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Abstract Repeated measures ANOVA and mixed-model designs are the main classes
of experimental designs used in psychology. The usual analysis relies on some para-
metric assumptions (typically Gaussianity). In this article, we propose methods to
analyze the data when the parametric conditions do not hold. The permutation test,
which is a non-parametric test, is suitable for hypothesis testing and can be applied
to experimental designs. The application of permutation tests in simpler experimental
designs such as factorial ANOVA or ANOVA with only between-subject factors has
already been considered. The main purpose of this paper is to focus on more complex
designs that include only within-subject factors (repeated measures) or designs that
include both within-subject and between-subject factors (mixed-model designs). First,
a general approximate permutation test (permutation of the residuals under the reduced
model or reduced residuals) is proposed for any repeated measures and mixed-model
designs, for any number of repetitions per cell, any number of subjects and factors
and for both balanced and unbalanced designs (all-cell-filled). Next, a permutation
test that uses residuals that are exchangeable up to the second moment is introduced
for balanced cases in the same class of experimental designs. This permutation test
is therefore exact for spherical data. Finally, we provide simulations results for the
comparison of the level and the power of the proposed methods.
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1 Introduction

ANOVA is a technique used to test the equality of means from different treatment
groups. Usually the designs with within-subject factors only are called repeated mea-
suresANOVA.Within-subject factors are factors forwhichmeasurements are obtained
on the same subject over time or under all the conditions. These designs are extremely
common in psychological and biomedical studies. Mixed-model designs are another
family of useful designs, especially in clinical research, when there are both within-
subject and between-subject factors. Between-subject factors occur when each subject
is measured on only one level of the factor. Mixed-model designs are also known as
split-plot ANOVA (Keppel 1991), or univariate mixed-model designs with the subject
and its interaction as a random effects. Sometimes these designs are simply called
repeated measures; for example the IBM SPSS menu called repeated measures treats
split-plot designs as well (IBM Corp 2013).

These kinds of designs have some advantages over other (between-subject)ANOVA
methods. For instance in clinical research, fewer subjects are required than for the
between-subject ANOVA. Repeated measures designs make efficient use of subjects,
both in the practical sense of using fewer subjects than between-subject designs, and
in the statistical sense of having less error variance, i.e. more statistical power. The
major disadvantage of this kind of design is that usually the models are more complex
than for the non-repeated measures designs, since they need to take into account the
associations between observations obtained from the same individuals.

It is likely that for this kind of design, the parametric assumptions are not satisfied,
like the assumption that all the random parts are normally distributed. In that case, the
result of the methods based on parametric assumptions might not be reliable.

Permutation tests or randomization tests date back to Fisher (1935). These tests
belongs to the family of distribution-free techniques and are suitable for hypoth-
esis testing. The only requirement for permutation tests is the exchangeability
of the observations under the null hypothesis. For a set of continuous random
variables (z1, z2, . . . , zn), exchangeability holds if the joint density f satisfies
f (z1, z2, . . . , zn) = f

(
z�(1), z�(2), . . . , z�(n)

)
for any permutation � of the indices

(Good 1994). Permutation tests can be categorized as either exact or approximate. A
test is exact if under the null hypothesis the type I error rate is equal to the nominal level
of the test (Good 1994; Anderson and Ter Braak 2003). The exchangeability of the
permuted units is the requirement for having an exact permutation test. Note that the
permuted units can be the original observations, some form of residuals, or a restricted
set thereof (citealtbassospssynchronizedsps2007,bassospsdiscussionsps2006).

For a review of all the alternatives of permutation methods in the ANOVA designs,
see Anderson and Ter Braak (2003). For a complete account on the permutation of the
residuals, we refer to Kherad-Pajouh and Renaud (2010). In the following, we only
mention the literature that deals with repeated measures ANOVA based on permuta-
tion tests. Since in the repeated measures ANOVA (or mixed-model designs), there is
a correlation between observations within a given subject, the application of permu-
tation tests is more involved. White and Harris (1978) proposed a permutation test for
experimental designs, and a computer programwhich can run up to a four-way analysis
of variance with any combination of between- and within-subject factors. The pro-
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Permutation for repeated measures ANOVA and mixed-model designs 949

posed permutation test is an approximate test. Still and White (1981) also developed
an alternative F test for ANOVA, using various forms of approximate permutation
tests. Good (1994) introduced a form of restricted permutations for ANOVAwith only
between-subject factors, specifically to test the main effects. Later, Anderson and Ter
Braak (2003) applied permutation techniques (permutation of the observations and
permutation of the residuals) for fixed effect ANOVA and nested designs. Finally,
Mazzaro et al. (2001), Pesarin and Salmaso (2010) and Basso (2009) introduced some
techniques for repeated measures designs and unbalanced repeated measures designs.
However both the model they considered, and what they called “repeated measures”,
are different from what we will present here, (they considered only repetition over
time). Pesarin (2001) also considered repetition over time in the MANOVA layout
for response profiles, where the analysis can be extended to more complex designs
and where repetitions are not necessarily time points. In their proposed techniques,
repeated measurements, panel data and longitudinal data are synonymous.

The structure of the paper is the following. In Sect. 2, a general model and its matrix
formulation are given for balanced and unbalanced repeated measures and mixed-
model designs. Section 3 presents the parametric approach for balanced repeated
measures and mixed-model designs, and corresponding F-statistics. In Sect. 4, we
introduce an approximate permutation test for balanced repeated measures andmixed-
model designs, which is based on permutation of the reduced residuals. We also intro-
duce a technique for computing the residuals which is applicable to general repeated
measures designs with any number of factors and subjects. The tests are carried out
separately, much like in traditional ANOVA F-tests. We present an extension of per-
mutation of the reduced residuals for unbalanced designs with unequal number of
repetitions in each cell in Sect. 5. A permutation test for balanced repeated measures
and mixed-model designs is introduced in Sect. 6. This method is based on permuta-
tion of the residuals under the modifiedmodel, which removes the correlation between
the reduced residuals. In Sect. 7, we show an application of the introduced methods
for repeated measure designs with one and two within-subject factors. In Sect. 8, the
application of the introduced method for mixed-model designs (one between-subject
factor and one within-subject factor) is considered, and Sect. 9 is dedicated to the
simulations that have been performed in order to compare the level and the power of
different proposed and existing methods.

2 General model for mixed-model designs and repeated measures ANOVA

The mixed-model designs, as their name suggests, are designs with combination of
between-subject and within-subject factors. Consider A as (one of) the between-
subject factor(s), B as (one of) the within-subject factor(s), and S the random factor
corresponding to the subjects. The structural model for a mixed-model design can be
written as

yl···i ··· j ···k = μ + αl + · · · + π j/ l + ηi + · · · + αηli + · · · + πη j i/ l

+ · · · + εl···i ··· j ···k,
l = 1, . . . , a, i = 1, . . . , b, j = 1, . . . , s, and k = 1, . . . , nli jk . (1)
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950 S. Kherad-Pajouh, O. Renaud

In this model αl are the effects of the between-subject factor, ηi are the effects of the
within-subject factor and π j/ l are the effects of the subjects. The interaction terms are
given by the concatenation of the symbols (αηli andπη j i/ l ). N = �i� j · · · �kni j ···k is
the total number of observations and it is clear that in the balanced case, N = abs · · · n.
It is important to note that we included the interactions between the subject and the
within-subject factor(s). It is quite common and highly desirable in psychology, see
e.g. Rouanet and Lépine (1970), and this is the model underlying SPSS repeated mea-
sures procedure. For various reasons, these terms (interactions between subjects and
between-subject factors) are often omitted in the mixed-effect/hierarchical/multilevel
model literature as well as in the longitudinal analysis literature. As A is a between-
subject factor, there is no interaction term such as απ in the model. In our model, α
and η are fixed factors. Without loss of generality, we will assume that they satisfy
the sigma-restriction constraints, i.e.

∑a
l=1 αl = 0 and

∑b
i=1 ηi = 0. Concerning

the random parts in the model, we assume that π ∼ (0, σ 2
π ) and ηπ ∼ (0, σ 2

ηπ ).
Following the pigeon hole model that characterize the distinction between fixed and
random effects (Cornfield and Tukey 1956), the interaction terms (ηπ) of the subject
(random effect, π ) and the within-subject factor (fixed effect, η) satisfy the constraint∑b

i=1 πη j i/ l = 0 for j = 1, · · · , s, which introduces a dependence between certain
interaction terms for each subject between the levels of the within-subject factor, for
more details we refer to Sahai and Ageel (2000). Note that the major dependence or
correlation that will be brought out in the next sections is no due to this term but to
the subject effects. The extension to more than one within-subject factor and/or more
than one between-subject factor of our notation is obvious. Finally, let’s mention here
that repeated measures designs are special cases of our model (1), where there are
only within-subject factors in the model. The conditions mentioned above, hold in this
kinds of designs as well. It is not difficult to see that model (1) can be written in matrix
form as

y = Xβ + Zγ + ε,

where y contains all observations for all subjects, XN×p is the design matrix for the
fixed part of the model and ZN×q is the design matrix due to the random part of the
model. βp×1 is the unknown vector of parameters for the fixed effects, γq×1 contains
the random part of the model and εN×1 is random vector of the error terms. It should
be mentioned here that X and Z matrix and corresponding parameters are based on
sigma-restricted (SR) parametrization, see e.g. Cardinal and Aitken (2006).

Often in practice, the condition of normality of the random parts and of the error
term are not satisfied, and the traditional approaches are not suitable. Expressed in the
matrix form, we will only suppose that γ , the vector of random effects is distributed
as γ ∼ (0,G), where G is the covariance matrix of random part of the design matrix.
The random error term ε is distributed as ε ∼ (0, σ 2

ε IN ), and is uncorrelated from the
other random part γ . Therefore we canwrite y ∼ (Xβ,�), where� = Z ′GZ+σ 2

ε IN .
Suppose we want to test one part of the parameter, say β2, where the vector of fixed

parameter β is divided in two parts: β ′ = (
β ′
1, β

′
2

)
. The corresponding hypotheses are

H0 : β2 = 0 vs. H1 : β2 �= 0. (2)
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The matrix formula for the repeated measures or mixed-model design can be written
as the following

y = X1β1 + X2β2 + Z1γ1 + Z2γ2 + ε. (3)

In this model (X1)N×p1 is the part of design matrix which corresponds to β1 and
(X2)N×p2 to β2. The matrix Z2 and its corresponding vector of parameters γ2 are the
random effects counterparts of X2 and β2. More precisely they contain the interaction
between the subject effect and the effect(s) to be tested for within-subject effects and
merely the subject effect for between-subject effects. The matrix Z1 and its corre-
sponding vector of parameters γ1 contain all the other random effects.

3 Parametric approach for balanced designs

In the case of a balanced design, a genuine test for β2 is defined as

Fss = SS
(
β̂2

)
/p2

SS
(
γ̂2

)
/q2

. (4)

The F-statistic for test of β2 (between-subject or within-subject factor) is based on two
sum of squares: the one attributed to the effect of β2 and another one, taken from the
random part, that play the role of the denominator, see e.g. Myers andWell (2003) . So
(Z1)N×q1 can be viewed as the part of design matrix which is not in the denominator
of F-statistic to test for (β2) and (Z2)N×q2 is the part which is used.

This test is not the likelihood ratio test, but it can be shown to be an exact test
with Gaussian and sphericity assumption. It is the test used in SPSS with the repeated
measuresmenu, andS-Plus/RError statement in function aov.Due to the orthogonality
implied by the balanced designs, the F-statistic can also be written based on residual
sum of squares(RSS) as

Fss =
[
RSS

(
β̂1

) − RSS
(
β̂1, β̂2

)]
/p2

[RSS(
β̂1

) − RSS
(
β̂1, γ̂2

)]
/q2

, (5)

where the estimates in parenthesis indicate which model is fitted to obtain the corre-
sponding RSS.

Using the same computation as for the numerator in Theorem 2 of Kherad-Pajouh
and Renaud (2010), we can rewrite the numerator and the denominator of (5) in a
matrix form as

Fss = y′H[X2]y/p2
y′H[Z2]y/q2

, (6)

where H[X2] = X2(X ′
2X2)

−1X ′
2 is the projection matrix of β2, the fixed part to be

tested in Eq. (3). Similarly for the denominator, the projection matrix of random part
in the denominator of the F-statistic is H[Z2] = Z2(Z ′

2Z2)
−1Z ′

2. Recall that the design
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matrices of X2 and Z2, are based on sigma-restricted (SR) parametrization, so the
inverse is always defined.

4 Permutation of the reduced residuals for balanced designs

We now propose an altenative testing procedure, extending the idea of permutation of
the residuals under the reduced model or reduced residuals, introduced by Still and
White (1981) and Freedman and Lane (1983). In some designs like ANOVA with a
single error term and nested ANOVA designs, Anderson and Ter Braak (2003) showed
that this method is relatively more powerful in comparison with other permutation
methods.

In Eq. (3), the random parts η has an expectation equal zero, so the only part which
has non-zero expectation under the null hypothesis (2) is the fixed part not tested.
So, the yi jkl ’s do not share the same expectation under the null hypothesis and so the
observations are far from exchangeable.

The idea behind the reduced residuals is to obtain so-called residuals that share
the same expectation under the null hypothesis. This is achieved by removing the
effect of fixed parameter not tested. For mixed-model and repeated measures designs,
the model includes also the random effects. Since the latter have mean zero, we can
choose whether to keep or to remove these random parts in the reduced residuals. Now
the question is: what are the necessary and sufficient conditions to define the reduced
residuals? Here is a more precise definition for the reduced residuals.

Definition 1 Consider the hypothesis onβ2 as in (2). The reduced residuals are defined
as yrr = Hpy, where Hp is a projection matrix which satisfies the following condi-
tions:

(a) all elements in yrr have zero expectation under the null hypothesis;
(b) the F-statistic of the reduced residuals defined as

Frr = y′
rr H[X2]yrr/p2
y′
rr H[Z2]yrr/q2

, (7)

is equal to Fss for the original observations defined in (4).

The following lemma specifies a set of sufficient conditions on the projectionmatrix
in order to have reduced residuals for repeated measures and mixed-model designs.

Lemma 1 Any projection matrix Hp satisfying (a) HpX1 = 0, (b) HpX2 = X2, and
(c) HpZ2 = Z2 generates a suitable reduced residual vector yrr = Hpy.

Due to space constraints, all the proofs are provided as supplementary material. In
the following we demonstrate two specific examples of reduced residuals.

Example 1 Consider the projection matrix that only removes the fixed part among
all the non-interesting parts to be tested: Hp = (I − H[X1]), where H[X1] =
X1(X ′

1X1)
−1X ′

1. It is easy to see that HpX1 = 0. Moreover, since, in the balanced
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model, X1, X2, Z1, and Z2 have orthogonal columns, they span orthogonal sub-spaces,
and therefore they remain unchanged by multiplying by Hp. Hence,

y(1)
rr = (I − H[X1])y = X2β2 + Z1γ1 + Z2γ2 + ε(1)

rr ,

where ε
(1)
rr = Hpε.

Example 2 A more conservative choice removes all the parts except the ones on the
numerator and denominator of the F-ratio. We called it Hnd and it is defined as Hnd =
H[X2]+H[Z2]. Again note that mutual orthogonality of the columns of X1, X2, Z1, and
Z2 implies that pre-multiplying Hnd removes every part, except X2 and Z2. Therefore,
for this example we get

y(2)
rr = Hnd y = X2β2 + Z2γ2 + ε(2)

rr . (8)

In the following, we use yrr to denote the reduced residuals in its general sense.
It is worth mentioning that different projection matrices Hp may yield different val-
ues for residuals and different covariance matrices �rr . However, they all have zero
expectation under the null hypothesis. Additionally, as stated in definition 1, the value
of Frr is unique regardless of which projection matrix is being used. Under the null
hypothesis the distribution of yrr is

yrr ∼ (0, �rr ), (9)

where �rr = Hp�Hp and � is the covariance matrix of y. Note that although the
elements of yrr have the same expectation, their (variance-) covariance matrix may
not be compound-symetric and therefore they would not be exchangeable.

After selecting the suitable reduced residuals, the next step is to perform a permu-
tation test on these residuals in order to make inference about the parameter β2. The
following algorithm shows the required steps.

Algorithm 1 – Choose a suitable statistic based on the reduced residuals yrr . We
propose to use the statistic of Frr introduced in (7).

– Freely permute the reduced residuals to obtain “new” residuals y∗
rr .

– The permuted statistics is calculated for the“new” residuals y∗
rr as

F∗
rr = y∗′

rr H[X2]y∗
rr/p2

y∗′
rr H[Z2]y∗

rr/q2
.

– The two previous steps should be repeated for a large number of times (say M
times). Define the p-value for the test on β2 as

p − value = (#F∗
rr ≥ Frr )

M
, (10)

which is simply the proportion of F∗
rr larger or equal to the original value of Frr .
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Note that this method does not follow the traditional approach in permutation tests.
Indeed, (the residuals of) the observations are permuted, instead of permuting within
the subjects (or blocks). A more traditional approach would be to split the design
in strata (corresponding in traditional ANOVA to one between- and (depending on
the number of within-subject factors) several within-subject sums of squares (Kirk
1994). We believe that it is worth going beyond the block approach for the following
reasons. First, if desired, one could additionally restrict the above permutations to
occur only within the subjects, leading to a restricted permutation method. Second,
note that this splitting corresponds geometrically to apply several projections that are
very similar to the above projection. So applying the additional restriction leads to a
method that somehow gets back to the splitting. Third, in the mixed model literature,
this approach by observation is well accepted and several bootstrap or permutation
methods are often done thisway (Field andWelsh 2007). Finally, andmost importantly,
the splitting approach relies heavily on the orthogonality of the subspaces, i.e. on the
requirement that the design is fully balanced. Even with a single missing value, the
factors do not belong any more to a single stratum. It is therefore not suited to provide
a method for unbalanced data, which is our aim in the next section.

5 Permutation of the reduced residuals for unbalanced design

Since the design is not balanced, the matrices X1, X2, Z1 and Z2 are not orthogonal
any more. Therefore the matrix form is slightly more complex. For example, if we use
y(1)
rr as the reduced residuals, then

yrr = X2rrβ2 + Z1rrγ1 + Z2rrγ2 + εrr , (11)

where X2rr = (I − H[X1])X2, Z1rr = (I − H[X1])Z1 and Z2rr = (I − H[X1])Z2.
In the case of unbalanced designs with random effects, there is no general and

exact F-statistic. In many statistical softwares like SPSS, when there are missing
observations, they automatically delete all the observations from the subject(s) with
at least one missing value. However this might remove an important proportion of
subjects and lead to a comparative loss of power. Alternatively, some F-statistics have
been proposed in the unbalanced designs with more than one random effects, e.g. a
quasi-F statisticMyers andWell (2003).Another technique is to use so-calledweighted
or unweighted means for unbalanced designs with random effects with only between-
subject effects. For example Hirotsu (1979) proposed an approximate F-test to test the
main effects and the interactions in unbalanced ANOVA with random effects, using
the test statistics corresponding to those in the balanced case, but where the mean
squares are obtained with the unweighted mean approach (Sahai and Ageel (2000)).
However, there is no consensus on the choice of the statistic for unbalanced mixed-
model designs. We propose to use a statistic that is very close to the balanced case
[(compare with Eqs. (5) and (6)].

Fss =
[
RSS(β̂1) − RSS(β̂1, β̂2)

]
/p2

[
RSS(β̂1) − RSS(β̂1, γ̂2)

]
/q2

= y′H[X2rr ]y/p2
y′H[Z2rr ]y/q2

, (12)
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where H[X2rr ] = X2rr (X ′
2rr X2rr )

−1X ′
2rr and H[Z2rr ] is defined as H[Z2rr ] =

Z2rr (Z ′
2rr Z2rr )

−1Z ′
2rr . As in the balanced case, we define the reduced residuals and

their corresponding statistics as

yrr = (
I − H[X1]

)
y and Frr = y′

rr H[X2rr ]yrr/p2
y′
rr H[Z2rr ]yrr/q2

. (13)

Then by freely permuting the elements of yrr and replacing in Eq. (13), like in Algo-
rithm 1, we obtain the permuted statistics and the corresponding p-value for testing
the parameter β2. Note that for the unbalanced case, it is also correct that under the
null hypothesis, yrr ∼ (0, �rr ).

Theorem 1 For the original observations, the statistics defined in (13) and (12) are
equivalent, i.e. Frr = Fss .

The proof of the theorem is in the supplementary material. Note that this theorem
does not state that the null distribution of these statistics are equal. It can be mentioned
that other forms of residuals might be defined. For instance, yrr = (I − H[X1,Z1,ε])y
and corresponding Xrr = (I − H[X1,Z1,ε])X2 or yrr = (I − H[X1,Z1])y and corre-
sponding Xrr = (I − H[X1,Z1])X2 would still satisfy the above Theorem.

6 Permutation of the modified residuals for balanced designs

This method was introduced by Jung et al. (2006) in balanced ANOVA and then by
Kherad-Pajouh and Renaud (2010) in general balanced and unbalanced ANOVA with
a single error term and in regression settings. Here we extend this method for mixed-
model and repeated measures ANOVA with more than one error term in the balanced
case.

The aim of introducing the residuals under the modified model or in brief modified
residuals is to remove the correlation between the reduced residuals, in order to achieve
residuals that are exchangeable up to the second moment. It would follow that if the
original data have a spherical pdf, the test based on the modified residuals is exact,
see Theorems 3 and 4 in Kherad-Pajouh and Renaud (2010). In other words we want
to transform �rr to an identity matrix.

Consider the reduced residuals of y(2)
rr = Hnd y based on model (8). The covari-

ance matrix of yrr is �rr = Hnd�Hnd . Since Hnd is a projection matrix, the eigen-
decomposition of �rr can be written as U 0�0U 0′ + U�rrU ′ = �rr , where U 0

contains orthonormal eigen-vectors corresponding to the zero eigen-value, and �0 is
a diagonal matrix of the zero eigen-value, or zero matrix. Thus

U�rrU
′ = �rr , (14)

where U contains orthonormal eigen-vectors corresponding to the non zero eigen-
values and �rr is a diagonal matrix of the non zero eigen-values. Also by multiplying
U ′ and U in both sides of Eq. (14), using the orthonormality of the columns ofU , we
get
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U ′�rrU = �rr . (15)

Let us construct the matrix V = U�
− 1

2
rr .

The matrix V has the same dimension N × (p2 + q2) as the orthonormal matrix
U which is related to the geometrical multiplicities of non zero eigen-values of �rr

(recall that p2 and q2 are the number of columns of X2 and Z2). In the two following
sections, for the two special cases of repeated measures (with one or several within-
subject factor(s)) and for mixed-model design (with one within-subject factor and one
between-subject factor), we will show that �rr = λHnd where λ is the value of the
only non-zero eigen-value of the matrix �rr . We also compute the exact value of λ

and show that its multiplicity is equal to (p2 + q2). The results can be extended to
more general designs as well.

In the case that the reduced residuals are based on Hnd , the non-zero eigen-values,
or the diagonal elements of �, are thus all equal to a unique value, say λ. We propose
to use y(2)

rr , because of this property, since for other forms of yrr , the eigen-values
may differ. We can thus write �rr = λI(p2+q2). In this case, the V matrix satisfies the
following:

V ′V = 1

λ
I(p2+q2) and VV ′ = λHnd (16)

The value of λ depends on the design and on several parameters, see the two next
Sections. To obtain the modified residuals, we pre-multiply both sides of Eq. (8) by
V ′:

ymr = Xmrβ2 + Zmrγ2 + εmr ,

where ymr = V ′yrr are the residuals under the modified model, or modified residuals,
with dimension (p2+q2), Xmr = V ′X2, Zmr = V ′Z2 and εmr = V ′εrr . Usingmatrix
V and Eq. (15), the covariance matrix of ymr can be obtained:

cov(ymr ) = cov(�
− 1

2
rr U ′yrr ) = �

− 1
2

rr U ′�rrU�
− 1

2
rr = I(p2+q2), (17)

which implies that under the null, the distribution of ymr is ymr ∼ (0, I(p2+q2)).

Based on the modified residuals, the F-statistic to test of β2 for the original ymr ,
can be defined as the following:

Fmr = y′
mr H[Xmr ]ymr/p2
y′
mr H[Zmr ]ymr/q2

. (18)

Again, by freely permuting the ymr , we get y∗
mr and compute its associated statistic

F∗
mr = y∗′

mr H[Xmr ]y∗
mr/p2

y∗′
mr H[Zmr ]y∗

mr/q2
.
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We can use the same procedure as Algorithm 1 using Fmr to make inference about
β2. By the following theorem, we will show the property of modified residuals, which
keeps numerator and denominator of F-statistics for the original modified residuals,
equals to the original F-statistics, even though thedimensionof ymr and Xmr is reduced.

Theorem 2 For the original observations y, the statistics defined in Eqs. (4), (7) and
(18) are equal.

Fss = Frr = Fmr . (19)

The proof is in the supplementary material.

7 Application for repeated measures ANOVAs with one or more within-subject
factor(s)

First, we consider a simple case of Eq. (1), where there is only one within-subject
factor for balanced design. In such situation, the observations can be modelled as

yi jk = μ + ηi + π j + (ηπ)i j + εi jk, i = 1, . . . , b, j = 1, . . . , s,

k = 1, . . . , n.

This model based on (3) can be expressed in matrix form as

y = 1N×1μ + Xηη + Xππ + Xηπηπ + ε, (20)

where 1n×m is a n × m matrix with all elements equal to 1. To test the effect of the
within-subject factor B, the hypotheses are

HB
0 : η1 = η2 = · · · = ηb = 0 vs. HB

1 : not HB
0 .

Therefore, the working matrices are X1 = 1, X2 = Xη (effect of factor B), Z1 = Xπ

(subject effect S) and Z2 = Xηπ (interaction effect of BS). More details on these
matrices are given in the proof of Theorem 3. Note that y is distributed according to
y ∼ (1μ + X2η,�), where � is the covariance matrix of y. The random parts are
based on π ∼ (0, σ 2

π Is), (ηπ) ∼ (0, cov(ηπ)), and ε ∼ (0, σ 2
ε Ibsn).

The F-statistic to test the within-subject factor B can be written in the well
known form using the mean squares as FB

ss = MSB
MSBS

, or in matrix form as FB
ss =

y′H[Xη ]y/(b−1)
y′H[Xηπ ]y/(b−1)(s−1) , where H[Xη] and H[Xηπ ] are the projection matrices of the sigma-

restricted design matrices Xη and Xηπ .
In order to apply the reduced residuals method, we can use any of two kinds of

reduced residuals introduced after Lemma 1 for example y(1)
rr = (I − H[�])y or

y(2)
rr = (H[Xη] + H[Xηπ ])y, and the corresponding F-statistics based on any of these
reduced residuals is
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FB
rr = y′

rr H[Xη]yrr/(b − 1)

y′
rr H[Xηπ ]yrr/(b − 1)(s − 1)

. (21)

In order to use the modified residuals method, we will only use y(2)
rr and in the

following section we will show how to construct the covariance matrix and to apply
the permutation of the modified residuals method.

7.1 Construction of the covariance matrix of the observations

To use a permutation test based on the modified residuals, we need to find the eigen-
values of �rr = Hnd�Hnd to construct the V matrix. It is easy to explicitly construct
Hnd and a little more complex to find the matrix �. To simplify the computation, the
construction of the design matrices for the projection matrices are based on ortho-
normal contrasts (e.g. Helmert contrasts), which is a special case of sigma-restriction
parametrization where all columns are orthonormal. We explain these contrasts in
detail in the proofs.

However for construction of covariance matrices, it is much easier to work with
design matrices that are over-parametrized, which typically contain only values of 0
and 1. To distinguish between these two parametrizations, we use the notation of Xo

for over parametrized designmatrices. Formore detail about differences between these
two kinds of design matrices, we refer to Cardinal and Aitken (2006). The covariance
matrix of y which is based on random part of model (20), is constructed based on
over-parametrized model and can be written as

� = σ 2
π X

o′
π Xo

π + Xo′
ηπcov(ηπ)Xo

ηπ + σ 2
ε Ibsn, (22)

where Xo′
π = Is ⊗1b×1⊗1n×1. Note that in repeated measures designs, the constraint∑

i (ηπ)i j = 0, ∀ j implies a correlation between the interaction terms (ηπ)i j . A
natural way of keeping such dependency, is to write (ηπ)i j = ωi j − 1

b

∑b
i=1 ωi j .

In this case ωi j are independent and identically distributed random variable with
(ωi j ) ∼ (0, σ 2

ω), where σ 2
ω = b

b−1σ
2
ηπ . This allows us to write cov(ηπ) = (Is⊗�b)σ

2
ω

where �b = Ib − 1
b1b×b. Finally, Xo

ηπ = Is ⊗ Ib ⊗ 1n×1 and Xo′
ηπcov(ηπ)Xo

ηπ =
σ 2

ω(Is ⊗ �b ⊗ 1n×n).

7.2 Eigen-values and Eigen-vectors of �rr

Theorem 3 In the one within-subject factor with possible repetitions in each cell, let
�rr = Hnd�Hnd, and Hnd = H[Xη] + H[Xηπ ], where � is defined on Eq. (22). Then
�rr = λHnd, and the only non-zero eigen-value of �rr is λ = nσ 2

ω + σ 2
ε and have

multiplicity (b − 1)s.

The proof of the theorem is in the supplementary material.
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7.3 Estimation of the variance components and the eigen-values in non-oracle
designs

To apply the method of permutation of the modified residuals, we need to construct
ymr = V ′yrr , thus V , and therefore we must estimate λ. The value of λ, given on
Theorem 3, is based on σ 2

ω and σ 2
ε . Theorem 3 also shows that the columns of Hnd

are eigen-vectors of �rr , and it follows that the columns of Xη and Xηπ are the
eigen-vectors of �rr . The following lemma proposes an estimation for λ.

Lemma 2 The parameter λ in Theorem 3 can be estimated from

λ̂ = nν1 − nν3,

where

ν1 = 1

N

∑

i jk

yrr (i jk)
2, ν3 = 1

n2b(b − 1)s

∑

j

∑

i �=i ′

∑

k,k′
yrr (i jk)yrr (i

′ jk′).

This estimator is unbiased, that is, E[λ̂] = λ.

We present the proof of this lemma in the supplementary material.

7.4 Repeated measures with more than one within-subject factor

In the case with two within-subject factors, the model is

yil jk = μ + ηi + γl + π j + (ηπ)i j + (γ π)l j + (ηγ )il + (ηγπ)il j + εil jk,

i = 1, . . . , b, l = 1, . . . , a, j = 1, . . . , s, and k = 1, . . . , n.

In this model η and γ are fixed effects and both are within-subject factors and π is the
random effect due to the subjects. We construct the covariance matrix of�rr , based on
the constrains which are on the random part of the model, which are:

∑
i=1(ηπ)i j =

0,∀ j and
∑

l=1(γ π)l j = 0,∀ j and for the three way interactions,
∑

i (ηγπ)il j =
0 ∀l, j and ∑

l(ηγπ)il j = 0 ∀i, j . The covariance matrix for this model can thus be
written as

�rr = Hnd(σ
2
π X

o′
π Xo

π + Xo′
ηπcov(ηπ)Xo

ηπ + Xo′
γπcov(γ π)Xo

γπ

+ Xo′
ηγπcov(ηπγ )Xo

ηγπ + σ 2
ε IN )Hnd . (23)

Hnd depends on the selected parameter to be tested. We skip the details, as they are
similar to the case with one within-subject factor. However, the decomposition of �rr

can be found in Kherad-Pajouh (2011) and the main result is shown in the following
theorem.
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Theorem 4 In the two within-subject factors design with possible repetitions in each
cell, if we are interested to test one of the within-subject factor, say η, let Hnd =
H[Xη] + H[Xηπ ] and �rr defined as in Eq. (23). Then �rr = λHnd and the only
non-zero eigen-value of �rr is λ = naσ 2

ω + σ 2
ε and have multiplicity of (b − 1)s.

The proof of the theorem is in the supplementary material. We skip the estimation
of λ in this part, as it can be achieved in a similar way as Lemma 2. Similarly, the
proof of this Theorem can be generalized to more than two within-subject factors with
the only difficulty of having a more complex notation.

8 Application for mixed-model designs

In this section we consider the mixed-model design with one between-subject and one
within-subject factor.

yli jk = μ + αl + π j/ l + ηi + (αη)li + πη j i/ l + εli jk

l = 1, . . . , a, i = 1, . . . , b, j = 1, . . . , s, and, k = 1, . . . , n. (24)

where α is the between-subject factor, η is the within-subject factor, π is the effect of
subjects, which is random, and s is the number of subjects in each levels of between-
subject factor. There is obviously no interaction for the subject and the between-subject
factor, αη is the fixed interaction part, and πη in the random interaction part. In the
parametric approach the F-statistic for a within-subject factor is similar to the one for
the repeated measures design and the F-statistic for between-subject factor of A can
be written as

FA
ss = MSA

MSS
= y′H[Xα]y/(a − 1)

y′H[Xπ ]y/(s − 1)
.

TheF-statistic for the interactionofwithin-subject factor andbetween-subject factor
can be written as

FAB
ss = MSAB

MSABS
and FAB

ss = y′H[Xαη]y/(a − 1)(b − 1)

y′H[Xαηπ ]y/a(s − 1)(b − 1)
(25)

In order to provide a permutation test based on the reduced residuals, the corre-
sponding statistics Frr should be used. This can be achieved by replacing yrr in the
above formulae (and in the unbalanced case, one should also replace Xηrr and Xαηrr ).
We skip the details for this method, since it is very similar to the previous cases.

Concerning the definition of the modified residuals in mixed-model designs, we
should first construct the covariance matrix of yrr and then find its eigen structure.
As mentioned before, the covariance matrix of y is only based on the random part of
model (24). Using similar notation as in previous sections, the covariance matrix of
the observations can be written as

� = σ 2
π X

o′
π Xo

π + Xo′
ηπcov(ηπ)Xo

ηπ + σ 2
ε Iabsn . (26)
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and then, the covariance matrix of yrr can be written as �rr = Hnd�Hnd , where Hnd

is dependent on the testing parameters.

Theorem 5 In the mixed-model design with one within- and one between-subject
effects and in order to test the between-subject factor, we have Hnd = H[Xα] + H[Xπ ]
and � is based on Eq. (26). Then �rr = λHnd and the only non-zero eigen-value is
λ = nbσ 2

π + σ 2
ε with multiplicity (a − 1) + (s − 1).

Theorem 6 In the mixed-model design, corresponding to (24), in order to test the
within-subject factor, we have Hnd = H[Xη] +H[Xηπ ] and�rr = Hnd�Hnd, where�

is based on (26). Then�rr = λHnd and the only non-zero eigen-value isλ = nσ 2
ω+σ 2

ε ,
with multiplicity a(s − 1)(b − 1) + (b − 1).

The proofs of the two above theorems can be found in the supplementary material.
We skip the estimation of λ, as it can be achieved in a similar way as in Lemma 2.
The proof of these Theorems can be generalized to designs with more factors with the
only difficulty of having a more complex notation.

9 Simulation study

In this section, simulation studies are carried out to validate and compare the level and
power of the four different methods mentioned in this article (called below Ymr , Yrr , Y
and F-test). The permutation of the reduced residuals, based on y(2)

rr = Hnd y is named
Yrr . We compare it to the permutation of raw data, which is based on freely permuting
the (raw) data, and using the regular F-statistic given in (6).We also provide the results
for the parametric F-test, which is based on Gaussian assumption (and the split-plot
approach for mixed-model designs) and uses the F distribution. Of course, this is not
a permutation test, but provides the results for the classical approach. Finally, by Ymr

we mean permutation of the modified residuals: ymr = V ′yrr . For this method, it is
important to separate out the intrinsic quality of the method with a possible loss of
quality (both for the level and the power) due to the estimation of the parameter λ.
This leads us to have two modified residuals procedures: an “oracle” case, that we call
Yor
mr , for which the population value of λ is supposed to be known, and a “non-oracle”

case, that we call Yn−or
mr , in which we have to estimate λ from the data. Although

the oracle case is not a genuine method, it is an important benchmark, both for the
non-oracle case, and for the permutation of the reduced residuals (named Yrr ). Indeed,
if the latter have a similar level and power than the oracle Ymr , this would indicate that
the reduced residuals are adequate and that there is no need to try to use the modified
residuals or to improve the estimation of the unknown λ.

9.1 Repeated measures ANOVA

To explain how the data are generated, let’s first consider the repeated measure sim-
ulations. They are based on model (20). In this model, μ and η are the fixed parts.
We fixed μ as a vector with all elements equal to 1 (this value has no influence on
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the results). The test will concern the fixed parameters ηi . In order to simulate under
the null hypothesis and under several alternatives, we consider the variation measure
θ = ( ∑b

i (η
orig
i )2/b

)−1/2. In the simulations, the values of ηi that will be used are

(η
orig
i )·t/θ , where t is a constant thatmodifies the amplitude of the effects. For instance

for estimation of the significance level, t is equal to zero, which makes all the ηi equal
to zero, and the power is obtained with values t > 0. Concerning the random parts
of the model (20), the ones due to π and ηπ are generated according to a normal
distribution, with the following variances: σ 2

π = 0.2, σ 2
ηπ = 0.5.

Finally the distribution of the error part is either N (0, 1), or U (−√
3,

√
3) or

exp(1)−1,which all have also a variance equal to 1, i.e.σ 2
ε = 1.We also generated data

sets from a Generalized ParetoGP(0.4814, 0.01, 1), a more heavy-tailed distribution,
with shape parameter 0.4814 and scale parameter 0.01 in order that error terms have
variance equal 1. Note that only the errors include skewed or non-normal distributions,
not the subject effects.

To construct the modified residuals (Yor
mr ), we generated the covariance matrix

according to the variances for different random parts of the model and based on
Eq. (22). For the modified residuals in non-oracle case (Yn−or

mr ), we additionally esti-
mated λ.

In Table 1, we generate data for the model which is typical for psychological data.
It is constituted by ten subjects s = 10, one within-subject factor with four levels
b = 4 and one observation per cell k = 1. The original values for η are chosen
as ηorig = [2,−2, 4,−4] and satisfy the sigma-restriction constraint. In Table 2, an
unbalanced repeated measures design is considered with s = 3 subjects . The null
hypothesis concerns the effect of η with three levels b = 3. The original values are
ηorig = [4,−2,−2]. There are two repetitions in each cell except for the last cell with
only one observation. In this model, since the parametric F is not defined for this case
and the only proposed method is the permutation of the reduced residuals, we only
consider this method in this simulation.

9.2 Mixed-model design

In the Tables 3 and 4, the simulation study is related to a mixed-model design as in
model (24) with one within-subject factor with three levels b = 3, and one between-
subject factor with two levels a = 2. There are three subjects in each level of between-
subject factor and one repetition per cell. The null hypothesis concerning the within-
subject factor H0 : η1 = η2 = η3 is tested in Table 3, and the null hypothesis
concerning the between-subject factor H0 : α1 = α2 is found on Table 4.

The original values for ηorig = [3,−2,−1] and for αorig = [1,−1]. As in the
previous case, in order to estimate the level and power of each method, we used the
variation measure θ . The variance of the random part of the model are σ 2

π = 0.5,
σ 2

ηπ = 0.2 and σ 2
ε = 1. We used the same covariance matrix of the random part as in

the previous case, since only the within-subject factor has interaction with the random
effect of the subjects, so adding a between-subject factor does not change the random
structure.
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Table 1 Simulation results for a balanced repeated measures ANOVA with one within-subject factor B,
with b = 4 levels, s = 10 subjects and k = 1 repetition per cell. Proportion of rejection to test the main
effect based on 5000 replications. The column with t = 0 corresponds to the level, and the other ones to
power with increasing effect sizes

Stat. t = 0 t = 0.3 t = 0.6 t = 0.9 t = 1.2 t = 1.5

N (0, 1) Yor
mr 0.050 0.134 0.305 0.642 0.877 1.000

Yn−or
mr 0.049 0.113 0.289 0.603 0.844 1.000

Yrr 0.048 0.129 0.284 0.605 0.860 1.000

Y 0.049 0.122 0.273 0.604 0.848 1.000

F-test 0.048 0.137 0.302 0.632 0.861 1.000

U (−√
3,

√
3) Yor

mr 0.051 0.144 0.285 0.682 0.877 1.000

Yn−or
mr 0.048 0.113 0.229 0.563 0.794 1.000

Yrr 0.048 0.133 0.254 0.655 0.850 1.000

Y 0.046 0.112 0.223 0.554 0.778 0.998

F-test 0.050 0.137 0.272 0.662 0.856 1.000

exp(1) − 1 Yor
mr 0.049 0.122 0.323 0.586 0.871 0.990

Yn−or
mr 0.048 0.108 0.294 0.559 0.816 0.998

Yrr 0.047 0.1129 0.308 0.578 0.853 0.999

Y 0.045 0.092 0.258 0.525 0.751 0.999

F-test 0.043 0.097 0.254 0.514 0.757 0.989

GP(0.4814, 0.01, 1) Yor
mr 0.049 0.096 0.259 0.529 0.829 1.000

Yn−or
mr 0.050 0.090 0.235 0.495 0.804 1.000

Yrr 0.050 0.103 0.288 0.583 0.883 1.000

Y 0.0481 0.095 0.268 0.535 0.751 1.000

F-test 0.047 0.089 0.254 0.522 0.737 1.000

Table 2 Simulation results for an unbalanced repeated measures ANOVA with one within-subject factor
B with b = 3 levels, s = 3 subjects and k = 2 repetitions in each cell except last cell with one observation.
Proportion of rejection to test themain effect based on 5000 replications. The columnwith t = 0 corresponds
to the level, and the other ones to power with increasing effect sizes

Stat. t = 0 t = 0.3 t = 0.6 t = 0.9 t = 1.2 t = 1.5

N (0, 1) Yrr 0.050 0.134 0.305 0.642 0.877 1.000

U (−√
3,

√
3) Yrr 0.049 0.113 0.289 0.603 0.844 1.000

exp(1) − 1 Yrr 0.048 0.129 0.284 0.605 0.860 1.000

GP(0.4814, 0.01, 1) Yrr 0.049 0.113 0.263 0.588 0.845 1.000

In all simulations we used permutation tests based on 1000 permutations. For all
settings, we used 5000 Monte-Carlo replications.

10 Discussion

In all the settings of the present simulations, as expected, the type I error is very close
to the nominal level of 0.05, and the power of the method Yor

mr is relatively higher
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Table 3 Simulation results for a balanced mixed-model ANOVA with one within-subject factor B with
b = 3 levels and one between-subject factor A with a = 2 levels, s = 3 subjects and k = 1 repetition
in each cell. Proportion of rejection to test the main effect of the within-subject factor B based on 5000
replications. The column with t = 0 corresponds to the level, and the other ones to power with increasing
effect sizes

Stat. t = 0 t = 0.3 t = 0.6 t = 0.9 t = 1.2 t = 1.5

N (0, 1) Ymr 0.051 0.118 0.308 0.598 0.846 0.955

Yrr 0.052 0.105 0.268 0.557 0.812 0.944

Y 0.054 0.107 0.275 0.569 0.824 0.945

F-test 0.051 0.104 0.268 0.562 0.815 0.944

U (−√
3,

√
3) Ymr 0.049 0.099 0.291 0.563 0.834 0.971

Yrr 0.048 0.096 0.275 0.556 0.824 0.969

Y 0.053 0.097 0.262 0.541 0.826 0.955

F-test 0.052 0.095 0.261 0.531 0.807 0.949

exp(1) − 1 Ymr 0.049 0.114 0.333 0.611 0.849 0.950

Yrr 0.048 0.106 0.300 0.584 0.839 0.938

Y 0.046 0.106 0.307 0.571 0.828 0.944

F-test 0.046 0.109 0.302 0.576 0.820 0.940

GP(0.4814, 0.01, 1) Ymr 0.049 0.095 0.283 0.555 0.794 0.945

Yrr 0.050 0.116 0.323 0.589 0.845 0.988

Y 0.048 0.104 0.304 0.571 0.828 0.964

F-test 0.049 0.092 0.276 0.544 0.788 0.940

than the other permutation approaches. The power of Yn−or
mr , as expected, is a little

lower than Yor
mr . Note that already with a medium-sized sample, the modified residuals

methods and the approximate test Yrr are comparable with the permutation of raw
data and the parametric F , especially in the non Gaussian cases. Also based on these
results, the permutation of the reduced residuals, which is an approximate test, has a
relatively good level close to 0.05 and good power for all designs and factors tested.
This result is in contrast with the results of Kherad-Pajouh and Renaud (2010), who
found that for very small sample sizes the modified residuals outperform the reduced
residuals in ANOVA with a single error term, i.e. with no repeated measures. This
is probably due to the two following reasons. First, the number of observations is
almost necessarily larger in repeated measures designs, since each subject has to be
measured on each level. Second, the correlation remaining in the reduced residuals is
probably less serious for repeated measures designs than for designs for independent
observations since in the former correlation between observations are anyway present
through the effect of the subjects. In the heavy tailed distribution of GP we still have
the same results that all methods have almost level close to 0.05. The power of Yn−or

mr
is still lower than Yor

mr and in general Ymr has a little less power than the reduced
residual model due to the error terms from heavy tailed distribution.

Given that the two residual methods give similar results, that the reduced residuals
are less complex to obtain, that they have slightly higher power for the heavy tailed
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Table 4 Simulation results for a balanced mixed-model ANOVA with one within-subject factor B with
b = 3 levels and one between-subject factor A with a = 2 levels, s = 3 subjects and k = 1 repetition
in each cell. Proportion of rejection to test the main effect of the between-subject factor A based on 5000
replications. The column with t = 0 corresponds to the level, and the other ones to power with increasing
effect sizes

Stat. t = 0 t = 0.3 t = 0.6 t = 0.9 t = 1.2 t = 1.5

N (0, 1) Ymr 0.049 0.119 0.306 0.596 0.827 0.912

Yrr 0.049 0.117 0.328 0.612 0.846 0.960

Y 0.042 0.085 0.251 0.492 0.709 0.858

F-test 0.051 0.118 0.328 0.618 0.848 0.962

U (−√
3,

√
3) Ymr 0.052 0.122 0.310 0.596 0.816 0.952

Yrr 0.053 0.131 0.326 0.606 0.859 0.955

Y 0.048 0.103 0.253 0.479 0.709 0.841

F-test 0.054 0.121 0.321 0.588 0.803 0.937

exp(1) − 1 Ymr 0.052 0.132 0.300 0.586 0.816 0.912

Yrr 0.054 0.131 0.326 0.606 0.849 0.955

Y 0.048 0.103 0.253 0.479 0.709 0.841

F-test 0.056 0.131 0.311 0.578 0.803 0.938

GP(0.4814, 0.01, 1) Ymr 0.050 0.090 0.293 0.566 0.808 0.935

Yrr 0.051 0.095 0.334 0.605 0.854 0.988

Y 0.052 0.096 0.324 0.566 0.828 0.954

F-test 0.051 0.096 0.300 0.557 0.798 0.930

distributions, and more importantly that the reduced residuals allow for unbalanced
designs as well, we suggest to use the reduced residual methods.

Finally, as expected, the simulation results show that in caseswhere all randomparts
have normal distributions, the parametric F-test is correct. It is however important to
note that the proposed permutation methods are quite close in terms of level and power
even in this parametric settings. However, the permutation methods outperform the
parametric F-test quite consistently when the error term is not normal, see e.g. Table 1,
exp(1) − 1 at t = 0.6, t = 0.9 and t = 1.2.

11 Conclusion

In this paper at first we introduced an approximate permutation test based on the
reduced residuals for repeated measures and mixed-model designs. Based on this
method, we can test any within-subject or between-subject factor, including the inter-
actions of within- and between-subject factors. This method is extendable to the unbal-
anced designs with no empty cell as well. We also introduced a permutation test called
modified residuals that is exact up to the second moment. It is based on a modifi-
cation on the previous approximate test that removes the correlations between the
residuals. This method is introduced for balanced repeated measure and mixed-model
designs, and can be used to test any within-subject or between-subject factor. We also
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provide three examples for which we go trough the details of the two proposed meth-
ods. Finally,we did simulations in order to compare the level and power of the proposed
methods. The method based on the reduced residuals seems to be a good compromise
between precision (close to nominal level), power, and complexity of the method. It is
therefore advocated in practice, even as a diagnostic to check if the classical approach
using a parametric test gives sensitive results.
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