors, Feng and Xue (2014) investigated the profile least square
estimators and conducted a linear hypothesis test for the parametric part.

It is worth pointing out that the works mentioned above all assume that variables or
errors are independent. However, the independence assumption is inadequate in some
applications, especially in the field of economics and financial analysis, where the
data often exhibit dependence to some extent. Therefore, the dependence data have
drawn considerable interests of statisticians. One case of them is serially correlated
errors, such as AR(1) errors, MA(co) errors, negatively associated errors, martingale
difference errors, etc. See, for example, the work of You et al. (2005), Liang et al.
(2006), Liang and Jing (2009), You and Chen (2007), Fan et al. (2013), Fan et al.
(2013) and Miao et al. (2013).

As we know, the empirical likelihood (EL) introduced by Owen (1988, 1990)
is an effective method for constructing confidence regions which enjoys numerous
nice properties over normal approximation-based methods and the bootstrap [see Hall
(1992), Hall and La Scala (1990), Zi et al. (2012)]. The EL related to model (1.1)
or partially linear varying-coefficient model has been studied by some authors, for
example, You and Zhou (2006), Huang and Zhang (2009), Wang et al. (2011), and
Fan et al. (2012) for the partially time-varying coefficient (in this case 7; = i/n)
errors-in-variables model. It can be seen that the EL in these papers is based on linear
functional of the studied parametric or nonparametric parts in the models. However,
when nonlinear functionals are involved, such as U-statistics and variance of random
sample, an application of the EL method will be computationally difficult and the
Wilks theorem does not hold in general, i.e., the asymptotic distribution of the EL
ratio is not a chi-squared distribution. Fortunately, in the study of the EL on one and
two-sample U-statistics, Jing et al. (2009) proposed a new approach called jackknife
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empirical likelihood (JEL), which can handle the situation where nonlinear statistics
are involved. At the same time, another attractive feature of the JEL is that the new
method is simple to use. Thanks to the advantages, the JEL. method has been applied
recent years. See, for example, Gong et al. (2010), Peng (2012), Peng et al. (2012)
and Feng and Peng (2012).

In the sequel, we assume that {(X;, W;, T;, €;),i > 1} is a sequence of stationary
o-mixing random variables with E(¢;|X;, W;, T;) = 0 a.s. and E(6i2|Xi, Wi, T;) =
o2 a.s. from the model (1.1). Recall that a sequence {¢x, k > 1} is said to be ¢-mixing
if the a-mixing coefficient

a(n) - supsup{|P(AB) — P(A)P(B)| : A € F,, B € Fi
k>1

converges to zero as n — 00, where }"lm =o{¢, §i+1, - -+, &} denotes the o -algebra
generated by ¢, {41, - .., & With I < m. As we know, among the most frequently
used mixing conditions, the «-mixing is the weakest and many time series present o -
mixing property. For a more detailed and general review, we refer to Doukhan (1994)
and Lin and Lu (1996).

In this paper, we focus on estimating the error variance o2, and investigate asymp-
totic normality of estimator for the error variance. It is well known that the error of a
regression model impacts its performance, and the study for the error variance could
help researchers to improve the accuracy of the model. So it is necessary to investi-
gate large sample properties of the estimators of the error variance. Up to now, only a
few researchers have discussed the asymptotic normality of the estimator for the error
variance. Among of them, we refer to You and Chen (2006), Liang and Jing (2009),
Zhang and Liang (2012) and Fan et al. (2013), Fan et al. (2013). At the same time, we
construct Jackknife estimator as well as JEL statistic of o2, and prove that they are
asymptotic normality and asymptotic x 2 distribution, respectively. Based on the JEL
statistic of o2, we can construct its confidence interval which plays a crucial role in
quantifying estimation uncertainty. With the study for error variance, we can get more
comprehensive understanding of statistical models. Hence, the statistical inference
can be improved. These results are new, even for independent data.

We organize the paper as follows. In Sect. 2, we give the methodologies and show
how to build the estimators. Main results are listed in Sect. 3. Section 4 presents
a simulation study to verify the idea and demonstrate the advantages of jackknife
method. Proofs of Main Results are put in Sect. 5. Some preliminary lemmas, which
are used in the proofs of the main results, are collected in Appendix.

2 Estimators
2.1 Profile least squares estimation
The local linear regression technique is applied to estimate the coefficient functions

{aj(-),j=1,2,---,q}in(1.1). For ¢ in a small neighborhood of ¢, one can approxi-
mate a(t) locally by alinear function a; (t) ~ a;(t) +a;. (t)(t—1y) = a; +b;f (t—1p),
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j=12,---,q, where a} (t) = da;(t)/0t. This leads to the following weighted local
least-squares problem if g is known: find (a*, b*) so as to minimize

n Tz _¢ a* )
S [vi-xip—(wro S—=wr) () Kemi—0. @b
P h hb
where a* = (af, a5, -+ ,ay)", b* = (b}, b5, -+, b))", Kn() = K(-/h)/h, K() is
a kernel function and 0 < & := h,, — 0 is a bandwidth.

For the sake of descriptive convenience, we denote Y = (Y1, Y2, -+, V)", X =
(X1, X2, , X))" W = (Wi, Wa, -+, W), 0 = diag(Kp(T1 — 1), Kp(Tr —
1), -, Kp(T, — 1)), and

Wia(Ty) wr o Ltwr
: > D= :
Wia(T,) wr  Ltwe

n

M =

2k

Then the minimizer in (2.1) is found to be ( h"g*) = (DY, Dy}~ DFwy (Y — XB).

Therefore, when g is known, we obtain the estimator of «(¢) by

G, B) = (Iq, oq){watD,}*‘D,fw,(Y —X§). 2.2)

Let §; = (W; 0){D;in,DT[}_1D%a)T;, Y, = Y, — §Y and X7 = X7 — §;X.
Substituting (2.2) into the original varying-coefficient model, and applying the least
square method, one can obtain the estimator of parametric component 8, f =
0 X; f(l.’)_1 > X;Y;. However, since X; cannot be observed directly and we
have & = X; + ¢; instead, we can write (2.1) as

[vi—erp = (wr. Zwr) ()] Kt = 0 = g5,

M=

i=1

Similarly, one can obtain the following modified profile least squares estimator of

. S o L
b= (D88 —nz) D&,
i=1 i=1
and the estimators of a(-) and o2, respectively
an0) = (1> 04 ){Df o DY~ Di e (Y — £,

. 1 n R . ) )
62 = - ;[Yi — ET By — Wi an(T)1* = BE Sebn.
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2.2 Jackknife method

Since the estimators we have constructed are based on samples (éi, fi)l'.’zl, they are

regarded as the pseudo observations. Let ﬁn,_i be the estimator of 8 when the ith
observation is deleted,

Pu—i = [i%é; ~w-nz] S

J#i J#
Therefore the ith Jackknife pseudo sample is J; = an —(n—-1) Bn,_,-. Hence, we
have the Jackknife estimator of
n

fr=> di=nf -2 Y s
i=l1

i=1

From 67 = % S (Y — éf,én)z — BT, By, similarly, let 62 . be the estimator
of o2 when the ith observation is deleted, 8”2’_1. = n% Z?#i(?j — 5},3,,,_,')2 —
,B; _;j ZeBu,—i- Then we have the ith Jackknife pseudo sample 012, = n&,lz —(n —
1)6?2 ., and the Jackknife estimator of o>

1 « n—1«
63==-> 02 =né?— 52 .
J n Ji n n n,—i
i=1 i=1

Based on the Jackknife pseudo sample, one constructs the Jackknife empirical likeli-
hood of o2

n n n
L(az):zsup{ani :p1>0,p2>0,...,p, > O,Zpi = I,Zp,-oi :az}.

i=1 i=1 i=1

. T sooA 1 .
The solution to the above maximization is p; = —n[1+x(a} 7 i=1,2,...,n,
1 02 —g2 '
: n i _ ..
where A satisfies - > 7, Y (‘7/21- 5 = 0. Therefore, we have the log empirical

likelihood ratio function of o2

1(63) =2 Zlog[l + A(o] — o).

i=1
3 Main results

In order to formulate the main results, we need to impose the following basic assump-
tions.
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(A1) The random variable T has bounded support €2, and its density function f(-) is
Lipschitz continuous and away from O on its support.

(A2) The ¢ x g matrix E(WW?®|T) is nonsingular for each T € Q. E(XX"|T),
EMWW?®|T) and E(XWF|T) are all lipschitz continuous. Set I'(T;) =
EW;WHT), &(T;) = E(X;WF|T;),i =1,2,---,n, the derivatives of order
2 of functions I'(-) and ®(-) are bounded for each T € Q2. The ¢ x ¢ matrix
EX X[ — EQT ()T~ (T))®(T}) is positive definite.

(A3) Thereisad > 4 such that E(| X[|*|T}) < oo a.s., E(|W1|¥|T}) < o0 a.s.,
E|&1% < oo a.s., E[le1/*? X1, Wi] < 00 a.s.

(A4) {a;(),j=1,2,---,q} have continuous second derivatives in T € .

(A5) The function K (-) is a symmetric probability density function with bounded
compact support which is Lipschitz continuous as well, and the bandwidth &
satisfies nh® — 0 and nh?/(logn)> — oo.

(A6) The a-mixing coefficient a(n) satisfies that «(n) = O(n™") for some A >

max{?%f, %} with the same § as in (A3).

Remark 3.1 (a) Assumptions (A1)-(A6) are quite mild and commonly used in lit-
erature. Particularly, (A1)—(A2) and (A4)—(AS) are employed in Fan and Huang
(2005), Feng and Xue (2014).

(b) Assumptions (A3) implies E || X1]*® < oo and E||W;|*® < oc.

(c) Assumption (A6) indicates relatively low mixing speed. In fact, when the ¢-mixing
coefficient decays exponentially, i.e. «(n) = O(p"), 0 < p < 1, one can verify
easily that (A6) is satisfied.

Theorem 3.1 (i) Suppose assumptions (A1)—(A6) are satisfied, then \/n (6,% —0?) E
N (0, IT), where IT = lim,,, o Var{\/Lﬁ Z?:l (€ —ei’ﬂ)z}. Further, Mis aplug-in
estimator of T1, where T1 = %{Z?zl[(fi - él.t,BAn)2 — ,BA; Sefn — 8,,2]}2.

(ii) Suppose assumptions (A1)—(A6) are satisfied, then ﬁ(&} —02) = J/n(6? —
o2) + op(1). Furthermore, with (i) we have ﬁ(&} —0?) 2) N (0, IT).

Theorem 3.2 Suppose assumptions (Al)—(A6) are satisﬁed: then %1(02) 2 X12»
where X4 = E(e1 — ef,B)4 — (024 B2 B)? > 0. Moreover, 34 is a plug-in estimator
of T4, where 24 = 3 30 ({(Yi — &7 B)* — (B} Zebu +67)%).

Remark 3.2 (a) Under the conditions of Theorem 3.2, if {¢;} is a sequence of inde-
pendent random variables, then one can verify [T = ¥4 and [(c'2) 3 Xlz- In this
case, the jackknife empirical likelihood method does not relate to estimation for
the asymptotic variance X4 of the jackknife pseudo samples. However, when {¢; }
is a sequence of dependent random variables, we cannot ignore the covariance
between (¢; — ei’,B)2 and (e; — e]’ﬂ)2) fori # j, which leads to IT # X4. Thus,
to construct an approximate confidence interval of 2, we need to estimate IT and
4.

(b) From Theorem 3.2, it is easy to construct an approximate confidence region with
level 1 — 7 for o2 as I(t) = {02 : %1(02) < ¢}, where c; is chosen to satisfy
P} <ec)=1-1.
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4 Simulation

In this section, we conduct numerical simulation to investigate the finite sample behav-
ior of the profile least square estimator 6,% and the jackknife estimator 8} in terms
of sample means, bias, mean square error (MSE). Besides, we study the performance
of proposed jackknife empirical likelihood method for constructing confidence inter-
vals for o2 and compare it with normal approximation method in terms of coverage
probability and average interval length.

Consider the following partially linear varying-coefficient EV model:

IYi = Xupr+ Xaifr + Wuar(T) + Waiar(To) + i, ;

& =X +e,

where 81 = 1, B2 = 2,a1(T) = sin(6nT), a, = sin(2w T). The measurement error
e; ~ N0, =,), where =, = 0.32], and I» is the 2 x 2 identity matrix. X;, W;, T;, €;
are generated from AR(1) model as follows:

Xij=pXij-1+uj,i=12withuy; ;areiid. N(0,1),
Wi j=p>W; j—1 +wij,i = 1,2 withw; ; areiid. N(0, 1),
T; = /pTj1 +tj, tj areiid. N(0,0.1%),

€j = p€j—1+mnj,n;areiid. N(0,0.5).

It is easy to verify that {X;, W;, T;,€;} is a sequence of stationary and o-
mixing random variables (see Doukhan (1994)) with 0 < p < 1. When p = O,
{(X;, W;, T;,€i), i =1,2,...,n}areiid. random variables. In order to investigate
the influence of dependence on the estimators, we take the samples with p=0, 0.2, 0.5,
0.8, respectively. In fact, since the data generated from AR(1) model, one can easily
find that the true value of 02 = 0.5/(1 — p2), which means that when the coefficient
p changes, o' changes as well.

The following simulation is based 1000 replications. For the proposed estimators,
we employ the Epanechnikov kernel function K () = 15/16(1 —u*)*I(|u| < 1), and
the bandwidth £ is selected by minimizing the MSE in a grid search.

Taking sample sizes n = 50, 100, 200, 500, we calculate bias and MSE of 8"2 and
6}, respectively, to evaluate the two estimators’ performance. According to Table 1,
basically, the jackknife estimator performs better than the profile least square estimator.
Both Bias(&}) and MSE(&%) are smaller than those of &,12. Besides, both estimators
get more accurate when n increases. The gap between M SE (&,%) and MSE (&Jz)
becomes narrow as n increasing. In other words, the jackknife estimator can signifi-
cantly improve the estimation accuracy when sample size is small. In addition, as the
dependence of observations increases (i.e., p increases), which leads to larger o2, the
accuracy of estimation slightly decreases when observations present relatively strong
dependence. Specifically, the MSE for both estimators become larger as o rise.

Coverage probabilities and average interval lengths are reported in Table 2, showing
that the jackknife empirical likelihood method is much more accurate than the normal
approximation method in all scenarios in terms of coverage probabilities. Since it is
obvious that the coverage probabilities for JEL are closer to the level than normal
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Table 1 Sample means, biases and mean square errors for the estimator &,% and &;

p o’ n 67 62 Bias(62) Bias(62) MSE@62)x103  MSE(62)x103
0 05 50 04362 04796 —0.0638 —0.0204  41.2140 40.6612
100 04745 04886 —0.0255 —0.0114  19.3856 19.3127
200 04854 04961 —0.0146 —0.0039  8.7411 8.7065
500 04993 04998  —0.0007 —0.0002  3.8668 3.8435
02 05208 50 04699 04877 —0.0509 —0.0331  42.3700 41.2085
100 04967 05027 —0.0241 —0.0181  20.1317 20.0729
200 05159 05188 —0.0049 —0.0021  10.1983 10.0918
500 05172 05195  —0.0036 —0.0013  4.2966 42889
05 06667 50 05946 06047 —0.0721 —0.0620  68.5674 67.2362
100 0.6376 06446 —0.0291 —0.0221  32.0382 31.9127
200 0.6568 0.6598 —0.0099 —0.0069 128815 12.8623
500 0.6641 0.6648 —0.0026 —0.0019 73555 7.2993
08 13889 50 1.0907 11577 —0.2982 —0.2312 294.0034 276.1109
100 12874 13022 —0.1015 —0.0867 175.6427 175.4381
200 13274 13458 —0.0615 —0.0431  89.6432 89.4067
500 13780 1.3782  —0.0109 —0.0107  38.3630 38.1840

Table2 Coverage probabilities for the jackknife empirical likelihood (C P ) and the normal approximation
method based on a,% (C Py) with confidence level 0.90, 0.95, respectively, and their corresponding average
interval lengths AILj and AILy

P n Level 90 % Level 95 %
CPy CPy AILy AlLy CPy CPy AILy AlLy
0 100 0.887 0.873 0.4362 0.4425 0.935 0.927 0.5226 0.5258
200 0.892 0.883 0.3116 0.3130 0.937 0.933 0.3724 0.3733
500 0.897 0.889 0.1942 0.1981 0.942 0.938 0.2354 0.2374
0.2 100 0.855 0.842 0.4459 0.4478 0.915 0.902 0.5333 0.5341
200 0.884 0.872 0.3188 0.3203 0.936 0.931 0.3806 0.3827
500 0.889 0.881 0.2033 0.2078 0.939 0.934 0.2431 0.2444
0.5 100 0.835 0.812 0.5125 0.5129 0.908 0.876 0.6140 0.6111
200 0.860 0.858 0.3669 0.3679 0.926 0.921 0.4401 0.4381
500 0.893 0.891 0.2384 0.2392 0.930 0.927 0.2772 0.2764
0.8 100 0.789 0.746 0.8524 0.8685 0.863 0.846 1.0382 1.0405
200 0.793 0.749 0.6015 0.6034 0.882 0.853 0.7203 0.7247
500 0.834 0.792 0.3822 0.3798 0.892 0.861 0.4544 0.4531

approximation method (NAM). In most cases, the average interval lengths based on
JEL are smaller than NAM. More precisely, as n increases, the coverage probabilities
for both JEL method and NAM become closer to the level, the confidence intervals
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for both methods becomes narrow. When p = 0 i.e. independent cases, JEL performs
much better than NAM with higher coverage probabilities and shorter confidence
intervals. When dependence increases, the coverage probabilities slightly fall down,
due to the fact that stronger dependence leads to bigger variance o2

5 Proofs of main results
Throughout this paper, let C, C1, C denote finite positive constants, whose values may
change in different scenarios. Let yt; = [ u' K (u)du,and ¢, = {log(n)/(nh)}'/> +n?.

From (AS), one can easily verify thatc,, = o(n’l/“).Sete = (€1,€2,++-,€)7%, 1, =
(1’ 11"' ) l)T.

Proof of Theorem 3.1 (i) From Lemma 6.3, it follows that \/LE Silei —ef B)? —

(024 B7S,8)] B N(0, TT), where TT = lim,,_, o Var{-= S_, (¢ — ¢ §)*). There-
fore, to prove Theorem 3.1 (i), it is sufficient to show that

. I <
Pt == [(e —efB)> — (67 + BB + 0,(1).
n i=1
From 672 = % S (Y — éi’BnV — BE B, one can write

. 1 L.
67 =0 = [= D (= XA — o] + [ DBt B — B seh
i i=1

l
= Ay + Ay — As. 5.1)

First, we prove that

I, L
Al—n;ei o >+o,,(ﬁ), (5.2)
Ay = %Zﬁf(eieir —Z)B +op (%) (5.3)
i=1
2 1
A== ;Qei B +op(ﬁ). (5.4)

From the definition of ¥; and (1.1), one can write
1n221n~r Azln“zln 2

A1=;2(e,- —0 )+;;[xi(ﬂ—ﬂn>1 +;2M,- +;2<S,-e>
1= 1= 1= 1=
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2 4 T 5 ~ 2 Z St A - 2 " ~ 2 n
+- l;[x,. (B = BuIM; + = Z'[Xi (B~ Bwlé + - EM,-Q_; ;Qs,.e

1 $ 2 2 !
= ;Z(ei —0 )+ZA1,-. (5.5)
i=1 ]:]
Note that from the proof of Lemma 3 in Owen (1990) and (A3), we have
maxi<;<p || X;| = o(nl/z‘s) a.s.and max<j<, [|W;|| = o(nl/%) a.s.

Furthermore, from Lemma 6.6 and (A2), we have

max [|X;|| < max [|X;|| + max |W T~ NTHOT)I{1 + Op(cn)}
1<i<n 1<i<n 1<i<n
< Op(n1/23) +C lrgiai(n ”Wl_‘f”{l + Op(cn)} — Op(nl/%)'

Lemma 6.9 (i) gives ||/§,1 — Bl = OP(n_l/z), therefore

e -, . - A _ _
An =~ E[Xi B— B < max IXi 1218 — Ball> = 0,1y = 0,(n=1/%).
(5.6)

From (Al)-(A4), one can easily obtain that P(% S (Wra(T)? > n) <

w < £, which implies + 37 (WS a(T})? = 0,(1). Together with

(6.9) and (A5) we have

1 n
A == > (WaT))?0,(e) = 0p(c) = 0, (177, (5.7)

i=1

Note that % S Wi W = 0,(1). Therefore, together with (6.14), we have

1 « 1 « log log _
Az =~ ;(S,-e)z == ; WIW; 0, (n—h”) =0, (n—h”) =0,(n"1%). (5.8)

From (6.9), (A3) and (A4), we have max<;<p |M;| = maxi<j<, |Wra(T)|0,(cy) =
0] ,,(nl/ 20 p(cy). Similar to the proof of (5.6), one can obtain that

|Aval = 2(max XTI = Bull max |M;]) = 0p(n' "1 2e,) = 0, (n™!12).

(5.9)

As to Ays, by (6.6), (6.14), Lemma 6.10, (A1), (A2) and (AS5), we have

12N vt a2\ wrea dowe [logn
|A15|—‘n§X,-(ﬂ Bu)ei néxi(ﬁ Bu)W; op( nh)‘
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2
2> e
n-

i=1

2 =17 AP
+HZ§W"F (T D (T;)e;

=<

[1+ Op(Cn)]

‘ﬁ_.én

[1+ Op(cn)]

‘lg_Bn

nh

=o(n~0,(m~"* + 0,n"*)0,n""»0, (,/1‘;“’;1”) =0,(n""7?).
(5.10)

oT T 5 logn
+ max [ X7 || max [[W7 I8 — BallOp
I<i=zn I<i<n

From (A1), (A2), (A4), it is easy to verify that |%a’ (THW; Wifll = Op(1). Therefore,
with Lemma 6.10, (6.9) and (6.14), we have

Op(cn) < ‘% > d"(T)Wiei|0p(cy)

i=1
Op(cn)O)p (ﬂ %) = Op(nil/z). (5.11)

From Lemma 6.10 and (6.14), it is directly derived that

/1 /1
Op( (:lin)zo(n_l/4)0p( Zghn):op(n_l/z).

2 « 3
| Al = ‘; D> d (THWi&

i=1

2 n
+ ‘;Z;af(n)w,-wifl
1=

2 n
|A17] = ';ZeiWitl
i=1

(5.12)
Hence, with (5.4)—(5.7),(5.8)—(5.12), we finish the proof of (5.2). Write
1 4 T T 1 4 5 T T 5
Ay =~ ;‘,ﬂ (eie] = ZB §<ﬂn — B (eie] — Te)(Bu — B)
1~ » 1 < .
+ = D (Br = B (ere] =B+~ > (ere] — Ze)(Bu — )
i=1 i=1
= %Zﬂ’(e;e} — 2B + Az + Axy + Ans. (5.13)
i=l1

Note that % > eief — X, = 0p(1) from the strong law of large number for i.i.d.
random variables and || 8, — B| = O,(n~'/?). Then

—A_Tlnw_ o _ —1y _ —-1)2
|A2l|—‘(ﬁn B) [”Eelei Ee}(ﬂn ,3)‘—0;;(71 ) =o0,(n ), (5.14)
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_lp _ T l - LT _ —1/2

[Ax| = ‘(ﬂn B) [n El eje; Ee]ﬂ‘ =op(n="7), (5.15)
_|pt l $ LT A _ —-1/2

[Axs| = |B [n El eje; Ee:|(ﬂn ﬂ)‘ =op(n 7). (5.16)

Hence, by (5.13)—(5.16), we complete the proof of (5.3). Write
2L 2 & 2
Ay == geiefﬂ - gsieefﬂ += Z;,[Xf(ﬂ —Bu) + Mi1B7e;
1= 1= 1=

2 - - . A
+ =D AXF(B = Bu) + Mi + &1(By — P
ni:l
2 n
== Zeiefﬁ + Az + A + Ass. (5.17)
i=1

Applying Lemma 6.3, we have |1 3" | Wief|| = 0,(n~'/?). Then by (6.14), we

have
[logn 1 [logn 1
OP( _h) = 0pr™ )Op( nh )ZOP(” 2.

n

2
|A31|=’;Zlfw,

i=1

(5.18)
Similarly, by (6.6) and (6.9), one can obtain that
2
Ans| = ‘(ﬂ A [ ZXe]m[;; H
[ ZXej| '[1+op(cn)]
+ |(B =B [ Z@(T)F 1(T)We} )[1+0,,(cn>]
% n TTAW, of _ —1/2
+ [néa (Tl)W,ei:|ﬂ‘0p(cn)—0p(n ), (5.19)
|A33|='<ﬁ—ﬁn>’—ZXe](ﬂ Bn) ‘[ ZMe](ﬂn ﬂ)'

2. .15
+ '[Zéeiei]wn—ﬂ)‘
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IA

2w »
0,0, + 0,(n"")0,(cn) + ‘; > eiel (Bn — ﬂ)‘
i=1
2 S S.cet (B
+ an i€e; (B —B)

= 0,0+ 0, e))+0,(n"H+0,m" "0, (, / k}’%) =0,(n""?).
(5.20)

Combining (5.17)—(5.20), we prove (5.4). As a result, (5.1) can be written as

A2 2_1 N Cta\2 (A2 T —1/2
B0t == e — e[ p)? = (@ + BTE)] + 0p(n™ '),

i=1

This completes the proof of Theorem 3.1 (i).

(i) To prove \/n(67 — 0?) = /n(6} — o?) + 0, (1), it is sufficient to prove that
=6240 p(n~ 1/2) | According to the definition, we have 6? =62+ "n;l > (67—
_;)- Therefore, to obtain the desired result, we only need to prove

A

ﬁi(&f — 67 _) = op(1). (5.21)
i=1
Note that >7_ [ (Vi — &7 B) + Seful = 0, with Lemma 6.4 we have
Y R e DI CE L (A
+ nzj g[éﬂﬁ- — & B) + By Tl (Bu — B i)
£ o o S o
i=1

n n 4
L B e Y EE B B = >
i=1 j=1 =1

Therefore, to prove (5.21), it is sufficient to prove By = op(n_l/z), k=1,2,3,4.
From Lemmas 6.7 and 6.11, we have

1 < 5 5 S A A
Bi = —— > [(Bn = Pu ) EE By — Br )] = 0,2, (522)
i=1
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Similarly, one can easily check that
n
By=> (Bu— Bu-)"Ze(Bu — Bu-)Op(n™ "), (5.23)
i=1

s |
By=2 (= Pn )" — D EE By — Pri) = 0,7, (5.24)
j=1

i=1 -

Using Lemmas 6.11 and 6.5, we have

4 “ 1.5 2T h AT A 3 :
Bt ;[gi (Fs =& Bn) + By 2B — B0

4 N .
_”1)2 ;(sm —E B+ B1T)70,(n7) = 0,(n 7).

<
_(11

Therefore, one can obtain that

1B2| = 0,(n"/?). (5.25)
Hence, combining (5.22)—(5.25), we finish the proof of (5.21). O
U}, —o2

Proof of Theorem 3.2. Define g(A) = % > m It is easy to check that
J

1 n A n (0'3‘—02)2 |)»|S 2
lg(A)] " ,~=1( Ji ) n zl-}-k(o‘}j —02)l T 14 [AIR,

i=1
1 n
Eser o,
n 1
i=1

where S,> = % Z;’:l(oi —0H2 R, = max|<j<p |o§i — 02|. Next we prove
R, = max |07 —0?| = 0,(/n), (5.26)
1<i<n !
1< 2 22 P
S = 22(% — 03?5 3, (5.27)
=
Write

n n,—i

67 = 6n = — (Vi =& B)* = &7 — B Tepul

1 A N A o
+ ——Bn — Bn—) Ei& (B — Bn.—i)
n—1
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2 -~ -~ A ~ ~ ~
+ m[éf(yi - Sirﬂn) + ﬂ,ﬁ z:e](,Bn - ﬂn,fi)
+ (Ién - ,3n,7i)rze(l§n - /§n,7i)

n 5
By — Bu—)" D EiET By — Bu—i) = D _bui

j=1 k=1

Hence, to prove (5.26) we only need to prove maxi<;<p |bii| = op(n_1/2) for k =
1,2,3,4,5.
Apparently, we have

_ 1 2 n n » R - R
a2 >0 = U3 [ — et + & - At i — e BB h

i=1
+4(e — e YEB — p)* + 6(ei — e HEB — )’ ]
- (&,12 + ,é; EeﬂAn)2~

From (A3), we have

n . 1 n .
p(n3? i — e B)3E; 132 E|(¢; — e B)3E; 0,
(n \iZ}(e G| = n) < o >l iy &I~
which implies 2’3\, (¢; — ef $)E(8 — ) = 0, (D'from [|B, — Bl = 0,(n~"/?)
given by Lemma 6.9 (i). Similarly %Z?:l(ei — ei’ﬂ)(g(ﬂ — 3,,))3 = o0p(1),
53 (e — e B2 EPB —Pu)? = 0p(1) and L 37 (E(B — Pu))* = 0 (1). There-

fore, from Lemma 6.5, we have

ERTCR
(=1 S0 L Eter — e[ p)t — (@07 + BTES) = Ea. (5.28)

From (5.28), one can derive that

max |by;| = o0,(n""?). (5.29)
1<i<n

By the same approaches used in (5.22)-(5.25), one can easily check

max |bi| = 0,(n""), k=2,3,4,5. (5.30)

1<i<n

Hence, together with (5.29) and (5.30), we have proved (5.26).
According to Theorem 3.1, one can write S;2 = % > 1(01 )2 —(02)?%+ op(1),

I < 2.2 22, 2(n—=1) ., C A2 A2 (n—1)? c A2 A2 N2
; Z(GJi) = (Gn) + Tan Z(Gn - Un,—i) + n Z(Gn - Un,—l)
i=1 i=1 i=1
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Therefore, to prove (5.27), we need to investigate the convergency of % > (o%_ )?
first.
From (5.21), we have @6”2 S 62— Azﬂ_) = 0,(n"1/?). Using the

n,
—1)2 N
same techniques in proving (5.26), one can get (n nl) Z;’Zl(a,% - an —1)2 =

("_n—l)z >, b+ 0,(1). Together with (5.28), we have

(n—1> Gy P
Sy2 = TZZ)U +0p(1) = a4,

which proves (5.27).

Applying Theorem 3.1, we have | > 10} —o’=0 p(n~ 1/2) Together with
(5.27), we have 5= = 0, (n~"/?). From (5.26), it follows that [ = 0, (n~'/?).
Lety; = A(aJi — 02), then still by (5.26), max<j<p |¥i| = [A|Ry = 0, (1). Note that

V,‘z
I+

1 n 1 1 n
0=2g) = ;Z(a,{ —0)— = - Z(a},_ —oH(1 -y + )

1+ yi

—Z(aj—a)—)»52+ Z( o) = 21~|—yl

By (5.26) and (5.27), it is easy to derive that 1 > (o7 z S e = %Z;’:l(o}i -
o) (o] — 02)# = 0,(n~"/?). Therefore

1 n
ASp2 =~ D) =P +o,mn ).
i=l1

Denote A = S;zlli r 1(cr%_ — 02) + ¢u, where || = 0,(n"V?). Let n; =
el 3 )/l , then n; = O(y?), which implies | X7 ;| < CY lyil® =

cyr, |k2(ali — 02)?yi| < Cna%S,2 maxi<i<y lyi] = 0,(1). Hence
n n n n
I(c%) = 22)4 — Zyl-z + ZZni = 2An(&12 —o%) — nA2Saz + 221%
i=1 i=1 i=1 i=1

n
=2n(67 — 08,7 (67 — o) + du] — 5,205 (6] — o)+l +2 D mi
i=1
n
=nS (6] — 0D —nS,¢y +2> i
i=l1

=nS (67— 0H* +0,(1).

Finally, together with Theorem 3.1, we finish the proof of Theorem 3.2. O
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Appendix

In this section, we give some preliminary Lemmas, which have been used in Section 5.
Let{X;,i > 1} beastationary sequence of «-mixing random variables with the mixing
coefficients {«(k)}.

Lemma 6.1 (Liebscher (2001), Proposition 5.1) Assume that EX; = 0 and | X;| <
S <ooas (i =1,2,---,n). Then forn,m ¢ N, 0 < m < n/2and e > 0,
P Xi| > e < 4exp{—%(nm*‘ Dy + 3€Sm) "1} + 322 na(m), where Dy, =
maxi<j<om Var(Ql_; Xi).

Lemma 6.2 (Yang (2007), Theorem 2.2)

(i) Letr > 2,6 >0, EX; = 0and E|Xi|r""s < oo. Suppose that . > r(r +
8)/(28) and x(n) = O(n="). Then for any € > 0, there exists a positive constant
C = Cl(e, ré8, A)zsuch that E maxXi<m<p | 2 4o Xil" < C{n X}, EIX;|" +
iy IXil7,5)).

(i) If EX; = 0 and E|X;|*™® < oo for some § > 0, then E(31_; X;)? < {1 +

_J
16370 a2 (D) 200 1Xi13, 5
Lemma 6.3 (Linand Lu (1996), Theorem 3.2.1) Suppose that EX1 =0, E|X;|**® <
oo for some §>0 and 372 | @) (n) <oo. Then o> :=EXT+2332, EX1Xj <

o0 and, if o # 0, S ZNo, 1.

Lemma 6.4 (Miller (1974), Lemma 2.1) For a nonsingular matrix A, and vectors U

—1 _ 4—1 _ (A 'lyywraTh
and V,we have (A+UVT)™ = A Ve

Lemma 6.5 (Shao (1993), Corollary 1) Let EX; = 0 and sup; E|X;|" < oo for
some r > 1. Suppose that a(n) = O(log=¥ n) for some ¥ > r/(r — 1). Then
n I3 X =0(1) as.

Lemma 6.6 Suppose (A1)-(A3), (AS) and (A6) are satisfied, then

1. 10y _
sup | DD~ fOr@ @ (o )| = Oplen. 6.1)
1. N
sup DX = [(O®() @ (o) = Opten. 62)
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Proof We only prove (6.1) here, because (6.2) can be proved similarly. Write

Kn(T1—1) wp Otwr
W] I R ] Wn
Diw:D; = | 7,— T,—t ) : :
TWl,..., MTW" . . T—t.
Ky(T,—1) Wnt ';l W,f
S Wi WKy (T} — 1) > Wi WJ%K@(TI- —1)
S WW B K (T = X Wiw (BE) KT = 1)
(6.3)
Here, we only give the proof of
sup |~ ZW,W Ki(T; — 1) — f(OT ()| = Op(cy). (6.4)

teQ

We divide € into subintervals {A;} (I = 1,2, -, [,) with length r,, = h log” , and

the center of A; is at #;. Then the total number of the subintervals satisfies [, = 0 (ry, 1 ).
Then

sup ZW WTKn(T; — 1) — f(t)F(l)‘
te

< max sup
1<l<lnt€A[

ZW,W’K;,(T —1) — —ZW,W Kn(T; — 17)

+ max
1<i<l,

z WiWF KT = 1) = F(@)T ()]

ONOENIONG]

+ max sup
Isl=ly tep,

=10+ L+ 1.

Therefore, to prove (6.4), it is sufficient to show that Iy = O,(c,), k =1,2,3.

Using the Lipschitz continuity of K (-), we have |K,(T; —t) — Kp(T; — ;)| <
Wl = ull(T; = 0 < Cah) < Gg=1(T; — ul < Czh). Therefore, the (k. k2)
component in /1, | < k; < ko < p, can be written as

llglagn tseug lZWuq Wiy [Kn(T; — 1) — Kp(T; — 11)]
C1r -
n
= S ma Z|W,k. Wiy |1(1T; = 1] < Cah)
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n
— D" E|Wit, Wi, [I(IT; — 11| < Cah)
i=1

Cyr, "
" max ZElWikl Wit [1(IT; — 1] < Cah) := Iy + Ina.
=1

nh? 1<i<l,

For 111, applying Lemmas 6.1 and 6.2 we have

Ciry 1 <&
(=5 max - ;nw,»klwikzu(m — 4] < Cah)
P
logn
— EWi, Wi 1(T; = 1] < Cahl| = Coy[ =0 )
! _
n —Llc2 nhlognn 2/8 Cy
< {4exp[ 16 70 ]—1-32 noz(m)},
; 2D + %Coﬁ/nh Tognn=18Cim Co/nhlognn—1/8

where Dy, = maxi<j<om E(h 21 [IWit, Wit 1 (I1T; — 11| < Ca2h) — E|Wig, Wi, |
Wl=1/5),

I(T; — 1] < C2h)])?n 20 < % Taking m = [ g ==lo], we have
p(lgllag an,kl Wit [1(IT; — 1] < Cah)

logn
— EIWit Wit 1(T; = 1] = Cah)| = Coy =27

Clnl—l—l/(S

1«/nhlogn

On the other hand, we have E|W;, Wi, |I(IT; — 1| < C2h) = O(h). Therefore

I, = O( log") Together with (6.5), one can derive /1 = O,(C,). One can rewrite
I as

4
< 1,,{; e a(m)} < %zn - 0. (6.5)

1 n
I < max = > [W; W[ — T(TIKu(T; — 1)
i=1

1<i<l, 'n

+ max
1<I<l,

ZF(T)Kh(T — 1) = EN(T)Kn(T; = 1)

+ max IEF(Ti)Kh(Ti =) — fT ()] = Iy + I + Ds.

By the same technique used in proving (6.5), we have I;; = O, (,/ %), Iy =

0, (\/@ ) Using Taylor’s expansion, we have I3 = O (h?). From (A1), we have
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I = T 1) — F(OT @) < Cir2 +C o,/ "
3—1mla?§ sup | f)T () — f | 12 = ( 1 )

ntel;
Thus, (6.4) is proved, which completes the proof of this lemma. O

Lemma 6.7 Suppose (A1)~(A3), (AS) and (A6) are satisfied, then L > | £&° 5
T+ EX|X] — E[®"(T)T 1 (T)®(T1)].

Proof From the definition é,-r =& — S;& and (1.1), we have
n 1 n
s oT
Zs,s, = Z<X’ SX)T(XT = 5X) + = > (e] — Sie) (X[ — 5 X)

i=1 i=1

n 1 n
+ - E(Xf — SX)"(ef = Sie) + - D" (e — S5ie)" (ef — Sie).
1=

i=1

where S; = (W[, 0)(Df wr; DT,.)*lD;I_a)T,. By (6.1) and (6.2) in Lemma 6.6, we
have

= (W}, 0)(D}, w5, D))~ ' D} 1, X

= (W}, 0){[nf(T)F<T)]’ ®L(<1) ,,?2)}

< [nom @ ()11 + 0y
= i, o apran e sane (o L) (o) 1+ 0sen)
= WL ofr e o - (o)i1+ 0y
= W TN THDT){L + Op(ca)}- (6.6)

Similarly, using the approaches above and those in the proof of (6.1) and (6.2), we
have

Sie = WIT~HT)HE(Wief IT){1 + Op(ca)} = 0. (6.7)

From (6.6) and using Lemma 6.5, it follows that

%Z(xif — SX)TX] - §X) 5 EX(X] — E[®T(T)I ™ (T (T)].

Similarly 1 27 ((ef = ST (XT — 8 X) = L3 e (XF — WIT - NTH®(T){1 +
O, (cn)} —> 0. According to (6.7), we have —Zl (ef — Sle)f(e — Sie) =

% Diieief 23 %.. Thus the conclusion is proved. O
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Lemma 6.8 Suppose (A1)-(A6) are satisfied, then Z;’zl él\;li = 0p (/n), where
M; = M; — SiM and M; = WFa(T)).

Proof According to the definition, we have

I - - 1o 1 <
=D EM =~ > (XT = SX)TM] = SiM) + D (] — Sie)" (M — SiM).
i=1 i=1 i=1

(6.8)

" WiWTa(T) Ky (T — 1
Note that Dfw,M ( 2z WiWa(T) Ky (T; — 1)

> WiWra(T) T K (T; — 1)

techniques in the proof of Lemma 6.6, one can easily check that Dfw;M =
1

nl'() f(Da() ® (0){1 + Op(cp)}. Therefore S;M = Wra(T){1 + O,(cy)}, fur-

thermore,

). Using the similar

M; = M; — SiM = W a(T;)O,(cy). (6.9)

Then, from (6.6) and law of large numbers for stationary «-mixing sequences, one
can obtain

,1—1 DX = SX)T(M] — SiM)
i=1
= %Z[X? — W T HT)H®(T) — W TN (THD(T3) 0, ()] Wi a(T;) O (ca)
i=1

= lZn:XW?a(T)o (cn) — li<1>f(T-)1"*1(T-)W-W.fa(T-)o (cn)
ni:l [ AN 14 p\tn ni:l i i [ AN 14 p\tn
- %Z<I>f<T,~)F—1(E)WiW,-’a(mop(c,%)
i=1
= E[CD’(Tl)a(Tl)]Op(c,%). (6.10)

Similarly with (6.7), we have % > (ef — Sie)"(M] — S; M) LN 0, which, together
with (6.8) and (6.10), yields that 3", & M; = 0,(nc2) = 0,(/n). O

Lemma 6.9 (i) Suppose (A1)—(A6) are satisfied, then

VB — B) B NO. = 5 Eh,

where 1 = E(X1X[) — E[®"(T)T (T (T1)], ©(T1) = E(WiX[|T),
D(T) = EWIW[T) E2 = limy 0 Var{ﬁ SilE =TI N(TH Wil

le; — ei’ﬂ]}. Further, f)l_l f)zfll_l is a consistent estimator of El_l )3 Zl_l, where
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& I~n %g & 1 norE o Etp 5 122
Y = n Zi:l Eié}'f -2, Xy = ;{ Zizl[Si(Yi _éirﬁn)] + Zelgn} , here c®?
means CCT. . A

(i) Suppose (A1)~(A6) are satisfied, then /n(B; — B) = /n(Bn — B) + 0p(1).

Proof (i)Let >/ &ET —nS, = A, then f, = A~' 3| &Y. Write
n
Bo—B=A""nTp+ AT D EW —EP). 6.11)
i=1

From Lemma 6.7, we have A~! = O(%). According to the definition and (1.1), we
write

s oo 20 I < ¢ 1 < ;
;;Ei()’i —-&B) = ;;&(Mi —SiM) + ;;&(Ei — Sie)
- %Zéi (ef — Sie")p. (6.12)
i=1
From (6.6) and (6.7), we have
lié(e.f — Sie")p = 1&[5- — O (THI NTHWilef B+ 0 (L) (6.13)
n i 1\&; i ni:l 1 i i 116 P \/ﬁ . .

Similar to the proof of (6.2) in Lemma 6.6, one can easily check that D] w;e =

nly, ® ( (1)) 0, (, / 1‘;%1"). Together with (6.1), (A1) and (A2), we have

Sie = (W}, 0)(D}owr,Dr,)”' Drore
— o ofuryra o L () o (3)] o (/2)
= WU T 0, FE1) = wit 0, (50, (6.14)

Therefore

D ke — Sie) =D eiei + D _(Xi — QT (THT ™ (T Wei + 0p(V/n)
i=1

i=1 i=1

= > — O T (T Woe + 0, (V). (6.15)
i=1
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Combining (6.11)—(6.15) and Lemma 6.8, we have

Vi -p=(2)" % >zt -0 @ @ Willei—em Bl +o, ().
i=l1

Let n; = B + [& — " (T)HT 1 (T)Wille; — €7 Bl. Obviously, {n;,i > 1} is an
a-mixing sequence with En; = 0 and E|n;|® < oo for § > 4. Applying Lemma 6.3,
one can complete the proof of (i). . .

(ii) To prove /n(B; — B) = /n(By — B) + op(1), it is sufficient to prove B; =
,Bn + Op(\/Lg)-

Note that ,3 J = ﬁ,, + % ?:1 (/§,, — ,BAn,,i). Therefore, we only need to prove that

VD (B = Bu—i) =0, (D). (6.16)

i=1

From the definition,

n _1 n n -1 n
o= i [zé,-s; - z] S| SeE-a-vn| i
i=1 i=1 i i
Using the fact [see Theorem 11.2.3 in Golub and Van Loan (1996)] (A + B! =

Al —A-1BA-l —A-lB z,fil CKA~! where Ais a nonsingular matrix, and C =
— A~ B. We write

—1
D EE -(n-DE,
J#L
-1 -1 —1
= | D EE —nz | —| D EE - | | D EE-nz.| -D,
J# J# J#L
(6.17)

where D = A" B30 C*A™ A =X §;5] —n%.).B=5,C=—-A""B.
Applying Lemma 6.4, we write

-1 -1

DEE —nT. | = | D EE —nx. - &
J#L Jj=1

. (31 &€ —nZ ) EET 13- EjEF —nZ, ]!

= ggr —nX, = PR =
; s - %‘[t[zj:l Ejé;'; - nEe]‘léﬁ

(6.18)
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Let A = Z] 1§]$T - ], the same as in the proof of Lemma 6.9 (i).

Then combining (6.17), (6.18) and the definitions of ,Bn and ,Bn,_i and noting that
Diil&(Yi — &7 By) + Zefn] = 0, we write

> B = Bu—i)
i=1

a1 = Uiéi(ii_gir/én)+ze/§n a1 . ri[éi(?i_girlén)"'ze.én]
=4 ; 1—v; 3 (1 —v)?

" OE (Y —ETB _}_EA n . R
_A_lzeA_lzéz( i g, Bn) eBn _A (% ‘Ze,Bn

1 —v 1—v
i=1 ! i=1 !

1
+A7'S, A" IZ—Eeﬁn
i=1

+ A lz —12515 A™ 2:e,Bn DiZSJY,

1—v;
! i=1 j#i

= A~ 121 +DZZ§, i (6.19)

i=1 j#i

where v; = S}A—lé,-, ri = é;A—lzeA—lé,-. By Lemma 6.7 and (A3), we have
v = 0p (n_l) andr; = O (n_z). Therefore, to prove (6.16), it is sufficient to prove
that

. - - 1
i =o0,(v/n), i=12--.7and D> > &Y, =op(ﬁ).

i=1 j£i

First, we deal with ;. Since

>0 — sl<Y ETBu) + TeBu]

i=1

< /n(max v?)!/?
1<i<n

n 172
(Z[&-(Yi —E B0+ Eeﬂnf) :
to prove the desired result, one needs only to show that

1/2
( max v; Z[sz(y girlén) + 2:e/—gn]z) = OP(l)'

1<i<n
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In fact, from max<;j<, [vi| = on=3% a.s. by the proof of Lemma 3 in Owen
(1990), and Lemma 6.11, it follows that \/Lﬁll = 0p(1). Similarly \/%712 = 0p(1),
Fl=0p(1).
Meanwhile, || = T Ll = = 0 ( ) — 0. Similarly, we have
Az L 1,
Nl op(1), ﬁlé =o0,(1), ﬁh =o0,(1).

Recall the definition of A, B, C, D and Lemma 6.7, we have A~} O( ),C = O( )
and

-1 —1 2,41 3.1 1 1 1
D=A"'B(CAT +C?A7 4 C3A +--~)=—3+—4+...=0(—3).
n n n
Therefore, by (A3), one can easily obtain that
D S 3 & = Jno(&)n?0,(1) > . .

Lemma 6.10 Suppose (A3) and (A6) are satisfied, then % > €iWik =o(n~Y* a.s.
forl <k <p.

Proof Following the proof of Lemma 2 in Hong and Cheng (1994) under the inde-
pendent case, using Lemmas 6.1 and 6.2, it is not difficult to prove this lemma. O

Lemma 6.11 Suppose (A1)~(A3), (AS) and (A6) are satisfied, then L > [&;(¥; —
~_ A A~ o~ ~_ A A P A ~
girﬂn) + ZeBulléi (Y — %‘irﬂn) + Zefu]t — X3 and maxi<i<u 1Bn — Bn.—ill =

0,(n™"), where 33 = (21 + £e) (02 + BT f) — TP Te
Proof (1) Write
I s o =on A X
= D LEW — & Ba) + TeBallEi (Vi — & Bu) + ZeBul”
ni:l
| O | T . - -
= D LET —EPNET: —EI + — > EE (B — HB — PTEE
i=1 i=1
+ = ZEeﬂnﬁE ——ZW ETBETET By — B)
+ -~ Zé(ﬁ- — & BB T — fracin Zééf (Br — BB} Ze
i=1 j
I s o so mo oA U
— =D G —EBEE B — B + Zﬁw E BB ZN
ni:l

l =~ A .
=~ D [GE (B — BB T (6.20)
i=1
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First, we evaluate the cross terms. By Lemmas 6.9 and 6.5, (A2) and (A3), we have

1 & .
- H;Zas: Brze| = 0,17 > 0.
i=1

-

.
H — D EE (B — PIBTe
i=1

. s s mo o =i A P s ez
Similarly ||% D1 & (Yi—ETBETET (Bu—PB) I — 0.Note that D7 [§ (Y; —&7 Bu)+
Ze,én] = 0, with Lemma 6.7 we have

A I~ - o A .
=2 G —E BB Te = —SefufiTe + — > &E By — BB} Ze
i=1 i=1

= _EeBn,BA; z:e"'(ze'i‘zl)(lén _,3),3; 2:e _P> _Eeﬂﬂrze-

Therefore, one can write (6.20) as

Il = = =on Ao~ o A
= D NG = ET B + SePuléi (Vi — ET Bu) + el
i=1
1 S £T £V £t T 1 - S Et/R 5 1§ T
= ;;[éi(yi —ETPIEY; —E7P)] +;i§as,~ (Bn — B (B — B)7&i8;
1w 2 2 .
+ ;Ezeﬁnﬁnze—zzeﬁﬂ T

= H\+ Hy+ H3 — 2%.BB" Z..

On applying Lemma 6.5 and (6.6) we have

1 - £ T T 1 - T TpP—
Hi = ;aa (e — e[ ) = — D (X[ = WiT ™ (T @(T)

i=1
(14 0,(cn)) +e)* (e — el B)?
L EXT = WIT N T)®(T)) + eT (e — el B)* = (02 + BT EeB) (D1 + Zo).

With maxi<j<p ||§,~|| = o(n'/?%), ||/§n - BH = OI,(n_l/z), and Lemma 6.7, one can
derive that H, — 0, H3 — X.BB" X.. Hence, the first conclusion is verified.
Similar to the derivation of (6.19), one can write

1§i(?i - girﬁn) + z:e,BAn _A-! Vi
1— Vi 1-— v;
1%[(?1' - éir,én) + z:elén
1-— v;
Afl Zeﬁn +A,1§i‘§,’TA712e,3An
1 —v; 1 —v;

2B

,én - Bn,—i =A"

— A2, A"

+A7's,
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él(?z - ‘gir,én) + 2:e,BAn

— Al
T a—w?
A 8
. p .
-1 ePn .
+A rim+DZ§jyj -=Zaki,
! i k=1

where v; = El.TA’] E.,ri = éfA’] 2. A1 Then, it is sufficient to show that

max [lagll = 0,(n~"), k=1,2,---,8.
1<i<n

For ai;, since E[&; (Vi —&7 fu) +Zeul = 0, E[|&i (Vi &7 Bu) + Zepul® < oo and
maxi<i<y |vi| = 0(n3/%) a.s., wehave max <; <u & (¥; =& B) +Zefull = O, (1).
Therefore, max<;j<, lai; |l = Op (n~H. Itis easy to see that

1< 1< - -~ - . e oA R
= ah == [EVi—E B+ TeBullE (Vi —E B+ Zepul O =0,
n n

i=1 i=1

2

which implies “—™1=izn 95l 0 Then max;<i<, aisll = 0,(n~3/2). Similarly,
maxi<i<n llaeill = 0p(n~/?).

From maxi<;<, |vi| = 0(1) a.s., maxi<;<p |Fi| = o(n~") a.s. and maxi<i<p |1&|l
= om/®) a.s., itis easy to show that max<;<, ||ai || = o(n™h, maxj<i<p |la4ill
= O(n™?), maxi<j<y llasi| = o(n™"), maxi<i<y llazill = o(n™?), maxi<i<, |las;||
=o(m™h.

Then the proof of the second conclusion is completed. O
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