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Abstract By relaxing the linearity assumption in partial functional linear regression
models, we propose a varying coefficient partially functional linear regression model
(VCPFLM), which includes varying coefficient regression models and functional lin-
ear regressionmodels as its special cases.We study theproblemof functional parameter
estimation in a VCPFLM. The functional parameter is approximated by a polynomial
spline, and the spline coefficients are estimated by the ordinary least squares method.
Under some regular conditions, we obtain asymptotic properties of functional para-
meter estimators, including the global convergence rates and uniform convergence
rates. Simulation studies are conducted to investigate the performance of the proposed
methodologies.

Keywords Functional linear models · Global convergence rate · Polynomial spline ·
Uniform convergence rate · Varying coefficient model

1 Introduction

Functional data that both predictor and response are random functions are often
encountered in meteorology, medicine, biology, economy and finance (Ramsay and
Silverman 2005). Due to its flexibility and interpretability, functional regression analy-
sis has received a lot of attention in past years. For example, see Cardot et al. (1999,
2003), Chiou et al. (2003), Ramsay and Silverman (2005), Yao et al. (2005), Cai and
Hall (2006), Hall and Horowitz (2007), Ferraty and Vieu (2006) and Baíllo and Grané
(2009).
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To improve power of prediction and interpretation of functional regression mod-
els, some additional real-valued predictors were introduced into functional regression
models, which leaded to some new functional linear regression models. For example,
Aneiros-Pérez and Vieu (2006) proposed a semi-functional partial linear regression
model by combining the feature of a linear model together with the methodology
for nonparametric treatment of functional data; Aneiros-Pérez and Vieu (2008) pre-
sented an extended semi-functional partial linear regression model for dependent
data; Aneiros-Pérez and Vieu (2011) further proposed a fully automatic estima-
tion procedure in a partial linear model with functional data; Zhang et al. (2007)
developed a partial functional linear model by incorporating a parametric linear
regression into functional linear regression models; Wong et al. (2008) proposed a
functional-coefficient partially linear regression model by combining nonparametric
and functional-coefficient regression model; Dabo-Niang and Guillas (2010) intro-
duced a functional semiparametric model in which a real-valued random variable
was explained by the sum of an unknown linear combination of the components of
a multivariate random variable and an unknown transformation of a functional ran-
dom variable and the random error was autocorrelated; Lian (2011) considered a
functional partial linear model by taking advantage of both parametric and nonpara-
metric functional models; Lian (2012) proposed an empirical likelihood approach
to nonparametric functional regression and semi-functional partially linear model;
Zhou and Chen (2012) introduced a semi-functional linear model by combining
the feature of a functional linear regression model and a nonparametric regression
model.

To broaden the applicability of functional linear regression models, a varying-
coefficient functional linear regression model (VCFLRM) by allowing the slope
function to depend on some additional scalar covariates was also proposed by Cardot
and Sarda (2008) and has only received a little attention in recent years. For example,
Wu et al. (2010) discussed estimation of the slope function in a VCFLRM based on
functional principal components for sparse and irregular data, and investigated the
asymptotic properties of the proposed estimators; Müller and Sentürk (2011) pre-
sented a review of statistical inference on VCFLRM. Inspired by the work of Cardot
and Sarda (2008) and Wu et al. (2010), we consider a varying-coefficient partially
functional linear regression model (VCPFLRM) by relaxing the linearity assumption
in Zhang et al. (2007), which is an extension of partial functional linear regression
models and varying-coefficient functional linear regression models.

Polynomial spline is a very popular smoothing technique in a nonparametric regres-
sion, and it enables us to extend the standard methods for parametric models to
nonparametric settings and is easy to implement in applications, hence it is employed
to approximate functional coefficients in our considered VCPFLRM. Based on the
polynomial spline approximations to functional coefficients, we first use the least
squares approach to estimate parameters in polynomial spline approximations and
then obtain estimations of functional coefficients. Under some regular conditions, we
discuss the global and uniform convergence rates of the proposed estimators.

The rest of this paper is organized as follows. Section 2 describes varying coeffi-
cient partially functional linear regression models and presents the polynomial spline
estimators of functional coefficients. In Sect. 3, we study asymptotic properties of the
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proposed estimators. Simulation studies are conducted to investigate the performance
of the proposed methods in Sect. 4. Technique details are given in the Appendix.

2 Model and estimation

Let Y be a real-valued response variable defined on a probability space (�,B,P),
let U and Z = (Z1, . . . , Z p)

T be one-dimensional and p-dimensional vectors of
explanatory variables defined on the same probability space, respectively. Also, let
{X (t): t ∈ T } be a zero mean, second-order (i.e., E |X (t)|2 < ∞ for all t ∈ T )
stochastic process defined on the probability space (�,B,P) with sample paths in
L2(T ), which represents the Hilbert space containing square integrable functions
defined on T with inner product 〈x, y〉 = ∫

T x(t)y(t)dt for ∀x, y ∈ L2(T ) and norm
‖x‖2 = 〈x, x〉1/2. We assume that the relationship between Y and (X,U, Z) is given
by

Y =
∫

T
X (t)a0(t)dt + a1(U )Z1 + · · · + ap(U )Z p + ε, (1)

where a0(t) and a j (U )’s are unknown smooth functions for j = 1, . . . , p, and ε is a
random error with mean zero and finite variance σ 2 and is independent of (X,U, Z).
Without loss of generality, we assume T = [0, 1]. Clearly, the above defined model
includes varying-coefficient models and functional linear regression models, which
correspond to the cases that a0(t) = 0 and a j (U ) = 0 for j = 1, . . . , p, respectively.
Also, it includes partial functional linear regression models (Zhang et al. 2007) when
a j (U ) ≡ β j for j = 1, . . . , p. Hence, the above defined model (1) is an extension
of partial functional linear regression models and varying-coefficient models, and is
referred to as a varying-coefficient partially functional linear regression model.

Let the data set {Xi ,Ui , Zi ,Yi }ni=1 be n independent realizations of {X,U, Z ,Y }
generated from model (1), i.e.,

Yi =
∫ 1

0
Xi (t)a0(t)dt + a1(Ui )Zi1 + · · · + ap(Ui )Zip + εi for i = 1, . . . , n,

(2)

where the random errors εi ’s are independent and identically distributed with Eεi = 0
and Eε2i = σ 2, and are independent of (Xi ,Ui , Zi ).

In what follows, we consider estimations of functional parameters a j ’s for j =
0, 1, . . . , p. Let Sk0,N0n be the space of polynomial splines on [0, 1] with degree k0
and N0n knots u0,1, . . . , u0,N0n satisfying

0 = u0,0 < u0,1 < · · · < u0,N0n < u0,N0n+1 = 1, (3)

and Sk j ,N jn ( j = 1, . . . , p) be the space of polynomial splines on [a, b], which is the
compact support of the density of U , with degree k j and N jn knots u j,1, . . . , u j,N jn

satisfying
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a = u j,0 < u j,1 < · · · < u j,N jn < u j,N jn+1 = b, (4)

where the numbers of knots N jn ( j = 0, 1, . . . , p) increase when sample size n
increases. The space of polynomial splines Sk j ,N jn is a linear space of K jn-dimension,
where K jn ≡ N jn+k j+1 for j = 0, 1, . . . , p. Generally, we can choose the truncated
power basis and B-spline function as a basis of the above defined linear space. Due
to some good numerical properties of B-spline function, we use the B-spline basis to
approximate functional parameters a j as follows. More details for spline function and
spline space can refer to de Boor (2001) and Schumaker (1981).

Following the arguments of de Boor (2001), if the unknown function a j ( j =
0, 1, . . . , p) is sufficiently smooth, there exists a spline function ā j in the linear space
Sk j ,N jn such that

a j ≈ ā j =
K jn∑

s=1

b js B js, (5)

where Bjs denotes theB-spline function in the linear space Sk j ,N jn for j = 0, 1, . . . , p.
Thus, the model (2) can be approximated by

Yi ≈
∫ 1

0
Xi (t)ā0(t)dt + ā1(Ui )Zi1 + · · · + āp(Ui )Zip + εi . (6)

Denote

l(b) =
n∑

i=1

⎧
⎨

⎩
Yi −

K0n∑

s=1

b0s < Xi , B0s > −
p∑

j=1

K jn∑

s′=1

b js′ Bjs′(Ui )Zi j

⎫
⎬

⎭

2

, (7)

where b = (bT0 , bT1 , . . . , bTp )T with b j = (b j1, . . . , b jK jn )
T for j = 0, 1, . . . , p.

By minimizing l(b) given in Equation (7), we can obtain the least squares estimator
b̂ = (̂bT0 , b̂T1 , . . . , b̂Tp )T of b, where b̂ j = (̂b j1, . . . , b̂ j K jn )

T for j = 0, 1, . . . , p.
Thus, the polynomial spline estimators of functional parameters a j ’s are given by

â j = ∑K jn
s=1 b̂ js B js . In this case, we can also define an estimator of variance σ 2 as

σ̂ 2
n = n−1 ∑n

i=1{Yi− < Xi , â0 > −∑p
j=1 â j (Ui )Zi j }2.

3 Asymptotic properties

In this section, we investigate asymptotic properties of the above proposed estimators.
For simplicity, we first introduce the following notation. For two sequences of positive
numbers cn and dn , cn � dn represents that cn/dn is uniformly bounded, and cn � dn
if and only if cn � dn and dn � cn . The covariance operator � of a random function
X is defined as �x(t) = ∫ 1

0 EX (t)X (s)x(s)ds for x ∈ L2(T ). ‖ · ‖∞ denotes the
super-norm of function on some region D, that is, ‖r‖∞ = supx∈D |r(x)|. Denote
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Kn = max j∈{0,1,··· ,p} K jn , h j = maxl=0,··· ,N jn (u j,l+1 − u j,l), and let C q([a, b]) be
the collection of all functions that are q times continuously differentiable on [a, b].

To study asymptotic properties of the above proposed estimators, we here assume
that the degrees k j ’s are fixed and the numbers of knots N jn’s depend on sample size
n. In addition, we also require the following assumptions.

(A1) For the knot sequences given in Eqs. (3) and (4), there exists some positive
constant C1 such that

max
j=0,1,··· ,p

maxl=0,··· ,N jn (u j,l+1 − u j,l)

minl=0,··· ,N jn (u j,l+1 − u j,l)
≤ C1.

Also, Kn � nr for 0 < r < 1/3, and h j � K−1
n for j = 0, 1, . . . , p.

(A2) The density function fU (u) of random variableU has a compact support Du =
[a, b] and fU (u) is bounded away from zero and infinity on Du .

(A3) a0(t) ∈ Cq([0, 1]), a j (u) ∈ Cq([a, b]) for j = 1, . . . , p and 1 < q ≤ k, where
k = min j=0,1,...,p k j .

(A4) ‖X‖2 ≤ C2 < ∞ a.s., and there is a positive constant C3 such that 〈�a∗
0 , a

∗
0 〉 ≥

C3‖a∗
0‖2 for any a∗

0 ∈ Sk0,N0n , where C2 is a positive constant and C3 does not
depend on n.

(A5) The eigenvalues of E(Z∗
i Z

∗
i
T |Xi = x,Ui = u) are uniformly bounded

away from zero and infinity for all (x, u) ∈ L2(T ) × Du , where Z∗
i =

(1, Zi1, . . . , Zip)
T .

(A6) For some m0 > 2, E |Z1 j |m0 < ∞ for j = 1, . . . , p.

Remark 1 Assumption (A1) is similar to Eq. (3) of Zhou et al. (1998) and Assumption
(C3) of Xue and Yang (2006). Also, Kn stands for the growth rate of the dimension
of the spline spaces relative to sample size. Assumption (A2) is very common in
nonparametric regression, for example, see Condition 1 of Stone (1985) and Condition
2 of Chen (1991). Assumption (A3) ensures that a0(t) and a j (U ) for j = 1, . . . , p are
sufficiently smooth so that they can be approximated by spline functions. Assumption
(A4) is a stronger condition than that given in functional linear regression models.
Assumption (A5) is a generalization of Condition (ii) of Huang and Shen (2004) and
Assumption (C2) of Xue and Yang (2006). Assumption (A6) is similar to Condition
(v) of Huang and Shen (2004).

Under Assumptions (A1)–(A6), we obtain the following global and uniform con-
vergence rates of the polynomial spline estimators.

Theorem 1 Suppose that Assumptions (A1)–(A6) hold. Then, we have

‖̂a j − a j‖22 = Op

(Kn

n

)

+ Op

(
K−2q

n

)
for j = 0, 1, . . . , p.

Theorem 2 Under Assumptions (A1)–(A6), we have

||̂a j − a j ||∞ = Op

(
Knn

−1/2
)

+ Op(K1/2−q
n ) for j = 0, 1, . . . , p.
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Remark 2 Theorem 1 shows the global convergence rates of the polynomial spline
estimators of a0(t) and a j (U ) for j = 1, . . . , p, which are similar to Theorem 1 of
Huang and Shen (2004) and Newey (1997) and Theorem 3.2 of Huang et al. (2004).
Particularly, whenKn � n1/(1+2q), we have ‖̂a j −a j‖22 = Op(K−2q/(1+2q)

n ), which is
the optimal global convergence rate given in Stone (1982). The uniform convergence
rate in Theorem 2 is the same as Theorem 7 of Newey (1997). The above results
indicate that the existence of a random function does not affect the convergence rates
of the polynomial spline estimators of functional coefficients.

4 Simulation study

Experiment 1 To investigate the finite sample performance of our proposed method-
ologies, we conducted the first simulation study. In this simulation study, we generated
data {Xi ,Ui , Zi ,Yi }ni=1 from the following model

Yi =
∫ 1

0
Xi (t)a0(t)dt + a1(Ui )Zi1 + a2(Ui )Zi2 + εi for i = 1, . . . , n.

For functional linear components, similar to Lian (2011), we took a0(t) =∑50
j=1 κ jφ j (t) and Xi (t) = ∑50

j=1 ξi j ι jφ j (t) with κ1 = 0.5 and κ j = 4/j2 for

j = 2, . . . , 50, φ1(t) = 1 and φ j (t) = √
2 cos(( j − 1)π t) for j = 2, . . . , 50,

and ι j = 1/j and ξi j was independently and uniformly distributed on the inter-
val [−√

3,
√
3] for j = 1, . . . , 50. For varying coefficient components, we set

a1(U ) = 0.138 + (0.316 + 0.982U ) exp(−3.89U 2), a2(U ) = −0.437 − (0.659 +
1.260U ) exp(−3.89U 2), and Ui , Zi1 and Zi2 were simulated from the uniform dis-
tribution on the interval [−0.5, 0.5] (Wong et al. 2008). Random errors εi ’s were
independently generated from the normal distribution with mean zero and variance
0.22, i.e., εi ∼ N (0, 0.22).

To implement our proposed methods, we took k0 = 2, k1 = 3 and k2 = 3 in using
B-spline functions to approximate functions a0(t), a1(U ) and a2(U ), respectively. For
the knot positions, we can uniformly take knots on the considered interval of random
variable t (or U ) or take the sample quantiles of random variable t (or U ) to be their
corresponding knots. For simplicity, we uniformly took knots u0,h on the interval [0, 1]
(i.e., u0,h = h/(N0n + 1)) for h = 0, 1, . . . , N0n + 1, and knots u j,h on the interval
[−0.5, 0.5] (i.e., u j,h = −0.5+h/(N jn +1)) for j = 1, 2 and h = 0, 1, . . . , N jn +1.
Thus, selecting the numbers of knots is equivalent to choosing the numbers of B-spline
functions K0n, K1n and K2n when k0, k1 and k2 are fixed. Generally, AIC, BIC, the
“leave-one-out” cross-validation (Rice and Silverman 1991) and the modified multi-
fold cross-validation (Cai et al. 2000) can be used to select the required numbers
of B-spline functions. Here, we used the “leave-one-out” cross-validation technique
to choose the numbers of B-spline functions. Following Rice and Silverman (1991),
K0n, K1n and K2n can be selected byminimizing the following cross-validation score:
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Table 1 Sample means, medians and variances of RASE and MSEP

n = 200 n = 500

Mean Median Var Mean Median Var

RASE0 0.1652 0.1251 0.0099 0.1156 0.0972 0.0038

RASE1 0.1258 0.1153 0.0039 0.0758 0.0704 0.0010

RASE2 0.1281 0.1166 0.0038 0.0767 0.0721 0.0009

RASE 0.4191 0.3933 0.0183 0.2681 0.2510 0.0061

MSEP 0.0039 0.0036 2.839 × 10−6 0.0016 0.0015 0.430 × 10−7

CV (K0n, K1n, K2n) = 1

n

n∑

i=1

{
Yi− < Xi , â

−i
0 > −â−i

1 (Ui )Zi1 − â−i
2 (Ui )Zi2

}2
,

where â−i
0 (t), â−i

1 (U ) and â−i
2 (U ) are respectively estimators of a0(t), a1(U ) and

a2(U ), and are evaluated by deleting the i th observation {Xi ,Ui , Zi ,Yi } from the full
data set {(X j ,Uj , Z j ,Y j ) : j = 1, . . . , n}.

To assess the performance of our proposed estimators, we computed the mean
square error of prediction (MSEP) of response variable Y (Cardot et al. 2003), which
is defined by

MSEP = 1

n

n∑

i=1

{
Ŷi− < Xi , a0 > −a1(Ui )Zi1 − a2(Ui )Zi2

}2
,

and the square-root of average squared error (RASE) of functional parameters a0(·),
a1(·) and a2(·) (Huang and Shen 2004), which is defined by

RASE =
2∑

j=0

RASE j with RASE j =
{

1

n j

n j∑

h=1

(̂a j (th) − a j (th))
2

}1/2

where th’s are the regular grid points for h = 1, . . . , n j .
In this simulation study,we considered twodifferent sample sizes: n = 200 and 500.

For each sample size, results were obtained via 1000 replications. Table 1 presented
sample means, medians and variances of RASE, RASE j and MSEP. Figures 1, 2,
and 3 displayed the polynomial spline estimates of a0(t), a1(U ) and a2(U ) for a
special replication corresponding to minimum of RASE. From Table 1, we observed
that the sample mean, median and variance of RASE, RASE j and MSEP decrease as
sample size increases. Also, from Figures 1, 2, and 3, we observed that estimates of
a0(t), a1(U ) and a2(U ) become more and more accurate as sample size increases. All
these findings showed that our proposed estimation procedure performs well under
our considered settings.
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Fig. 1 The true a0(t) (solid curve) and its polynomial spline estimation â0(t) (dash curve) under sample
sizes: a n = 200 and b n = 500.
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Fig. 2 The true a1(U ) (solid curve) and its polynomial spline estimation â1(U ) (dash curve) under sample
sizes: a n = 200 and b n = 500.
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Fig. 3 The true a2(U ) (solid curve) and its polynomial spline estimation â2(U ) (dash curve) under sample
sizes: a n = 200 and b n = 500.

Experiment 2 To compare the performance of our proposed estimators with those
obtained from a partial functional linear model, we conducted the following two sim-
ulation studies in this experiment.

In the second simulation study, the observeddata {Xi ,Ui , Zi ,Yi }ni=1 were generated
from the following partial functional linear regression model (PFLRM):

Yi =
∫ 1

0
Xi (t)a0(t)dt + a1(U )Zi1 + a2(U )Zi2 + εi

with the same settings as given in the first simulation study except that a1(U ) and

a2(U ) were taken to be a1(U ) ≡ 1.5 and a2(U ) ≡ −1 and εi
i.i.d.∼ N (0, 0.52) for

i = 1, . . . , n.
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Table 2 Mean and standard deviation (SD) of MSEP in experiment 2

Fitted Simulation 2 (True model: PFLM) Simulation 3 (True model: VCPFLM)

Model n = 200 n = 500 n = 200 n = 500

Mean SD Mean SD Mean SD Mean SD

PFLM 0.0119 0.0062 0.0049 0.0023 0.1991 0.0170 0.1977 0.0105

VCPFLM 0.0252 0.0115 0.0106 0.0049 0.0244 0.0113 0.0105 0.0041

In the third simulation study, the observed data {Xi ,Ui , Zi ,Yi }ni=1 were generated
from the following VCPFLRM:

Yi =
∫ 1

0
Xi (t)a0(t)dt + a1(Ui )Zi1 + a2(Ui )Zi2 + εi

with the same settings as given in the first simulation study except that a1(U ) anda2(U )

were taken to be a1(U ) = sin(2πU ) and a2(U ) = 4U (1−U ),Ui
i.i.d.∼ Uniform(0, 1),

Zi j
i.i.d.∼ Uniform(−1, 1) for j = 1 and 2, and εi

i.i.d.∼ N (0, 0.52) for i = 1, . . . , n.

For each of the above two simulation studies, 500 data sets were generated andwere
fitted to PFLRM and our proposed VCPFLRM with the same selections of k0, k1, k2
and knots as given in the first simulation study, respectively. Results corresponding to
MSEP for n = 200 and 500 were presented in Table 2. From Table 2, we observed
that (i) using our proposed VCPLRM to fit PFLRM data has the same performance
as using PFLRM to fit PFLRM data in terms of their means and standard deviations
of MSEP; (ii) using PFLRM to fit VCPLRM data may yield a relatively large mean
value of MSEP, which indicated that our proposed VCPFLRM behaves better than
PFLRM under misspecified functional linear models; (iii) increasing sample size can
reduce standard deviation of MSEP.
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China (Grant Nos. 11225103, 11301464), Research Fund for the Doctoral Program of Higher Education
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Appendix: Proofs of Theorems

Denote Bjs = K 1/2
jn φ js , where φ js’s are the normalized B-splines in the space Sk j ,N jn

for s = 1, . . . , K jn and j = 0, 1, . . . , p. It follows from Theorem 4.2 of Chapter

5 in DeVore and Lorentz (1993) that for any spline function
∑K jn

s=1 b js B js , there are
positive constants M1 and M2 such that
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M1|b j |22 ≤
∫

⎧
⎨

⎩

K jn∑

s=1

b js B js

⎫
⎬

⎭

2

≤ M2|b j |22, (8)

where | · |2 is Euclidean norm.
Define B = (X,Z), where

X =

⎛

⎜
⎜
⎜
⎝

< X1, B01 > < X1, B02 > . . . < X1, B0K0n >

< X2, B01 > < X2, B02 > . . . < X2, B0K0n >
...

...
. . .

...

< Xn, B01 > < Xn, B02 > . . . < Xn, B0K0n >

⎞

⎟
⎟
⎟
⎠

,

Z =

⎛

⎜
⎜
⎜
⎝

B11(U1)Z11 . . . B1K1n (U1)Z11 . . . Bp1(U1)Z1p . . . BpKpn (U1)Z1p

B11(U2)Z21 . . . B1K1n (U2)Z21 . . . Bp1(U2)Z2p . . . BpKpn (U2)Z2p
...

. . .
...

. . .
...

. . .
...

B11(Un)Zn1 . . . B1K1n (Un)Zn1 . . . Bp1(Un)Znp . . . BpKpn (Un)Znp

⎞

⎟
⎟
⎟
⎠

.

To prove Theorems 1 and 2, we require the following Lemmas.

Lemma 1 If Assumptions (A1)–(A6) hold, we have

sup
a j∈Sk j ,N jn
j=0,1,...,p

∣
∣
∣

1
n

∑n
i=1

{
< Xi , a0 > +∑p

j=1 a j (Ui )Zi j

}2

E(< X1, a0 > +∑p
j=1 a j (U1)Z1 j )2

− 1
∣
∣
∣ = op(1).

Proof For an i.i.d. random variable sequence ξ1, . . . , ξn , let En(ξi ) = 1
n

∑n
i=1 ξi . By

Assumptions (A2)–(A5), we have

E

⎛

⎝< X1, a0 >+
p∑

j=1

a j (U1)Z1 j

⎞

⎠

2

�E

⎛

⎝< X1, a0 >2 +
p∑

j=1

a2j (U1)

⎞

⎠�
p∑

j=0

||a j ||22.

Consequently, we only need to prove that for arbitrary given η > 0, as n → ∞, we
have

I= P

⎧
⎪⎪⎨

⎪⎪⎩
sup

a j∈Sk j ,N jn
j=0,1,...,p

∣
∣
∣
∣(En − E)

[
< Xi , a0 > +∑p

j=1 a j (Ui )Zi j

]2
∣
∣
∣
∣

∑p
j=0 ||a j ||22

>(p + 1)η

⎫
⎪⎪⎬

⎪⎪⎭
→0.

If |(En−E) < Xi , a0 >2 |≤η||a0||22, |(En − E)
{
< Xi , a0>a j (Ui )Zi j

} |≤η||a0||2
||a j ||2 for j = 1, . . . , p, and |(En − E){a j (Ui )a j ′(Ui )Zi j Zi j ′ }| ≤ η||a j ||2||a j ′ ||2 for
j ′, j = 1, . . . , p, we obtain
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| (En−E)

⎧
⎨

⎩
< Xi , a0>+

p∑

j=1

a j (Ui )Zi j

⎫
⎬

⎭

2

| ≤ η

⎛

⎝
p∑

j=0

||a j ||2)2≤(p+1

⎞

⎠ η

p∑

j=0

||a j ||22.

Thus, we have

I ≤ P

⎧
⎨

⎩
sup

a0∈Sk0,N jn

|(En − E) < Xi , a0 >2 |
||a0||22

> η

⎫
⎬

⎭

+ 2
p∑

j=1

P

⎧
⎪⎪⎨

⎪⎪⎩
sup

a j∈Sk j ,N jn
a0∈Sk0,N0n

|(En − E)[< Xi , a0 > a j (Ui )Zi j ]|
||a0||2||a j ||2 > η

⎫
⎪⎪⎬

⎪⎪⎭

+
p∑

j=1

p∑

j ′=1

P

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup
a j∈Sk j ,N jn
a j ′ ∈Sk j ′ ,N j ′n

|(En − E)[a j (Ui )a j ′(Ui )Zi j Zi j ′ ]|
||a j ||2||a j ′ ||2 > η

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭


= I1 + 2I2 + I3.

For I1, it follows from Lemma 5.2 of Cardot et al. (1999) that I1 → 0 as n → ∞.
Following the similar argument of Lemma 1 in Huang and Shen (2004), it is easily
shown that I3 → 0 as n → ∞. Consequently, we only need to prove that for j =
1, · · · , p,

I j = P

⎧
⎪⎪⎨

⎪⎪⎩
sup

a j∈Sk j ,N jn
a0∈Sk0,N0n

|(En − E)[< Xi , a0 > a j (Ui )Zi j ]|
||a0||2||a j ||2 > η

⎫
⎪⎪⎬

⎪⎪⎭
→ 0 as n → ∞.

Note that < Xi , a0 > a j (Ui )Zi j = ∑K0n
s0=1

∑K jn
s j=1 b0s0b js j < Xi , B0s0 >

Bjs j (Ui )Zi j for j = 1, . . . , p. Hence, if |(En − E){< Xi , B0s0 > Bjs j (Ui )Zi j }| ≤ η

for s0 = 1, . . . , K0n and s j = 1, . . . , K jn , it follows from the Cauchy-Schwarz
inequality and Eq. (8) that

|(En − E)[< Xi , a0 > a j (Ui )Zi j ]| ≤ η

K0n∑

s0=1

K jn∑

s j=1

|b0s0 ||b js j |

≤ K 1/2
0n K 1/2

jn (

K0n∑

s0=1

b20s0)
1/2(

K jn∑

s j=1

b2js j )
1/2

≤ CηKn||a0||2||a j ||2.
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Thus, we have

I j ≤
K0n∑

s0=1

K jn∑

s j=1

P
{|(En − E)

(
< Xi , B0s0 > Bjs j (Ui )Zi j

) | > η/CKn
}
. (9)

Denote Z̃i j = Zi j I (|Zi j | ≤ nδ) for j = 1, . . . , p, and we assume m0 > δ−1 with
δ > 0. It follows from condition (A6) that as n → ∞, we have

P{∃ i = 1, . . . , n such that Zi j �= Z̃i j } ≤
n∑

i=1

P{|Zi j | > nδ} ≤ E |Z1 j |m0

nm0δ−1 → 0.

Combining condition (A1) and Eq. (9) yields

I j � n2r max
s0=1,...,K0n ,
s j=1,...,K jn

P
{|(En − E)

(
< Xi , B0s0 > Bjs j (Ui )Zi j

) | > η/CKn
}
.

From Lemma A.8 of Ferraty and Vieu (2006), we have

I j � n2r exp(−Cη2n1−(2δ+3r)).

Since δ−1 < m0 and 0 < r < 1/3, we can always find δ > 0 and r > 0 such that
2δ + 3r < 1. Hence, as n → ∞, we have I j → 0 for j = 1, . . . , p. Combining the
above equations leads to Lemma 1. ��

Lemma 2 If Assumptions (A1)–(A6) hold, there is an interval [M3, M4] with 0 <

M3 < M4 such that as n → ∞, we have

P
{
all the eigenvalues of

BTB
n

fall in [M3, M4]
}

→ 1.

Proof The proof of Lemma 2 is similar to that given in Lemma 2 of Huang and Shen
(2004). Hence, we here omit it. ��

Lemma 2 shows that the convergence rate of estimator b̂ does not depend on the
eigenvalues of the covariance operator � of X . Thus, it follows from Cardot et al.
(2003) that the convergence rate of our proposed estimator can attain the nonparametric
convergence rate.

Proof of Theorem 1 Denote Ỹi =< Xi , a0 > +∑p
j=1 a j (Ui )Zi j and Ỹ =

(Ỹ1, · · · , Ỹn)T . Let b̃ = (BTB)−1BT Ỹ , where b̃ = (b̃T0 , b̃T1 , . . . , b̃Tp )T with

b̃ j = (b̃ j1, . . . , b̃ j K jn )
T for j = 0, 1, . . . , p. Denote ã j = ∑K jn

s=1 b̃ js B js and
ε = (ε1, · · · , εn)

T . Under the above notation, it follows from Lemma 2 that
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E |̂b − b̃|2 = E(εTB(BTB)−1(BTB)−1BT ε) = σ 2

n E(tr( 1nB
TB)−1) � Kn/n. Hence,

it follows from Eq. (8) that

p∑

j=0

||̂a j − ã j ||22 � |̂b − b̃|2 = Op(
Kn

n
). (10)

Again, it follows from condition (A1) and Theorem XII.1 of de Boor (2001) that for
j = 0, 1, . . . , p, there exist spline function a∗

j ∈ Sk j ,N jn and constant C j > 0 such
that

||a∗
j − a j ||∞ ≤ C jh

q
j � K−q

n . (11)

Let b∗ = (b∗T
0 , b∗T

1 , . . . , b∗T
p )T with b∗

j = (b∗
j1, . . . , b

∗
j K jn

)T , and a∗
j =

∑K jn
s=1 b

∗
js B js for j = 0, 1, . . . , p. It follows from Equation (8) and Lemma 2 that

∑p
j=0 ||a∗

j − ã j ||22 � |b∗ − b̃|2 � 1
n (b̃ − b∗)TBTB(b̃ − b∗) a.s.. Since B(BTB)−1BT

is an orthogonal projection matrix, we have

1

n
(b̃ − b∗)TBTB(b̃ − b∗) ≤ 1

n
|Ỹ − Bb∗|2

≤ 1

n

n∑

i=1

{< Xi , a0 − a∗
0 > +

p∑

j=1

[a j (Ui ) − a∗
j (Ui )]Zi j }2.

By Assumptions (A2)–(A4) and Eq. (11), we obtain

E{< X1, a0 − a∗
0 > +

p∑

j=1

(a j (U1)−a∗
j (U1))Z1 j }2 �

p∑

j=0

||a j −a∗
j ||22 = Op(K−2q

n ).

(12)

For j = 0, 1, . . . , p, we can obtain

||̂a j − a j ||22 ≤ 3(||̂a j − ã j ||22 + ||ã j − a∗
j ||22 + ||a∗

j − a j ||22). (13)

Combining Eqs. (10)–(13) yields Theorem 1. ��
Proof of Theorem 2 For j = 0, 1, . . . , p, we have

||̂a j − a j ||∞ ≤ ||̂a j − ã j ||∞ + ||ã j − a∗
j ||∞ + ||a∗

j − a j ||∞, (14)

where ã j and a∗
j are defined in the proof of Theorem 1. Also, it follows from Huang

et al. (2004) that there is a constant M > 0 such that

||g j ||∞ ≤ M
√
K jn||g j ||2 (15)

123



840 Q.-Y. Peng et al.

for g j ∈ Sk j ,N jn ( j = 0, 1, . . . , p). Hence, by condition (A1), (10), (13) and (15), we
obtain

||̂a j − ã j ||∞ ≤ M
√
K jn||̂a j − ã j ||2 = Op(Knn

−1/2),

||ã j − a∗
j ||∞ ≤ M

√
K jn||ã j − a∗

j ||2 = Op(K1/2−q
n ).

Again, it follows from Eq. (11) that ||a∗
j − a j ||∞ = O(K−q

n ) = o(K1/2−q
n ). Therefor,

combining the above equations leads to Theorem 2. ��
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