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Abstract In some socio-economic surveys, data are collected on sensitive issues such
as tax evasion, criminal conviction, drug use, etc. In such surveys, direct questioning
of respondents is not of much use and the randomized response technique is used
instead. A few researchers have studied the issue of privacy protection for surveys
where the objective is to estimate the proportion of persons bearing the sensitive trait.
Not much is known about respondent protection when the variable under study is a
discrete quantitative variable and the objective is to estimate the population mean. In
this article we study this issue. We propose a scheme for this issue and a measure
of privacy. We show that given a stipulated level of this privacy measure, we can
determine the parameter of the randomization device so as to maximize the efficiency
of estimation, while guaranteeing the desired level of privacy protection.

Keywords Jeopardy measure · Numerical stigmatizing variable · Revealing
probability · Socio-economic sample surveys

MSC Classification 62D05

1 Introduction

The randomized response technique is a useful method for collecting data on variables
which are considered sensitive, incriminating or stigmatizing for the respondents.
Examples of such situations are common in socio-economic surveys, for instance, we
may need to collect data on tax evasion, alcohol addiction, illegal drug use, criminal
behaviour or past criminal convictions. In such surveys, direct questions are not useful
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as the respondents will either refuse to answer embarrassing questions or, even if they
do, may give false answers. In a randomized response model, the respondents use
a randomization device to generate a randomized response and the parameter under
study can be estimated from these responses. So, the respondent is not required to
disclose his true response and it is expected that this will lead to better participation
in the survey on sensitive issues.

Warner (1965) introduced the randomized response technique for estimating the
proportion of persons in a dichotomous population bearing a sensitive qualitative
character, such as alcoholism or drug addition. Let A denote such a sensitive charac-
ter and Ac its complement. Suppose in the population, the proportion of individuals
bearing the character A is πA. Then the proportion bearing Ac is πAc = 1 − πA. The
objective of the survey is to estimate the unknown value πA. In Warner’s random-
ized response model, a box with two types of cards labeled A and Ac (in proportion
p : 1− p, p �= 1/2) is used as the randomization device. Each respondent is asked to
draw a card at random from the box and then respond simply ‘yes’ or ‘no’ according
as whether or not he bears the character on the label of the card he draws, without
disclosing this label. Thus the actual character of the respondent is not disclosed.
If this randomization procedure is adopted, on the basis of a simple random sam-
ple with replacement of size n, the proportion πA may be unbiasedly estimated by
{w(1− p)}/(2p − 1), where w is the sample proportion of ‘yes’ responses. Thus πA

may be unbiasedly estimated without having recourse to direct questioning.
Since then, many researchers have extensively contributed to this area, some have

proposed alternative models for estimating proportions in dichotomous populations,
some have extended this to proportions in polychotomous models and others have
studied the case of quantitative sensitive variables, e.g.,Kuk (1990); Ljungqvist (1993);
Mangat (1994); Chua and Tsui (2000); Van den Hout and Van der Heijden (2002);
Christofides (2005); Kim (2007); Arnab and Dorffner (2007); Pal (2008); Diana and
Perri (2009);(Chaudhuri et al. (2011a); Chaudhuri et al. (2011b)); Barabesi et al.
(2012) and many others. For details on the results available on this technique we refer
to the review paper by Chaudhuri and Mukerjee (1987) and books by Chaudhuri and
Mukerjee (1988) and Chaudhuri (2011).

Lanke (1976) and Leysieffer and Warner (1976) initiated the study of efficiency
versus privacy protection in randomized response surveys where the population is
divided into two complementary sensitive groups, A and Ac, and the objective is to
estimate the proportions of persons belonging to these two groups. They suggested
measures of jeopardy based on the ‘revealing probabilities’, i.e., the posterior proba-
bilities of a respondent belonging to groups A and Ac given his randomized response.
Since then, this dichotomous case has been widely studied. Loynes (1976) extended
the jeopardy measure of Leysieffer andWarner (1976) to polychotomous populations.
Ljungqvist (1993) gave a unified and utilitarian approach to measures of privacy for
the dichotomous case. For estimating the proportion πA, Nayak and Adeshiyan (2009)
proposed a measure of jeopardy for surveys from dichotomous populations and devel-
oped an approach for comparing the available randomization procedures. Recently,
for estimating πA, Giordano and Perri (2012) compared some randomization models
from the point of view of efficiency and privacy protection.
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All the references given above are for sensitive variables which are categorial or
qualitative in nature and the objective is to estimate πA. However, in randomized
response surveys it is quite common to have situations where the study variable X
is quantitative, e.g. in studies on the number of criminal convictions of a person, the
number of induced abortions, the amount of time spent in a correction centre, the
amount of undisclosed income, etc. Anderson (1977) studied the case of continuous
sensitive variables and considered the amount of information provided by the random-
ized responses. For ensuring more privacy he recommended that the expectation of the
conditional variance of X given the randomized response be made as large as possible.
Diana and Perri (2011) studied quantitative sensitive data and for estimating the mean,
they used auxiliary information at the estimation stage and compared different models
from the efficiency and privacy protection aspects. However, notwithstanding the rich
literature on the randomized response technique, not much work seems to have been
done in studying the respondent privacy aspect for discrete-valued sensitive variables,
even though surveys are often undertaken on such variables.

To fill this gap, in this article we focus on studying the issue of privacy protec-
tion when the underlying sensitive variable under study is quantitative and discrete.
For instance, the variable of interest may be the number of convictions for crimi-
nal offences, number of times one has used illegal drugs or the number of induced
abortions, etc. We propose the use of a randomization device and give the associated
estimation method for such studies. Then, we consider two separate cases, one where
all values of X are sensitive and another where not all values of X are sensitive. For
each of these cases, we propose a measure for protecting the privacy of the respon-
dents. We finally show how one can choose the randomization device parameter in
each case, so as to guarantee a certain pre-specified level of respondent protection
and then maximize the efficiency of estimating the parameter of interest under this
constraint. Our study also covers qualitative sensitive variables, i.e., cases where the
population is dichotomous or polychotomous, and allows us to estimate the propor-
tions of individuals belonging to each category.

In Sect. 2 we give some preliminaries. In Sect. 3 and 4 we consider the issues of
estimation and privacy protection, respectively. In Sect. 5 we obtain the randomization
device parameter which allows efficient estimation while assuring the required level
of respondent protection. We also present some illustrative numerical examples. In
Sect. 6 we show how our study covers the case of polychotomous variables. Finally
we conclude with some remarks.

2 Preliminaries

Consider a population of individuals and let X denote the sensitive variable of interest.
We assume that X takes a finite number of values x1, . . . , xm and without loss of
generality, we may suppose these m values to be known. For 1 ≤ i ≤ m, let πi be the
unknown population proportion of individuals for whom X equals xi , i.e.,

Prob(X = xi ) = πi , 1 ≤ i ≤ m, where πi ≥ 0,
m∑

i=1

πi = 1. (1)
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The objective of the survey is to estimate the population mean of X . For this, we
suppose as usual (cf. Warner (1965), Nayak and Adeshiyan (2009) and others), that a
sample of n individuals is drawn from the population by simple random sampling with
replacement. As for the randomization device, since we are interested in the numerical
values of X , we propose the use of a device as described below.

Consider a box containing cards of (m+1) types, the i th type of card being marked
‘Report xi as your response’, 1 ≤ i ≤ m, while the (m + 1)th type of card is marked:
‘Report your true value of X as your response.’ The box has a large number of cards,
say M , there being Mp cards of type (m + 1) and M 1−p

m cards of each of the types i ,
1 ≤ i ≤ m, 0 < p < 1. A sampled respondent is asked to draw a card at random from
the box and then give a truthful response according to the card drawn by him, without
disclosing the label on the card to the investigator. Thus the true value of X for the
respondent is not known. The n responses so received are the data from this survey.

Let R denote the randomized response variable. Clearly, with this device, the ranges
of R and X match. The efficiency in estimation and respondent protection will depend
on the choice of the value of p, which we call the device parameter. The above device
is such that with probability p, a respondent will report his true value, while with
probability 1−p

m , he will report any one of the possible values x1, . . . , xm chosen at
random, i.e.,

Prob(R = xi |X = x j ) = 1 − p

m
, 1 ≤ i �= j ≤ m, (2)

Prob(R = x j |X = x j ) = p + 1 − p

m
, 1 ≤ j ≤ m. (3)

3 Estimation of population mean

The population mean and variance of X are given by

μX =
m∑

i=1

xiπi and σ 2
X =

m∑

i=1

(xi − μX )2πi ,

respectively. Our objective is to estimate μX from the n randomized responses col-
lected as described in Sect. 2. Letwi be the sample proportion of randomized responses
which equal xi , 1 ≤ i ≤ m. Hence, from (1)-(3),

E(wi ) = Prob(R = xi ) = pπi + 1 − p

m
= λi , say. (4)

So, an unbiased estimator of πi will be given by π̂i = 1
p (wi − 1−p

m ), leading to an
unbiased estimator of μX as

μ̂X =
m∑

i=1

xi π̂i = 1

p

m∑

i=1

xiwi − 1 − p

mp

m∑

i=1

xi .
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Let us write X̄ = 1
m

∑m
i=1 xi . Then, on simplification using (4), the variance of μ̂X

for a given value of p is given by

Var p(μ̂X ) = 1

p2
Var(

m∑

i=1

xiwi ) = 1

np2

⎧
⎨

⎩

m∑

i=1

x2i λi (1 − λi ) −
m∑

i=1

m∑

j ( �=i)=1

xi x jλiλ j

⎫
⎬

⎭

= 1

np2

{
p

m∑

i=1

x2i πi + 1 − p

m

m∑

i=1

x2i − (
pμX + (1 − p)X̄

)2
}

= 1

np2

{
pσ 2

X + (1 − p)
1

m

m∑

i=1

(xi − X̄)2 + p(1 − p)(μX − X̄)2

}
. (5)

Our aim is to estimate μX keeping Var p(μ̂X ) as small as possible. It is clear from
the expression on the right side of (5) that Var p(μ̂X ) is decreasing in p, irrespective
of the values of π1, . . . , πm . So, this variance may be decreased, or equivalently,
the efficiency of estimation may be increased by increasing p, whatever may be the
proportions of the xi values in the population.

4 Privacy protection

In this section we consider the degree of privacy protection available to respondents in
a randomized response survey where the randomization device is as described in Sect.
2. In the literature, while studying the respondent privacy aspect for dichotomous
populations, Leysieffer and Warner (1976) studied the case where both A and Ac

are sensitive categories while Lanke (1975) also considered the case where only A
is sensitive and there is no jeopardy in a ‘no’ answer to the sensitive question. For
polychotomous populations, Loynes (1976) studied two cases, onewhere all categories
are stigmatizing and another where one of the categories is not stigmatizing.

In line with these studies for qualitative stigmatizing variables, we too consider
the privacy issue for discrete-valued variables for two situations, one where all the m
values of X are stigmatizing and another where not all values of X are stigmatizing.
For instance, wemaywant to study the number of times a person has voted for a certain
political party in the last 5 elections. Here possible values of X are X = 0, . . . , 5, all
of which may be sensitive. On the other hand, if we are studying the number of times
one has under-reported his income for income tax, the value X = 0 is not stigmatizing,
but any value of X larger than zero may well be sensitive. Again, if one is studying
the number of induced abortions, then values X = 0 or X = 1 may not be considered
stigmatizing but higher values of X may be deemed to be so. Many such examples
may be cited to show that both these situations arise commonly in practice. We will
show that we require separate privacy protection measures in these cases.

For a randomly chosen respondent from the population, the ‘true’ probability that
the value of X for this respondent equals xi is given by Prob(X = xi ). On the other
hand, when this respondent gives a randomized response, say x j , then the probability
that the value of X for this respondent equals xi is now given by the conditional
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probability Prob(X = xi |R = x j ), or the ‘revealing’ probability. A respondent will
be assured that his privacy is protected if he can be convinced that given his response,
the probability of his having a particular value of X does not change much, i.e., he
needs to be assured that the difference between his true probability and his revealing
probability is as small as possible, for all possible true values and all responses.
With this is mind, in the next subsections we develop measures of privacy protection
separately for the different cases. Further, in a given situation, for a certain target level
of privacy protection by the relevant measure, we obtain a range of values of p for the
randomization device which can achieve this.

4.1 All values of X are stigmatizing

Suppose all the values x1, . . . , xm are stigmatizing. In this case, a respondentwould feel
comfortable in participating in the survey if the perception of his having a value X = xi
is not much altered after knowing his randomized response, for all 1 ≤ i ≤ m. This
would require that his true and revealing probabilities be sufficiently close. Starting
from this basic premise we define

αi j = |Prob(X = xi |R = x j ) − Prob(X = xi )| (6)

and since each respondent would want αi j to be as small as possible for all 1 ≤ i, j ≤
m, as a measure of privacy protection we propose the following measure:

α = max
1≤i, j≤m

αi j . (7)

A randomization device with a privacy protection value α = α0 would guarantee
that the discrepancies between the true and revealing probabilitieswill be atmostα0 for
all respondents, irrespective of their true values. Thus a device which results in a lower
value of α gives a higher level of privacy protection than one with a higher value of α.

Suppose the scientist planning a certain survey would like to keep the privacy
protection available to respondents above a certain threshold, i.e., would like to achieve
α ≤ L , where L is a pre-assigned quantity, 0 < L < 1. Moreover, this bound on α

should hold irrespective of the unknown values of π1, . . . , πm . The following theorem
shows how the device parameter can be chosen to achieve this.

Theorem 1 For α as in (7) and a preassigned L, where 0 < L < 1, α ≤ L will hold,
irrespective of the values of π1, . . . , πm, if and only if p ≤ p0, where

p0 = 1

1 + m
L ( 1−L

2 )2
. (8)

Proof From (1)-(3), using Bayes’ Theorem it follows that for 1 ≤ i, j,≤ m,

Prob(X = xi |R = x j ) = (pδi j + 1−p
m )πi

∑m
u=1(pδ ju + 1−p

m )πu
= (pδi j + 1−p

m )πi

pπ j + 1−p
m

, (9)
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where δi j is Kronecker Delta. Hence from (6) it follows that αi j = pπi |π j−δi j |
pπ j+ 1−p

m

and for

any i �= j ,

αi j = pπiπ j

pπ j + 1−p
m

≤ p(1 − π j )π j

pπ j + 1−p
m

= α j j , (10)

as πi + π j ≤ 1 for all i, j . Thus α = max
1≤ j≤m

α j j = max
1≤ j≤m

π j (1−π j )

π j+ 1−p
mp

. Hence, α ≤ L if

and only if

π j (1 − π j ) − Lπ j ≤ L(1 − p)

mp
for all 1 ≤ j ≤ m. (11)

First suppose p ≤ p0. Then for 1 ≤ j ≤ m,

π j (1 − π j ) − Lπ j =
(
1 − L

2

)2

−
(
1 − L

2
− π j

)2

≤
(
1 − L

2

)2

= L(1 − p0)

mp0
, using the expression of p0 in (8)

≤ L(1 − p)

mp
, since p ≤ p0.

Thus the inequalities in (11) hold, or equivalently α ≤ L , irrespective of the values
of π1, . . . , πm .

To prove the converse, suppose α ≤ L , or equivalently, the inequalities in (11)
hold, irrespective of the values of π1, . . . , πm . Then, for π1 = 1−L

2 , π2 = 1+L
2 , π3 =

. . . = πm = 0, in particular, these inequalities will also hold. So, for this choice of π j

values in (11) with j = 1, we have

(
1 − L

2

) (
1 + L

2

)
− L

(
1 − L

2

)
≤ L(1 − p)

mp

i.e.,

(
1 − L

2

)2

≤ L(1 − p)

mp
,

i.e.,
m

L

(
1 − L

2

)2

≤ (1 − p)

p
= 1

p
− 1

i.e.,
1

p0
≤ 1

p
, using the expression of p0 in (8).

(12)

Hence p ≤ p0. Hence theorem. ��
Remark 1 It is clear from (8) that in order to maintain the same level of protection,
the value of p0 monotonically decreases with the number of possible values of X .
Again, for a given number of possible values of X , p0 monotonically increases with
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L. We may reiterate that these values of p do not depend on how the values of X are
distributed in the population.

4.2 Not all values of X are stigmatizing

In many surveys it may so happen that not all values of X are sensitive or stigmatizing.
For instance, in a survey for estimating the average number of criminal convictions of
persons in a certain population, the value X = 0 is not stigmatizing but any value of
X ≥ 1 could well be stigmatizing. Similarly, for a survey for estimating the average
of the number (X) of induced abortions, the values X = 0 or X = 1 might not
be considered as stigmatizing values while other larger values might be considered
stigmatizing by the respondents.

To study the respondents’ privacy protection for such surveys, we first present the
simpler case where only one of the values of X , say x1, is not stigmatizing, while
values x2, . . . , xm are considered stigmatizing. We develop the protection measure for
this case in detail. Later we remark that the results obtained for this case may be easily
extended to the case where X has more than one non-stigmatizing value.

As before, the data collection and estimation proceeds as in Sect. 2 and 3. To study
the respondent protection we note that since the value x1 is non-stigmatizing, respon-
dents will feel comfortable with a randomization device for which the ‘revealing’
probability of their having a true value x1 will be large. So, we propose the following
measure of privacy:

β = min
1≤ j≤m

P(X = x1|R = x j ) = min
1≤ j≤m

(pδ1 j + 1−p
m )π1

pπ j + 1−p
m

, (13)

on simplification using (9). A device with a privacy protection value β will guarantee
that all respondents are perceived to have X = x1 with probability at least β. So, a
device leading to a larger value of β will ensure greater privacy to respondents than
one with a smaller β.

Let L , 0 < L < 1, denote a preassigned level of respondents’ privacy. Then in
order to achieve this level of protection we require that β ≥ L , irrespective of the
values of π1, . . . , πm . Thus we should have

(pδ1 j + 1 − p

m
)π1 ≥ L(pπ j + 1 − p

m
), 1 ≤ j ≤ m,

or equivalently, the following inequalities should hold:

[p(1 − L) + 1 − p

m
]π1 ≥ L(1 − p)

m
(14)

and
1 − p

m
π1 − Lpπ j ≥ L(1 − p)

m
, 2 ≤ j ≤ m. (15)

Clearly, no p can satisfy (13) irrespective of π1, . . . , πm for any given L since (13)
fails as π1 → 0. So we assume that π1 > 0 and we also assume some prior knowl-
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edge about a lower bound on π1. This assumption is quite realistic because in most
populations there will be an appreciable number of persons with a non-stigmatizing
variable value and hence, a lower bound to the proportion of such stigma-free persons
in the population will be available.

Thus, suppose we have prior knowledge that π1 ≥ c. We work with L < c. This is
again realistic because if the only knowledge about π1 is that π1 ≥ c, it is impractical
to demand that P(X = x1|R = x j ) ≥ L(≥ c) for all j . Now, the following theorem
gives the value of the device parameter p which will guarantee the desired level of
respondent protection L.

Theorem 2 Letβ be as in (13) andπ1 ≥ c for some known c. Then given a preassigned
L, where 0 < L < c, β ≥ L will hold, irrespective of the values of π1, . . . , πm, if
and only if p ≤ p0, where

p0 =
c−L
m

c−L
m + L(1 − c)

. (16)

Proof Since π1 ≥ c, it is clear that π j ≤ 1 − c for 2 ≤ j ≤ m and we have

[
p(1 − L) + 1 − p

m

]
π1 ≥

[
p(1 − L) + 1 − p

m

]
c

and
1 − p

m
π1 − Lpπ j ≥ 1 − p

m
c − Lp(1 − c), 2 ≤ j ≤ m.

As a result, (14) and (15) will hold, irrespective of the true values of π1(≥
c), π2, . . . , πm iff

[
p(1 − L) + 1 − p

m

]
c ≥ L

1 − p

m
(17)

and
1 − p

m
c − Lp(1 − c) ≥ L

1 − p

m
(18)

hold. Now, (17) reduces to

(
p + 1 − p

m

)
c ≥ L

(
cp + 1 − p

m

)

which will always hold for every p since L(cp+ 1−p
m ) ≤ L(p+ 1−p

m ) < c(p+ 1−p
m )

as L < c and p + 1−p
m > 0. So, it is enough to only consider (18). Note that

(18) ⇔ c − cp

m
− Lp(1 − c) ≥ L − Lp

m

⇔ p ≤
c−L
m

c−L
m + L(1 − c)

= p0,

thus proving the theorem. ��
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Table 1 Values of p0 for various m and L

m L p0 m L p0 m L p0

3 0.1 0.1413 4 0.1 0.1099 5 0.1 0.0899

3 0.2 0.2941 4 0.2 0.2381 5 0.2 0.2000

3 0.3 0.4494 4 0.3 0.3797 5 0.3 0.3288

3 0.4 0.5970 4 0.4 0.5263 5 0.4 0.4706

Remark The above discussion can be extended to include the more general case where
X has t non-stigmatizing values x1, . . . , xt , say, while its remaining m − t values are
stigmatizing, 1 < t < m. In that case too, it can be shown that p0 takes the form as in
Theorem 2, but now with

β = min
1≤ j≤m

P(X = x1 or x2 or . . . xt |R = x j ) and π1 + . . . + πt ≥ c with L < c.

5 Privacy protection together with efficiency in estimation

We now consider the issue of efficiency in estimation together with privacy protection
in randomized response surveys. It was seen from (5) that, irrespective of the values
of π1, . . . , πm , the efficiency of estimation may be increased by increasing p. On the
other hand, for a given L and irrespective of the values of π1, . . . , πm , Theorems 1
and 2 show that a protection of level L may be guaranteed iff p ≤ p0, where p0 is
as in (8) or (16), respectively. So, the best choice of p with regard to maximizing the
efficiency of estimation of μX , subject to the stipulated level of privacy protection L ,
is p = p0. If we use a randomization device with p equal to any value less than p0,
then the efficiency of estimation will be less than that with p = p0, even though the
level of protection will still be L . The following examples illustrate this.

Example 5.1 Let X take four values which are all sensitive. Suppose L = 0.1. Then
by Theorem 1, taking m = 4, we get p0 = 0.1099. So, if we use a randomization
device with p = 0.1099 then the efficiency of estimation can be maximized while
guaranteeing that the maximum discrepancy between the true probability and the
revealing probability of all respondents will be at most 0.1. However, if we use a
device with p > p0, then the desired level of privacy protection will not be realized.

Table 1 gives the p0 values in (8) for some choices of L and m for achieving
maximum efficiency of estimation.

For given m and L , if we use a device with p < p0, then the efficiency of
estimation will drop, even though the level of privacy protection will be guaran-
teed. To illustrate how the efficiency changes as p decreases from p0, we use the
case of m = 3, assuming for illustration that X takes the values X = 1, 2, 3 with
probabilities 0.50, 0.35 and 0.25, respectively, in the population. In Table 2, for
some illustrative values of p, we give the values of relative efficiency, defined as:
RelE f f (p) = {Var p0(μ̂X )}/{Var p(μ̂X )} where Var p(μ̂X ) is as given by (5). The p0
values used are as given in Table 1.
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Table 2 Relative Efficiencies for various values of p

L p RelE f f (p) L p RelE f f (p) L p RelE f f (p)

0.1 0.141343 1 0.2 0.294118 1 0.3 0.449438 1

0.1 0.13 0.8452 0.2 0.27 0.8441 0.3 0.40 0..7847

0.1 0.12 0.7197 0.2 0.25 0.7184 0.3 0.36 0.6313

0.1 0.11 0.6043 0.2 0.23 0.6067 0.3 0.32 0.4957

0.1 0.10 0.4991 0.2 0.21 0.5047 0.3 0.28 0.3774

0.1 0.09 0.4040 0.2 0.19 0.4123 0.3 0.24 0.2759

0.1 0.08 0.3191 0.2 0.17 0.3295 0.3 0.20 0.1908

0.1 0.07 0.2889 0.2 0.15 0.2561 0.3 0.16 0.1217

0.02 0.06 0.10 0.14

0.
0

0.
4

0.
8
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R
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E
ff

0.10 0.15 0.20 0.25 0.30

0.
2

0.
6

1.
0

RelEff vs p for L=0.2

p

R
el

E
ff

0.1 0.2 0.3 0.4

0.
0

0.
4

0.
8

RelEff vs p for L=0.3

p

R
el

E
ff

0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
4

0.
8

RelEff vs p for L=0.4

p

R
el

E
ff

Fig. 1 Plot of Relative Efficiencies for various L values

Figure 1 shows how, for various values of L , the relative efficiencies drop as p is
decreased from the optimal p0 value.

Example 5.2 Let X take one nonsensitive value and two sensitive values. Suppose
it can be assumed that at least 15% of the individuals in the population possess the
nonsensitive value and suppose it is stipulated that L = 0.10. Then by Theorem 2,
takingm = 3, c = 0.15, L = 0.1, we obtain p0 = 0.1639. So, if we use a device with
p = 0.1639 then estimation efficiency will be maximum while guaranteeing that all
respondents will have at least a 10% probability of being revealed as belonging to the
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non-stigmatizing class. As in Example 5.1, in this case too, the relative efficiencies
drop as p is decreased from the optimal p0 value.

6 Estimation of population proportions

As mentioned in Sect. 1, several researchers have estimated the proportions of indi-
viduals belonging to the two categories in dichotomous populations, while Loynes
(1976) extended this to estimating the different proportions in a polychotomous pop-
ulation. In our case where X takes m numerical values, we may also readily estimate
the population proportions π1, . . . , πm from the responses collected as in Sect. 2 and
again use the measures of privacy as given in (7) and (13) to achieve the stipulated
level of privacy protection.

As seen in Sect. 3, an unbiased estimate of πi is

π̂i = 1

p
(wi − 1 − p

m
), 1 ≤ i ≤ m.

Suppose, in the spirit of A−optimality commonly used in optimal design theory,
we would like to minimize the average variance of these estimates. For this, we can
show that the sum of the variances of the estimates of πi is given by

m∑

i=1

Var p(π̂i ) = 1

np2

m∑

i=1

λi (1 − λi ) = 1

n

{
1

p2
−

m∑

i=1

π2
i + 1

m
(
1

p2
− 1)

}
, (19)

on simplification, using (4). Clearly, (19) is decreasing in p, irrespective of the true
values of π1, . . . , πm . So as in the case of estimating the mean, here too, subject to the
stipulated level L of privacyprotection, the best choice for p forminimizing the average
variance of the estimates of the proportions may be obtained by applying Theorem 1
or 2, as the case may be. So, if all categories are sensitive, one uses p = p0, with p0
being given by (8) and if not all categories are sensitive, one uses p0 given by (16).
The following example illustrates this in the popular case of dichotomous populations.

Example 6.1 Suppose in a dichotomous population both categories are sensitive and
we have to estimate the proportion of persons with these traits. Then the equivalent
problem in our context is one where m = 2, i.e., X can take only two values x1 and
x2 and we want to estimate the population proportions π1 and π2. This is because on
the basis of values x1 and x2, the population units can be divided into 2 groups, say A
and Ac.

When both A and Ac are sensitive, given L , one can apply Theorem 1 and compute
p0 using (8). For various levels of privacy protection as quantified by some illustrative
values of L , the corresponding values of p0 are given in Table 3, while the relative
efficiency values for other values of p are shown in Table 4. When A is sensitive and
Ac is not, we can proceed similarly by applying Theorem 2.

Figure 2 shows how the relative efficiencies drop as p is decreased from the optimal
p0 value.
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Table 3 Values of p0 for
various L in a dichotomous
population

L 0.1 0.2 0.3 0.4

p0 0.1980 0.3846 0.5505 0.6897

Table 4 Relative Efficiencies for various values of p in a dichotomous population

L p RelEff (p) L p RelEff (p) L p RelEff (p)

0.1 0.1980 1 0.2 0.3846 1 0.3 0.5505 1

0.1 0.17 0.7317 0.2 0.36 0.8641 0.3 0.51 0.8298

0.1 0.15 0.5672 0.2 0.34 0.7629 0.3 0.47 0.6827

0.1 0.13 0.4244 0.2 0.32 0.6692 0.3 0.43 0.5555

0.1 0.10 0.2499 0.2 0.30 0.5829 0.3 0.39 0.4457

0.1 0.08 0.1595 0.2 0.28 0.5036 0.3 0.35 0.3512

0.2 0.26 0.4308 0.3 0.31 0.2703

0.2 0.24 0.3645 0.3 0.23 0.1444
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Fig. 2 Plot of Relative Efficiencies for dichotomous population

7 Concluding remarks

In this paperwe have proposed a randomized response scheme for use in surveyswhere
the sensitive or stigmatizing variable of interest is a discrete quantitative variable and
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the target is to estimate the population mean. We focus our attention on the privacy
protection afforded to respondents when they participate in a randomized response
survey with this scheme and then develop measures of privacy protection. We study
two broad situations: one where all values of the variable are sensitive and another
where not all values are sensitive. In the latter case we elaborate on the case where only
one of the possible values of the variable is non-stigmatizing whereas all remaining
values of X are stigmatizing/sensitive and generalize to the case where t of the values
of X are non-stigmatizing and the remaining values are not.We give examples to show
that all these cases can arise in surveys.

We develop measures of privacy protection in these two situations and show that,
given a target level of privacy protection, how the randomization device parametermay
be chosen in order to achieve this level of protection. Finally we obtain the optimal
value of the device parameter which allows the maximum efficiency of estimation
while guaranteeing the desired level of privacy protection.

We show that our results may also be applied to ensure a desired level of privacy
protection in the traditional studies with qualitative sensitive attributes in dichotomous
(or polychotmous) populationswhere the target is to efficiently estimate the proportion
(or proportions) of persons bearing the sensitive attribute (or attributes).

The issue of privacy protection when the sensitive variable is continuous and quan-
titative is yet to be developed. There is a need for a randomized response technique
for such variables when the objective is to estimate the population mean efficiently
while ensuring a given level of privacy protection. This problem is currently under
investigation.
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