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Abstract Finite mixture models can adequately model population heterogeneity when
this heterogeneity arises from a finite number of relatively homogeneous clusters.
An example of such a situation is market segmentation. Order selection in mixture
models, i.e. selecting the correct number of components, however, is a problem which
has not been satisfactorily resolved. Existing simulation results in the literature do
not completely agree with each other. Moreover, it appears that the performance of
different selection methods is affected by the type of model and the parameter values.
Furthermore, most existing results are based on simulations where the true generating
model is identical to one of the models in the candidate set. In order to partly fill this
gap we carried out a (relatively) large simulation study for finite mixture models of
normal linear regressions. We included several types of model (mis)specification to
study the robustness of 18 order selection methods. Furthermore, we compared the
performance of these selection methods based on unpenalized and penalized estimates
of the model parameters. The results indicate that order selection based on penalized
estimates greatly improves the success rates of all order selection methods. The most
successful methods were M DL2, M RC , M RCk , I C L–B I C , I C L , C AI C , B I C
and C LC but not one method was consistently good or best for all types of model
(mis)specification.
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1 Introduction

Finite mixtures present a very attractive modeling framework to increase model flexi-
bility without the high-dimensional parameter spaces used in non-parametric or mixed
modeling (McLachlan and Peel 2000). Often, a regular statistical model is too rigid to
adequately represent possible heterogeneity in the population. This heterogeneity can
often be captured by a mixture of parametric models. Such mixtures have been suc-
cessfully applied in a wide variety of fields. Wedel and Kamakura (1999) for instance,
have spent two chapters of their book on market segmentation on this topic whereas
Schlattmann (2009) has written an entire book about medical applications of finite
mixture models. However, despite its popularity and frequent usage, there are still
some complications with this type of model. The most important of these compli-
cations is that of selecting the correct number of components (McLachlan and Peel
2000) which we will refer to as order selection. Not surprisingly, this has generated
a lot of theoretical and applied research and many order selection methods have been
suggested in the literature by now. However, most of the simulation results which
have been presented either disagree with each other or were obtained in very ideal-
ized settings where model assumptions matched the simulation settings. Therefore,
in this paper, we have investigated violations of standard model assumptions in finite
mixtures of linear regression models, in the hope of partly filling this gap. We have
compared several old and new order selection methods using two different types of
estimation, unpenalized and penalized estimation.

The rest of this paper is structured as follows. In Sect. 2 some technical and practical
background will be given about (fitting) a mixture model of linear regressions. In Sect.
3 we present a non-exhaustive overview of various popular and some lesser known but
rather effective methods to select the number of components in a mixture model. In
this section we also give an overview of some published results. In Sect. 4 the design
and results of our simulation study will be presented and discussed. Finally, in Sect. 5
we present our conclusions and some potential lines of further research.

2 Technical background

2.1 Finite mixtures of linear regressions

Suppose a population consists of K subpopulations Sk indexed by k = 1, . . . , K .
Within each of these subpopulations, suppose it makes sense to model a univariate1

random variable Y as a linear combination of p explanatory variables denoted by
the vector x. Then, for a random sample of size n across the subpopulations, we
have

1 This can be readily extended to the multivariate case.
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yi = β01 + β11xi1 + · · · + βp1xip + εi1 if i ∈ S1
...

yi = β0k + β1k xi1 + · · · + βpk xip + εik if i ∈ Sk
...

yi = β0K + β1K xi1 + · · · + βpK xip + εi K if i ∈ SK

(1)

where i = 1, . . . , n. Note that the subpopulations are assumed to be mutually exclu-
sive and exhaustive. The error terms within each component are assumed to be
i.i.d. normal with mean 0 and variance σ 2

k and independent across the subpopula-

tions. The vector of regression coefficients will be denoted by β = (
β1, . . . ,βK

)T

where βk = (
β0k, β1k, . . . , βpk

)T . Let z be a single trial realization of a random
multinomial variable with parameter vector π = (π1, . . . , πK )T which indicates
from which subpopulation Y originates. Therefore, if an observation i belongs to
component k, zi is a vector of 0s with a 1 at the kth position. The parameters
πk, k = 1, . . . , K , indicate the relative size of the subpopulations in the entire popu-
lation under consideration. From its definition it follows that

∑K
k=1 πk = 1 and that

πk ≥ 0,∀k = 1, . . . , K . The joint distribution of y and z, conditional on x, can now be
written as

f (y, z|x,Ψ ) =
K∏

k=1

[
πkN

(
y|βT

k x, σ 2
k

)]zik
(2)

where N (
y|βT

k x, σ 2
k

)
represents the normal distribution function of a variable

y with mean βT
k x and variance σ 2

k , x includes an intercept term and Ψ =
(
π ,β, σ 2

1 , . . . , σ 2
K

)T
denotes the complete parameter vector. Note that one of the ele-

ments of π is redundant due to the summation restriction given above. The complete
data log likelihood or joint log likelihood of y and z of the sample can then be expressed
as

L Lc (Ψ ) =
n∑

i=1

K∑

k=1

zik

{
log (πk) + log

[
N

(
yi |βT

k xi , σ
2
k

)]}
. (3)

A finite mixture model of linear regressions now arises when the subpopulation indica-
tor variable z is not observed (or inherently unobservable). In this case, one has to resort
to working with the marginal distribution of Y (marginalized over Z = (z1, . . . , zn))
and the marginal distribution of y, conditional on x, becomes

f (y|x,Ψ ) =
K∑

k=1

πkN
(

y|βT
k x, σ 2

k

)
(4)
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and the corresponding observed log likelihood of the sample is

L L (Ψ ) =
n∑

i=1

log

[
K∑

k=1

πkN
(

yi |βT
k xi , σ

2
k

)
]

. (5)

This model is the finite mixture model of normal linear regressions that was intro-
duced by Quandt (1972) and Quandt and Ramsey (1978) for a mixture of two switch-
ing regressions and later generalized to arbitrary dimensions by Desarbo and Cron
(1988). The relative sizes of the subpopulations are called mixture proportions or
mixture weights2 and the densities in the subpopulations are called the component
densities, which are conditional on component membership and the explanatory vari-
ables. Note that, in the absence of any other information, the mixture proportions are
the a priori probabilities of belonging to a specific component for a randomly sam-
pled subject. Maximizing the observed log likelihood (5) can be done in a variety of
ways (all iteratively as there is no closed-form solution) and is usually done by using
the expectation-maximization (EM) algorithm (Dempster et al. 1977) which uses (3)
rather than (5). Every iteration in the EM algorithm consists of two steps, an expec-
tation step and a maximization step. In the expectation step the expected value of the
complete data log likelihood (3), conditional on the vector of current parameter values
and the observed data, is calculated. This expression is then subsequently maximized
with respect to the model parameters in the maximization step, yielding a new set
of parameter values. Dempster et al. (1977) showed that iterating these two steps is
equivalent to maximizing the observed log likelihood, which is the goal. Calculating
the conditional expected value of (3) is straightforward as the only random terms are
the zik which are binary indicator variables and are linear in (3). So, for a general
iteration (t + 1), the expectation step consists of calculating

E
[

Zik |yi , xi ,Ψ
(t)

]
=

π
(t)
k N

(
yi |βT (t)

k xi , σ
2(t)
k

)

∑K
l=1 π

(t)
l N

(
yi |βT (t)

l xi , σ
2(t)
l

) ≡ τ
(t+1)
ik . (6)

The τ
(t+1)
ik can be viewed as the posterior probability of an observation with observed

values yi and xi to belong to component k. Maximizing (3), with the zik replaced by
the estimated τ

(t+1)
ik , now yields the following closed-form solutions

π
(t+1)
k =

∑n
i=1 τ

(t+1)
ik

n

β
(t+1)
k =

(
XT W (t+1)

k X
)−1

XT W (t+1)
k y

2 It is possible to generalize (4) by including explanatory variables to model the mixture proportions using
a logistic regression model for instance. If these explanatory variables are different from the variables which
model the component means they can be ignored for order selection as the marginal model is a mixture
model with the same number of components (Bandeen-Roche et al. 1997).
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σ
2(t+1)
k =

(
y − Xβ

(t+1)
k

)T
W (t+1)

k

(
Y − Xβ

(t+1)
k

)

∑n
i=1 τ

(t+1)
ik

(7)

where X is the n×(p+1) design matrix including an intercept column, y is the vector
with the outcome variable and W (t+1)

k is a diagonal matrix with diagonal elements

τ
(t+1)
1k , . . . , τ

(t+1)
nk . The updated parameter estimates can now be used for a new itera-

tion by plugging them into (6). This algorithm is carried out until some convergence
criterion is satisfied. A nice property of the EM algorithm is that the observed log
likelihood cannot decrease (Dempster et al. 1977).

2.2 Mixture regression in practice

There are some considerations to be made for a practical implementation of finite
mixture models. First of all, the log likelihood of all finite mixture models frequently
has multiple local optima (McLachlan and Peel 2000). Therefore, for a particular set
of starting values, application of the EM algorithm can only guarantee you to find a
local maximum [(or a saddle point in pathological cases (McLachlan and Krishnan
2008)] and not the global maximum (if this exists). In order to increase the probability
of locating the desired optimum it is recommended to apply the EM algorithm from a
variety of starting points (McLachlan and Peel 2000) and select the solution with the
highest log likelihood value. This strategy is, however, not a guarantee to success. Then
there is still the matter of selecting appropriate starting values. While there has been
some research on obtaining good start values (see for instance Karlis and Xekalaki
2003 for univariate normal and Poisson data and Biernacki et al. 2003 for multivariate
normal data), as far as we know there are no results for mixtures of linear regressions.
Viele and Tong (2002) proposed the following strategy for obtaining a random set of
starting parameters:

– Generate the mixture proportions π as a random draw from a Dirichlet distribution
with parameter vector (1, . . . , 1).

– For every component k = 1, . . . , K , select a random sample of p+1 observations(
Xr , yr

)
without replacement from the data. Obtain βk as the solution of βk =

X−1
r yr .

– Generate the component variances as random draws from a uniform distribution
with support [0, s2

(1)]. Here, s2
(1) denotes the estimated mean squared error obtained

from a regular one-component regression analysis.

We have compared this procedure in some small simulation studies with two other
procedures. The first alternative procedure only differs in how β is generated. For each
component k = 1, . . . , K , an intercept is randomly drawn from a uniform distribution
with support [min(yi ), max(yi )], i = 1, . . . , n. All other coefficients are initialized
as 0. The second alternative procedure consists of randomly assigning each sample
point to one of the K components. We have done this by hard assignment (assign each
observation to exactly one component) and by soft assignment (assign each observation
to every component with random weights). The EM algorithm is then started from the
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M-step by considering the assignment as the initial E-step. In our results we found that
the strategy of Viele and Tong (2002) performed favorably compared to the alternatives.

Second, the EM algorithm is generally known to converge slowly, linearly or even
sublinearly (McLachlan and Krishnan 2008). Usually, the algorithm is stopped when
the log likelihood and/or the parameter estimates do not change much during the last
iterations (McLachlan and Peel 2000). However, due to its slow convergence rate, one
can erroneously stop the algorithm too early, i.e. before convergence. Lindstrom and
Bates (1988) call this a ‘measure of lack of progress but not of actual convergence’.
Böhning et al. (1994) used Aitken’s acceleration to derive a suitable stopping crite-
rion for a linear convergent sequence. At each iteration (starting from the third), one
estimates the stationary value of the log likelihood by using the last three log likeli-
hood values as l(t+1)∞ = l(t) + 1

1−a(t) (l
(t+1) − l(t)) where for simplicity of notation

l(t) denotes the log likelihood value at iteration t and a(t) = l(t+1)−l(t)

l(t)−l(t−1) denotes the
estimated rate of convergence of the sequence of log likelihood values. This method
is also used to decrease the computation time caused by the multiple random starts as
it predicts the stationary log likelihood without requiring the parameters to converge.
Each set of starting parameters is iterated until the difference in the estimates of the
stationary log likelihood value is smaller than 10−9. The solution with the highest
estimated stationary log likelihood is then taken as the optimal solution. However,
for some selection criteria (see infra) accurate estimates of the parameter values are
also necessary. Therefore, the best solution is then iterated further until the difference
between the actual log likelihood and the estimated stationary log likelihood is smaller
than 10−12 and the maximum absolute change in the estimated component variances
is smaller than 10−9. The latter criterion is added because Abbi et al. (2008) found
that the variance parameters have the slowest convergence rate.

Third, for finite mixture models with normal components with component specific
variance parameters (or covariance matrices) there exists no global maximum for the
log likelihood (McLachlan and Peel 2000). In a mixture of normal linear regressions
with K > 1 components, one can make the log likelihood infinite by taking any p + 1
sample points and put them in a separate component. The resulting fitted hyperplane
in this component will then have a perfect fit and its estimated component variance
will be 0. Such a solution is obviously neither desired nor useful. A simple solution
to this problem would be to put an equality constraint on the variance terms across
the components, but this might be too restrictive. Components for which the variance
tends to 0 are however not really a problem in practice as the computer will detect
these and one can just discard these ‘solutions’. A far more serious problem is the
potential existence of ‘spurious’ solutions. McLachlan and Peel (2000, p. 99) describe
these as ‘solutions with relatively large local maxima that occur as a consequence of a
fitted component having a very small (but nonzero) variance’. Hence, these solutions
converge to parameter values which are very close to, but not on, the edge of the
parameter space (σ 2

k and πk close to 0). Usually, these solutions are not interesting as
they accommodate some random local pattern but will most likely not generalize out-
side the sample. Despite that only a relatively small number of observations belong to
these components, their contribution to the log likelihood may be so high that this solu-
tion has a larger sample log likelihood than the desired local maximum (containing
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meaningful components) and hence masks the desired solution. Dealing with such
solutions (i.e. eliminating spurious solutions) will probably require some judgement
from the researcher. However, in a simulation study this cannot be done. In our imple-
mentation, there are two ways for a local solution to be discarded. The first way is
when the estimated component SD becomes smaller than 10−10 to avoid singularities.
A second way out is when an estimated mixture proportion becomes smaller than p+1

n
as this is the boundary value of the effective sample size with which a regression plane
with p+1 coefficients can be estimated. Other solutions for the singular/spurious com-
ponent problem include restricting the parameter space or penalizing the likelihood
which is the subject of the next section.

2.3 Penalizing the likelihood

Hathaway (1985) proposed to solve the unboundedness of the likelihood by con-
straining the parameter space such that mink,k′( σk

σk′ ) ≥ c > 0 for all combinations of

k, k
′ = 1, . . . , K . This formulation ensures that there is a global maximum to the log

likelihood which is not singular. Furthermore, by choosing the right c one can also get
rid of the spurious solutions. On the other hand, implementing this constraint restricts
the solution space and might exclude the desired solution if c is too large. A simpler
approach seems to be to penalize the likelihood which has been proposed by Ciuperca
et al. (2003) and Chen et al. (2008). For finite mixture models of univariate normal
distributions Ciuperca et al. (2003) proved that in case K is known a priori, their penal-
ized likelihood estimator is consistent and Chen et al. (2008) proved that their version
of the penalized likelihood estimator is consistent even when K is unknown. The latter
result was generalized to (unconditional) multivariate normal distributions by Chen
and Tan (2009). In all three papers the conjugate prior distribution for the component
variances is used as the penalty function which makes this method a variant of max-
imum a posteriori estimation. Ciuperca et al. (2003) showed in a small example how
the penalized likelihood method can outperform the method from Hathaway (1985) in
case c is too large. Chen et al. (2008) and Chen and Tan (2009) showed with simulation
how their penalized estimator gives similar and sometimes better parameter estimates
in terms of bias and variance compared to the unpenalized approach. In this paper, the
approach of Chen et al. (2008) is adopted which results in a penalized log likelihood
of the following form

L L (Ψ ) =
n∑

i=1

log

[
K∑

k=1

πkN
(

yi |βT
k xi , σ

2
k

)
]

− an

K∑

k=1

(
s2
(1)

σ 2
k

+ log σ 2
k

)

(8)

where an is a constant which depends on the sample size and moderates the influence
of the penalty function. The penalty function in (8) is equivalent to putting an inverse-
gamma distribution on the component variances with mode at s2

(1). This mode is based
on the sample data and is taken to be the estimated variance of the error term in a
one-component regression. Maximizing (8) now results in a well-posed maximization
problem with a global maximum in the interior of the parameter space. This, however,
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does not make (8) concave (there can still be numerous local optima) and therefore
does not rid us of the necessity of starting the EM algorithm from different points.
The effect of penalizing the likelihood this way only modifies the estimation of the
component variances in the M-step. All other equations in (6) and (7) remain the same.
The new closed-form solution in an EM-iteration (t + 1) is

σ
2(t+1)
k =

(
y − Xβ

(t+1)
k

)T
W (t+1)

k

(
y − Xβ

(t+1)
k

)
+ 2ans2

(1)

∑n
i=1 τ

(t+1)
ik + 2an

. (9)

From (9) it can be seen that when an is a function which goes to 0 for n going to ∞,
the resulting penalized estimator is equivalent to the unpenalized estimator for large
sample sizes. However, for a non-zero an in a finite sample, the component variances
can never become 0. The resulting estimator in (9) looks similar to the James-Stein
estimator which is known to decrease the mean squared error of an original estimator
by introducing a relatively small bias (James and Stein 1961; Chen and Tan 2009).

In order to validate these results for mixtures of linear regressions and to select an
appropriate an we carried out some simulations. We simulated 200 sets of true parame-
ters for a mixture regression model with true number of components K = 2 and 3. The
mixture proportions were uniformly drawn from the sets π1 ∈ {0.2, 0.3, 0.4, 0.5} for
K = 2 and (π1, π2) ∈ {(0.2, 0.2), (0.2, 0.3), (0.2, 0.4), (0.3, 0.3), (0.3333, 0.3333)}
for K = 3. The regression coefficients were drawn from U [−2, 2] and the component
variances were drawn from U [0.5, 2] where U [a, b] denotes a continuous uniform
distribution with support [a, b]. For each of these 2 × 200 sets of true parameters, a
thousand samples were generated with sample sizes n = 300 and n = 600. Every
sample had p = 3 explanatory variables which were drawn from U [0, 10]. A sample
of size n is generated by drawing a single trial multinomial variable with the mixture
proportions as parameter vector. Hence, each observation is labeled to belong to one
specific component. Then, for each observation, the dependent variable yi is drawn
from a normal distribution with mean βT

k xi and variance σ 2
k . Estimation was done

using 9 random sets of start parameters and the true parameter vector using unpenal-

ized estimation and penalized estimation with five specifications for an = n− 1
j with

j = 1, . . . , 5 and where each estimator used the same start values. It is expected that
the solution obtained by starting from the true parameter values will converge most of
the times to the desired local optimum. The solutions of the random starts however,
can converge to spurious solutions which may result in a larger sample log likelihood.
The quality of the estimation procedures is therefore judged by their ability to recover
the parameters which we measure by the mean squared error (MSE) of the estimates
compared with the true parameters.

Tables 1 and 2 present the average mean squared error over the 200 sets of random
parameters for K = 2 and 3 respectively. The SDs of the MSE are shown in brackets.
From Table 1 one can see that larger penalties decrease the average MSE (except for
the variance parameters) in the case of two components. Hence, including a penalty
term decreases the risk of landing in a spurious solution. For the component variances,
the average MSE decreases initially but then rapidly increases beyond the unpenalized
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Order selection in finite mixtures 879

average MSE. Hence, by including a larger penalty, the induced bias in the variance
estimates offsets the decreased variance of the estimates. From Table 2 it seems that the
optimal penalty term with respect to average MSE is somewhere in between the two
extremes for most parameters. Both tables demonstrate that the differences between
the estimation methods become smaller for larger samples which is expected as larger
samples decrease the number of spurious solutions and the value of the penalty term.
Furthermore, we can see that the average MSE is larger for 3 component models
than for 2 component models. This seems logical as more complex models will likely
introduce more local optima and hence probably more spurious optima. Larger sample
sizes also decrease the size of the average MSE which reflects the consistency of both
estimators. It is also apparent that the intercept parameters are estimated relatively
poorly. This is most likely caused by the fact that these parameters are estimated at
the boundary of the design space of the explanatory variables. If one is interested in
estimating this parameter precisely, better experimental designs are warranted. Note
also the very large average and SD of the intercept terms for the unpenalized estimator
in the upper part of Table 2. This is due to one very large outlier (estimated MSE almost
96) for which the unpenalized method deviated extremely from the true solution despite
the inclusion of the true parameters in the start values.

From Tables 1 and 2 it appears that including a penalty term pays off with respect
to the MSE. However, it is hard to determine the optimal value of the penalty con-
stant from these tables. We have summarized the results even more by summing the
parameter-wise average MSE. As the different types of parameters have different
ranges, the MSEs were first divided by the square of their range to make the errors
comparable.

Figure 1 shows the relative total average MSE with respect to the unpenalized esti-

mator. From this plot it appears that a penalty constant of n− 1
2 performs best for our

very limited grid search although the difference with n−1 is very small. Chen and Tan

(2009) also found in their simulations that a penalty constant of n− 1
2 performed best rel-

ative to no penalty and n−1. It might pay dividends to find the optimal penalty constant
over a much finer grid (and an optimal penalty function) but this is beyond the scope
of this paper. As was shown empirically, the penalized maximum likelihood estimator
has on average a smaller MSE and has the ability to steer the EM algorithm away from
spurious optima. Therefore, we hypothesize that this estimator can improve model
selection for finite mixture models as most of the (non-Bayesian) selection criteria are
based on the maximum log likelihood and/or the maximum likelihood estimates.

3 Order selection

3.1 Order selection criteria

Mixture models in general can be used for two main purposes, namely density esti-
mation or approximation and model-based clustering (McLachlan and Peel 2000).
A mixture model can be used to ‘semi-parametrically’ estimate densities as any dis-
tributional form can be mimicked by adding enough components (see for instance
Marron and Wand 1992). Mixture models can also be used to perform model-based
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Fig. 1 Total relative average MSE relative to the unpenalized estimator

clustering. In model-based clustering, the components represent real but unobserved
(or perhaps inherently unobservable) groups in a population and thus have a meaning-
ful interpretation. In both cases the number of components is often unknown a priori.
Order selection in finite mixture models consists of finding the appropriate number
of components based on the observed data. Order selection for density estimation has
mostly been resolved as criteria such as AI C and B I C appear to select a suitable num-
ber of components (McLachlan and Peel 2000). In a model-based clustering context
however, order selection is a hard problem for which still no general solution exists
(McLachlan and Peel 2000; Nylund et al. 2007).

An obvious method to determine the number of components would seem to use
the likelihood ratio test because a model with K components is nested in a model
with K + 1 components. Unfortunately, the limiting distribution of the test statistic
is not the usual χ2 distribution with degrees of freedom equal to the difference in
numbers of parameters. The reason for this is that the regularity conditions which are
used in the derivation of the limiting distribution, are violated in the case of mixture
models (Ghosh and Sen 1985).3 Moreover, Seidel et al. (2000a,b) and Seidel and
Sevcikova (2004) have demonstrated that the distribution of the likelihood ratio test
statistic depends on the particular implementation of the EM algorithm. They showed
how different start strategies, different stopping rules and different ways of handling
spurious components affect this distribution in mixtures of exponential distributions.
As a way out, McLachlan (1987) suggested a parametric bootstrap approach. In such
a procedure, one generates B datasets under the null hypothesis (H0 : K = K0) and

3 For more on this topic, see for instance McLachlan and Peel (McLachlan and Peel 2000, Sect. 6.4) or
Garel (2007).
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subsequently calculates the likelihood ratio test statistic for each bootstrap sample.
Unfortunately, the number of bootstrap samples B will likely have to be high in
order to achieve sufficient power. Furthermore, for every bootstrap sample one has to
implement the same estimation procedure used on the original sample which generally
will require multiple starts. This results in a computationally burdensome procedure,
especially in a simulation setting4, and therefore this selection method will not be
used here. Burnham and Anderson (2002) give another justification for this decision,
as they vehemently argue throughout their book that hypothesis testing procedures are
not designed for model selection. Therefore, these tests lack theoretical justification
in model selection whereas information criteria such as AI C are specifically designed
for model selection and should be more suited for order selection in mixture models.
Furthermore, Sarstedt (2008) searched applications of mixture regression models in
marketing journals between 2000 and 2006 and found that none of the 32 articles he
found used a likelihood ratio test or a bootstrapped version for model selection. In
most articles B I C was used to select the number of components, followed by AI C
and some variants of that suggesting that in practice the bootstrap test is not really
used. Another type of model selection methods which will not be considered here are
methods based on the Fisher information matrix because approximations to this matrix
are only valid for very large samples, especially for mixture models (McLachlan and
Peel 2000) and inaccurate estimates will only introduce extra variability in the order
selection.5 In what follows, the selection methods which were used in our simulation
study will be discussed.

Burnham and Anderson (2002) classify model selection criteria into three broad
classes, namely optimization of a selection criterion, hypothesis testing and ad hoc
methods. As mentioned previously, hypothesis testing will not be used here. We will
start with reviewing some criteria which belong to the first class, the information
criteria. Most of these criteria were derived for general statistical models and not for
order selection in finite mixture models specifically. It should also be noted that for
all subsequent criteria, the model in the candidate model set for which the respective
criterion is minimized is the selected model. The best known information criterion is
most likely AI C which stands for Akaike’s information criterion.6 AI C is defined as

− 2L L
(
Ψ̂

)
+ 2n p (10)

where L L
(
Ψ̂

)
is the log likelihood of the data evaluated at the maximum likelihood

estimates and n p denotes the number of parameters in the model which is equal to
(p+3)K −1 for mixture regressions with p explanatory variables in each component.
Akaike (1974) derived AI C as an estimate of the (directed) Kullback–Leibler diver-

4 Bootstrapping the likelihood ratio test may however be very useful if one has enough time and/or com-
puting power. Nylund et al. (2007) presented very favorable results from their simulation study.
5 The most widely known criterion of this type is probably I C O M P (Bozdogan 1993) which is defined as

−2L L
(
Ψ̂

)
+n p log

[
n−1

p trace
(
I−1

)]
− log

(
|I−1|

)
where I denotes the expected information matrix,

n p is the number of parameters and |.| is the determinant.
6 Akaike himself actually called it ‘An information criterion’ (Burnham and Anderson 2002).
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gence7 between the true model and the fitted model. The term n p is a bias-correction
term as the maximized log likelihood is a positively biased estimator of the expected
Kullback–Leibler information. Despite popular belief, AI C does not require that the
true model is in the set of candidate models (Konishi and Kitagawa 1996; Burnham
and Anderson 2002) but the approximations in the derivation do require the same reg-
ularity conditions as are needed for the likelihood ratio test (Titterington et al. 1985;
McLachlan and Peel 2000). Several authors have noticed that it tends to overfit, i.e.
select too many components, in a finite mixture context (McLachlan and Peel 2000)
but it is still used as shown by Sarstedt (2008). Hurvich and Tsai (1989) developed a
bias corrected version of AI C for regular linear models with normal errors. Burnham
and Anderson (2002) however, also advocate its use in other contexts unless the under-
lying probability distribution deviates strongly from a normal one. Finite mixtures of
normal distributions however are not normal and can approximate any continuous dis-
tribution to a desired degree of accuracy (McLachlan and Peel 2000). Hence, it would
seem that this improvement will not work well in the mixture context. The corrected
AI C , denoted by AI Cc is equal to AI C + 2n p(n p+1)

n−n p−1 . It is straightforward to see that
the penalty will be larger than that of AI C for finite sample sizes and tends to 0 as the
sample size increases.

Whereas AI C is derived by looking at the directed Kullback–Leibler divergence
between the truth and the approximating model, Cavanaugh (1999) used the sym-
metric Kullback–Leibler divergence8 between truth and approximation. He showed

that optimizing this criterion leads to K I C = −2L L
(
Ψ̂

)
+ 3n p which is short

for Kullback information criterion and has a larger penalty than AI C . Cavanaugh

(2004) also derived a bias corrected version K I Cc = −2L L
(
Ψ̂

)
+n log

(
n

n−n p+1

)
+

n{(n−n p+1)(2n p+1)−2}
(n−n p−1)(n−n p+1)

and showed that it can also hold as an approximation for non-
linear models. Cavanaugh (1999) argued that K I C might be a more sensitive measure
of departure from the truth than AI C . Interestingly enough, Bozdogan (1993) conjec-
tured that the asymptotic log likelihood ratio for nested mixture models is distributed
as a non-central χ2 distribution. From this he derived that the penalty in (10) should
be 3n p, which is the same formula as Cavanaugh’s K I C . Another modification of
AI C was suggested by Bhansali and Downham (1977) who suggested to increase the
penalty term to 4n p, based on simulations of autoregressive models, which we will
denote by AI C4.

One property of AI C is that it is not a consistent criterion.9 A consistent model
selection criterion is a criterion which, as the sample size grows, asymptotically selects
the true model with probability 1 provided that the true model is in the candidate set

7 The Kullback–Leibler divergence between distributions f and g is defined as I ( f, g) =∫
f (x) log f (x)dx − ∫

f (x) log g(x)dx and represents the lost information when approximating f by
g (Kullback and Leibler 1951; Burnham and Anderson 2002).
8 The symmetric Kullback–Leibler divergence J ( f, g) between f and g is defined as J ( f, g) = I ( f, g) +
I (g, f ).
9 Burnham and Anderson (2002) argue that in most realistic situations, it is impossible that the true model
is in the set of candidate models and show furthermore by simulation that in case it is, AI C also selects the
true model with high probability.
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of models (Burnham and Anderson 2002). Several of such consistent criteria have
been derived in the literature. It should also be noted that by requiring a criterion
to be consistent, it no longer is an estimator of the relative Kullback–Leibler diver-
gence and is hence no longer efficient (Burnham and Anderson 2002; Yang 2005).
Efficiency here means that as the sample size tends to infinity, an efficient informa-
tion criterion will select the model in the candidate model set which has the smallest
expected squared prediction error. Perhaps the most famous among the consistent
criteria is B I C (Schwarz 1978), known as Bayesian information criterion, which is
defined as

BIC = −2L L
(
Ψ̂

)
+ n p log(n) (11)

and can be derived as a large sample approximation of the logarithm of the integrated
likelihood (integrated over the parameter space). Using B I C implies selecting the
model with the largest posterior probability without specifying priors. McLachlan and
Peel (2000) note that the derivation of (11) requires regularity conditions which break
down for finite mixture models. However, as AI C , B I C is still used in practice as
indicated by Sarstedt (2008). It has been reported that B I C underfits finite mixtures
(i.e. selects a model with too few components) for small sample sizes (McLachlan
and Peel 2000). B I C was independently derived as a special case by Rissanen (1986)
based on coding theory and the principle of minimum description length. There also
exists an adjusted version of B I C , denoted by a B I C , which mitigates underfitting
in small samples where sample size n in (11) is replaced by n+2

24 (Sclove 1987).
Liang et al. (1992) mention two other modifications of (11) where the penalty term
is 2n p log(n) and 5n p log(n). These criteria will be denoted by M DL2 and M DL5
respectively. Hannan and Quinn (1979) derived another consistent criterion, H Q,
which replaces 2n p log(n) by 2n p log (log(n)) in (10) and has a smaller penalty than
B I C . Bozdogan (1987) proposed a consistent modification of (10), namely C AI C =
−2L L

(
Ψ̂

)
+ n p

[
log(n) + 1

]
which increases the penalty function for any sample

size. For non-trivial sample sizes (larger than 55) we can order most of these criteria
from the smallest penalty function to the largest penalty function as AI C , K I C ,
AI C4, B I C , C AI C , M DL2, M DL5. AI Cc, K I Cc, a B I C and H Q are somewhere
in between depending on the sample size and the dimension of the parameter vector.
In general we can say that AI C would select larger models as it has the lowest penalty
term which may cause problems with overfitting, as is reported in the literature. M DL5
on the other hand will select small models as its penalty term is by far the largest and
will therefore be most prone to underfitting.

Naik et al. (2007) derived a mixture regression criterion in the spirit of AI C for
simultaneous selection of the number of components and the number of explanatory
variables per component, M RC , which has the following formula

MRC =
K∑

k=1

nπ̂k log(σ̂ 2
k ) +

K∑

k=1

nπ̂k(nπ̂k + p̂k)

nπ̂k − p̂k − 2
− 2

K∑

k=1

nπ̂k log(π̂k) (12)
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where p̂k = trace

(

X̂k

(
X̂

T
k X̂k

)−1
X̂

T
k

)

, X̂k = Ŵ
1/2
k X and Ŵ k is a diagonal matrix

with elements τ̂1k, . . . , τ̂nk . The first term in (12) measures the lack of fit and hence
minimizing it will lead to larger models. This tendency is countered by the second
term which penalizes retaining many explanatory variables and by the third term which
penalizes the number of components. When K = 1, (12) is equal to AI Cc and for large
samples it is equivalent to AI C . Similar to Cavanaugh (1999), Hafidi and Mkhadri
(2010) derived an information criterion based on the symmetric Kullback–Leibler
divergence which we will call M RCk and which is defined as M RC +∑K

k=1

(
p̂k + 1

)
.

Next to the information criteria we will also consider some classification based
methods which were also specifically developed for finite mixture models but not for
mixtures of (linear) regressions. These methods take classification into account and
tend to select models which are able to convincingly classify the observations. It can
be shown that the estimated complete data log likelihood is equal to the sample log
likelihood minus the entropy of the posterior classification matrix of the estimated
posterior probabilities (Hathaway 1986):

L Lc

(
Ψ̂ , τ̂

)
= L L

(
Ψ̂

)
+

K∑

k=1

n∑

i=1

τ̂ik log τ̂ik (13)

where τ̂ denotes the matrix of posterior probabilities and the second term on the
right hand side is the negative of the estimated entropy E N (τ̂ ). Biernacki and Gov-
aert (1997) suggested using this for order selection. By multiplying (13) by −2 one
obtains the classification likelihood criterion (C LC). Biernacki and Govaert (1997)
found that this criterion works well for well separated components and equal mix-
ture proportions. Banfield and Raftery (1993) also used the classification likelihood to
derive an approximate Bayesian criterion called the approximate weight of evidence

AW E = −2L Lc

(
Ψ̂ , τ̂

)
+ 2n p(

3
2 + log n). Note that the penalty term in AW E

is very large. Celeux and Soromenho (1996) propose to use the entropy directly to
select the correct number of components by using the normalized entropy criterion
N EC = E N (τ̂ )

L L
(
Ψ̂

)
−L L(1)

where L L(1) denotes the maximized log likelihood for a one-

component model. As this criterion is undefined for K = 1, Biernacki et al. (1999)
modified it by setting N EC at 1 in this case. As C LC and N EC do not penalize
for model complexity these methods might tend to overfit which can be overcome by
including a penalty for model complexity. Furthermore, B I C does not take the mix-
ture context into account. Biernacki et al. (1998) proposed to solve these problems
with the integrated classification likelihood criterion which is defined as

I C L =C LC+2n
K∑

k=1

π̂k log(π̂k)+(n p − K + 1) log(n)−2F(nπ̂1, . . . , nπ̂K ) (14)

F(n1, . . . , nK ) =
K∑

k=1

log (�(nk + α)) − log (�(n + Kα)) − K log (�(α))

+ log (�(Kα)) (15)
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Table 3 Overview of order selection criteria

Criterion Formula Source

AIC −2L L
(
Ψ̂

)
+ 2n p Akaike (1974)

AICc AI C + 2n p(n p+1)

n−n p−1 Hurvich and Tsai (1989)

KIC −2L L
(
Ψ̂

)
+ 3n p Cavanaugh (1999)

KICc −2L L
(
Ψ̂

)
+ n log

(
n

n−n p+1

)

+ n{(n−n p+1)(2n p+1)−2}
(n−n p−1)(n−n p+1)

Cavanaugh (2004)

AIC4 −2L L
(
Ψ̂

)
+ 4n p Bhansali and Downham (1977)

CAIC −2L L
(
Ψ̂

)
+ n p

[
log(n) + 1

]
Bozdogan (1987)

MRC
∑K

k=1 nπ̂k log(σ̂ 2
k ) + ∑K

k=1
nπ̂k (nπ̂k+ p̂k )

nπ̂k− p̂k−2

− 2
∑K

k=1 nπ̂k log(π̂k )

Naik et al. (2007)

MRCk MRC + ∑K
k=1

(
p̂k + 1

)
Hafidi and Mkhadri (2010)

BIC −2L L
(
Ψ̂

)
+ n p log(n) Schwarz (1978), Rissanen (1986)

aBIC −2L L
(
Ψ̂

)
+ n p log( n+2

24 ) Sclove (1987)

HQ −2L L
(
Ψ̂

)
+ 2n p log (log(n)) Hannan and Quinn (1979)

MDL2 −2L L
(
Ψ̂

)
+ 2n p log(n) Liang et al. (1992)

MDL5 −2L L
(
Ψ̂

)
+ 5n p log(n) Liang et al. (1992)

CLC −2L L
(
Ψ̂

)
− 2

∑K
k=1

∑n
i=1 τ̂ik log τ̂ik Biernacki and Govaert (1997)

AWE CLC + 2n p( 3
2 + log n) Banfield and Raftery (1993)

ICL CLC + 2n
∑K

k=1 π̂k log(π̂k ) + (n p − K + 1) log(n)

− 2F(nπ̂1, . . . , nπ̂K )

Biernacki et al. (1998)

ICL–B I C CLC + n p log(n) Biernacki et al. (1998)

NEC
− ∑K

k=1
∑n

i=1 τ̂ik log τ̂ik

L L
(
Ψ̂

)
−L L(1)

Celeux and Soromenho (1996)

F(n1, . . . , nK ) = ∑K
k=1 log (�(nk + α)) − log (�(n + Kα)) − K log (�(α)) + log (�(Kα))

where �(.) is the gamma function and α represents the parameter of a prior Dirich-
let distribution on π . Jeffrey’s non-informative prior takes α as 1/2 which is also
what Biernacki et al. (1998) use and what will be used here. Biernacki et al. (2000)
also provide a large sample B I C approximation to I C L which is I C L − B I C =
C LC + n p log(n) and they have found that this approximation doesn’t differ much
from using (14). An overview of all order selection criteria considered can be found in
Table 3.

3.2 Previous results

Selecting the correct number of components has been extensively studied in the liter-
ature. These simulation studies vary in the type of models considered, the selection
methods used and the settings of the simulation design (experimental factors). In this
section, some of these studies will be reviewed.
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In the context of mixtures of multinomial distributions (also known as latent class
analysis) several extensive simulation studies have been performed. Yang (2006) found
that a B I C was generally the best criterion. For large samples B I C and C AI C also
performed well. Dias (2007) concluded that B I C outperforms several complete infor-
mation based criteria. Yang and Yang (2007) also found that a B I C was the best
performing information criterion and also mentions K I C as a good alternative. Cutler
and Windham (1994) simulated mixtures of multivariate normal components. They
found that I C O M P was superior to both AI C and B I C . In a small scale simula-
tion McLachlan and Ng (2000) found that I C L and I C L–B I C outperformed B I C
and AI C and showed that AI C tends to overfit. Celeux and Soromenho (1996) also
performed some simulations for both univariate and multivariate mixtures of normal
distributions. They found that AI C has a slight tendency to select too many compo-
nents, that B I C tends to select too few and that N EC and I C O M P generally perform
best. Nylund et al. (2007) concluded that B I C is the best information criterion for
both mixtures of multinomial distributions tables and mixtures of normal distributions.
They also showed that a parametric bootstrap of the likelihood ratio test outperforms
B I C . An interesting study is that of Fonseca and Cardoso (2007) where they com-
pared the performance of several selection measures on 42 real datasets where the true
number of components is known. For the categorical datasets, they found that K I C
worked best as it selected the correct number of components in 95 % of the cases. For
continuous data, they used multivariate normal models and found that B I C works best
with a success rate of 77 %. In the datasets with mixed types of data (both continuous
and categorical) they found that I C L–B I C performed best (80 % success rate). They
also noted that the performance of the AI C family of information criteria and I C L–
B I C varied a lot across the different types of data. From their results, it can be seen that
B I C has the highest average success rate followed by C AI C . C LC on the other hand
performs worst on average, followed by AW E . Steele and Raftery (2009) also per-
formed a small scale simulation study for univariate mixtures of normal distributions.
They found that B I C outperformed AI C and I C L–B I C and that AI C had a slight
tendency to overfit. Jedidi et al. (1997) found that B I C and to a lesser extent C AI C
work well in mixtures of structural equation models. Andrews and Currim (2003a)
showed that K I C outperforms I C O M P , B I C and a validation sample method in
mixtures of logistic regressions. In the context of mixtures of growth models, Lubke
and Neale (2006) found that AI C and a B I C outperform B I C and C AI C . Tofighi
and Enders (2008) also found that a B I C works well and B I C performs poorly for
this type of models.

Hawkins et al. (2001) were the first to systematically investigate model selection
in finite mixtures of univariate linear regressions using an extensive simulation study.
The factors in the experiment were the true number of mixing components (1 to 4),
the mixture proportions and the parameters in the component regression models which
were condensed in one measure of separation between the components. They com-
pared order selection based on 22 selection criteria which were based on the log like-
lihood, an approximation to the Fisher information matrix and several approximations
to the complete data log likelihood and the complete data Fisher information matrix.
They also included two classification-based measures. In general they concluded that
model selection performance of all criteria decreased as the true number of components
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increased and in the presence of small mixture proportions. The performance increased
on the other hand when the components were better separated. For a small number of
components (1 or 2) they found that I C O M P was the second worst criterion (only
better than the log likelihood itself). B I C and to a lesser extent AW E performed the
best in that situation. For larger numbers of components no criterion outperformed the
others in all circumstances. They could however conclude that AI C , K I C , I C O M P ,
B I C and AW E as a group performed better than the other measures which were based
on approximations of the complete data Fisher information matrix or on the posterior
probabilities. Finally, they also noted that K I C did not systematically outperform AI C
or the other way around. Andrews and Currim (2003b) investigated the performances
of AI C , K I C , B I C , C AI C , I C O M P , a validation sample log likelihood and N EC
in a simulation of mixtures of linear regression models with repeated observations per
subject. They varied eight factors: the true number of components, the mean separation
between component coefficients, the number of subjects, the number of observations
per subject, the number of explanatory variables, R2 within the components, the mini-
mum mixture proportion and the measurement level of the explanatory variables. They
found that K I C was the best criterion in all experimental conditions followed by B I C
and the validation log likelihood. I C O M P , N EC and AI C on the other hand did not
perform well. Oliveira-Brochado and Martins (2008) performed a similar simulation
study as Andrews and Currim (2003b). They added another experimental factor differ-
entiating between normal errors and uniform errors. Furthermore they compared 26
selection criteria. They found that overall, K I C , I C L–B I C , H Q and AI C4 (in that
order) performed best and that AI C , AI Cc and I C O M P had the largest tendency to
overfit. Most of the classification-based criteria on the other hand showed high rates
of underfitting. Both studies also showed that generally the performance of the criteria
increases when the true model is less complex, i.e. fewer components and explanatory
variables, the separation between the components increases, the sample size grows and
the absence of very small components. Surprisingly, Oliveira-Brochado and Martins
(2008) found that the effect of error misspecification only had a small negative effect.
Finally, Sarstedt (2008) investigated the performance of AI C , K I C ,B I C and C AI C
in mixtures of univariate regressions while varying the sample size systematically
between 100 and 500. In this study it was found that C AI C and to a lesser degree
B I C performed well across all sample sizes. K I C only performed well for sample
sizes larger than 250 and AI C performed poorly in all experimental conditions.

4 Simulation study

4.1 Experimental design

The design of our simulation study largely follows Hawkins et al. (2001). The number
of explanatory variables p is set to 3 in all true models. All explanatory variables
are drawn from uniform distributions with support [0, 10]. The regression coefficients
(including the intercept) and the component variances are drawn from uniform dis-
tributions with support [−2, 2] and [0.5, 2] respectively to increase generalizability.
As a measure of separation for the components we calculated the average distance
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between the component regression hyperplanes as in Hawkins et al. (2001). The dis-
tance between 2 components k and l at some specific point x is equal to

Mkl =
√
√
√
√

(
βT

k x − βT
l x

)2

σ 2
k + σ 2

l

. (16)

We evaluated this at 50 evenly spaced grid points between 0 and 10 in each of the 3
dimensions and took the average as the separation between component k and l.

The experimental factors are:

– K ∗ True number of components: 1, 2 or 3;
– n Sample size: 100, 300 or 600;
– π The mixture proportions: equal (1/K ∗) or unequal with π = (0.34, 0.66) for

K ∗ = 2 and π = (0.25, 0.25, 0.5) for K ∗ = 3;
– t Type of model (mis)specification: 1–9.

A type of 1 for t indicates no misspecification and is the only specification (together
with t = 5 and some instances of t = 9) where the true model is in the set of candidate
models. Type 2 means that after the true data generation 3 independent explanatory
variables were added to the sample. This is a situation which frequently arises when
researchers are unsure which variables are relevant. The data used for estimation thus
contain superfluous, uninformative variables. A misspecification type 3 indicates that
after data generation one of the explanatory variables was dropped from the sample
(we have arbitrarily taken the last one). This mimics a situation where an important
variable is unknown to be related to the dependent variable. In both cases, due to the
independency of the explanatory variables, it would be expected that the regression
coefficients could still be estimated without bias when the model is estimated with
K ∗ components. It is however expected that with type 2 misspecification the order
selection procedures can capitalize on the higher dimensionality of the parameter space
and hence prefer models with more components which would lead to overfitting. In
situation 3, the parameter space has a smaller dimension and therefore it might be
harder to pick up the true number of components. As the importance of the dropped
explanatory variable is not uniform across the components (the regression coefficient
varies across the components) it might also be the case that specific components
become much harder to find for a large |β3k | whereas detection of others might hardly
be influenced for small |β3k |. It is therefore expected that this would increase the
rate of underfitting for the selection procedures. Misspecification type 4 means that
the true data generation mechanism includes an interaction (arbitrarily taken between
explanatory variables 2 and 3) whereas it is estimated without this effect. The estimated
regression coefficients will no longer be unbiased as the explanatory variables are
correlated with the unincluded but real interaction effect. It is unclear how this will
affect model selection. Type 5 is not a real model misspecification as it indicates that
the explanatory variables are correlated. The design matrix for this type was generated
according to Falk (1999) with all correlations put to 0.5. For all types 1–5 the errors
are normally distributed as specified earlier. Misspecification of type 6 indicates that
the normal error terms are transformed to have a higher kurtosis and type 7 that they
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Fig. 2 Kernel density plot of error distributions

are transformed to have skewed errors. The transformations were done according to
Fleishman’s method (Fleishman 1978). The type 6 errors were transformed to have
excess kurtosis of 4 whereas the type 7 errors were transformed to have excess kurtosis
of 4 and skewness of 1.5.10

The effect of these transformations is illustrated in Fig. 2 for standard normal
variables. It can readily be seen that type 6 makes the tails of the error distribution
heavier with respect to a normal distribution. On the one hand this makes it easier
to find the real components but on the other hand this may lead to extra components
which accommodate the outlying observations. It is therefore expected that this type of
misspecification will lead to overfitting. For type 7 of model misspecification, the error
terms are asymmetric which will most likely also lead to overfitting. Titterington et al.
(1985) for instance, showed how it is practically impossible to differentiate a lognormal
distribution (which is skewed) from a mixture of 2 normal distributions. The final
type of model misspecification (8) is a case where the errors within a component are
heteroskedastic meaning that within each component the normal errors have different
variances depending on the size of the explanatory variables. This was achieved by

multiplying the error of observation i belonging to component k with exp(

∑p
j=1 xi j

5p −
0.3). Afterwards the errors were multiplied by the appropriate scaling factor to make
them have the required average variance within each component. It is expected that
this will also lead to increased overfitting as the regions with higher error variability
might accommodate multiple components. As suggested by an anonymous reviewer
we also included a setting where the model is a mixture of linear time series models
which is taken to be the mixture autoregressive model introduced by Wong and Li

10 It is not possible to set skewness independently from kurtosis (Headrick 2002).
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Table 4 Overview of model
(mis)specifications

Code Type of (mis)specification

1 –

2 3 Superfluous explanatory variables

3 1 Missing explanatory variable

4 Missing interaction

5 Multicollinearity

6 Heavy tailed errors

7 Skewed errors

8 Heteroskedastic errors within each component

9 Autoregressive AR(pk ), k = 1, 2, 3 components

(2000). In this model the components are linear autoregressive time series models
(AR(pk)) where each component could be of a different autoregressive order pk .
One could interpret the components as representing different regimes which manifest
themselves as different temporal dependencies among the observations, depending on
the time period. On the other hand, this model can also be used as a more flexible
tool to model the conditional distribution of the observed variable at different time
points. Here we only consider first order stationary models and because in practice
the autoregressive order of the time series is not known, we assume here that an upper
bound of 3 can be established. This means that in each component, it is assumed that
the autoregressive order is 3 during estimation and is uniformly set between 1 and 3 in
the data generating process. The design matrix here is formed by the past observations
of the observed variable and coefficients of the non-contributing autoregressive terms
are set to 0 in the data generating process. Note that there is a distinction here between
order selection in a mixture model, which is taken as the selection of the number of
components, and autoregressive order selection within a component which means the
selection of the number of past observations used to model the observed variable. Here
we only consider order selection as this is the most important, necessary first step in
model selection for mixture autoregressive models as noted by Wong and Li (2000).
As a measure of separation between components we used the unconditional means
and variances of the observed variable within each component. An overview of the
different model specifications can be found in Table 4.

The design is full factorial and was executed with 1,000 replications. For each
replication and combination of factor settings, a set of parameters and a design matrix
was generated as specified above. Component membership was generated by drawing
a sample of size n from a multinomial distribution with parameter vector π . The
dependent variables yi were then generated as a draw from a normal distribution with
mean βT

k xi for the relevant component k and a (potentially transformed) variance.
Models where K ∗ = 1 were fitted with K = 1 − 3, models with K ∗ = 2 were fitted
with K = 1 − 5 and models with K ∗ = 3 were fitted with K = 1 − 6 where K ∗
denotes the true number of components. Estimation was done with an unpenalized and
a penalized EM algorithm with 200 random starts for K > 1. The penalty constant was

taken to be n− 1
2 . As measures of performance we will look at the root mean squared

error of estimation and the success rate of the order selection criteria compared to the
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known true number of components K ∗. However, as the correct model is not always
in the set of candidate models it might be that a model with K 	= K ∗ is a more
appropriate model. Therefore we will also look at a validation sample of size 1,000
generated from the true data generating model. The estimated model with the highest
log likelihood in the validation sample is then taken as a success with respect to out
of sample prediction as this is an estimate of the Kullback–Leibler divergence up to a
constant (Burnham and Anderson 2002).

4.2 Results and discussion

Before we analyze the model selection results, we take a look at the convergence of
the unpenalized and the penalized estimators. From Table 5 it can be seen that models
with K = 2 components were always estimable. Note also that models with only
K = 1 component are always estimable and identical for both estimators. Further-
more, there is almost no difference between both estimation procedures (in terms of
convergence) when the true number of components is K ∗ = 1. For a higher number of
true components, however, there are large differences between both procedures. Note
that for models with true number of components K ∗ = 3, the penalized estimator did
not always converge when estimating with this number of components. The instances
when this happened generally occurred when one component was very close to another
component which made them virtually indistinguishable, especially when the sample
size was small. These solutions were discarded as it is impossible there to select the
correct number of components.

From Table 5 it can also be observed that a penalized likelihood estimator can
partly serve as an order selection tool by not converging to any non-spurious solution
with K > K ∗. This also happens for the unpenalized estimator but with much lower
frequency. Finally, it can be noted that models where K > K ∗ could be estimated
more frequently for specification types 3, 8 and especially 9.

Next we take a look at the root mean squared error of both estimators when K ∗ > 1
and K = K ∗ because for one-component models the estimators are identical and for
K 	= K ∗ the model structure is too different from the truth to be easily compared. As
before, the results are adjusted for the different ranges of the different types of para-
meters. Figure 3 depicts the root mean squared error for the 3 levels of sample size
and the 9 types of specification. From this figure it is immediately clear that on most
occasions the penalized estimates have smaller mean squared errors than the unpenal-
ized estimates. Furthermore, when the unpenalized estimator is better, the difference
is smaller than the other way around. Hence, once again one can see that penalization
leads to better estimation here. It can also be seen that both estimators perform better
for larger samples and that specification types 1, 4 and 5 can be accurately estimated.
Specification types 8 and especially 3 on the other hand lead to the worst estimates.

Figures 4 and 5 present the rates of underfitting, correct fitting and overfitting with
respect to the true number of components for each selection method and specification
type. What is shown in both figures is actually the difference between the selected num-
ber of components and the true number of components. Values larger than 0 indicate
overfitting, i.e. the selected number of components is larger than the true number of
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Fig. 3 Root mean squared error differentiated by sample size (left) and by specification type (right). Note
that the axes in both panels are on a logarithmic scale

components. Values below 0, on the other hand, represent underfitting and 0 represents
the correct selection of the number of components. The dark bars are the rates based on
the penalized estimator whereas the lighter bars represent the unpenalized estimator.
A striking difference can be noticed between penalized estimation and unpenalized
estimation. For all but two criteria, the model selection criteria have a higher or equal
probability of selecting the correct number of components when using the penalized
estimator and when they do worse, it is only marginally so. When they do better, on
the other hand, the difference is often quite substantial. What also becomes clear from
Fig. 4 is that several criteria have a tendency to overfit whereas other criteria have a
tendency to underfit. The AI C family, AI C , AI Cc, K I C , K I Cc and AI C4, belong
to the overfitting group when they are wrong. Especially AI C and AI Cc can overfit
severely. a B I C and H Q also tend to overfit. M RC , M RCk , M DL2, M DL5, C LC ,
AW E , I C L , I C L–B I C and N EC , on the other hand, tend to underfit when they
are wrong whereas B I C and C AI C can both overfit and underfit. Finally, it appears
that on average, over all experimental settings, C AI C , M RC , M RCk , M DL2, I C L ,
I C L–B I C , B I C and C LC perform best. On the other hand, AI C , AI Cc and a B I C
perform worst. Figure 5 is constructed similarly as Fig. 4 but the rates are now split
up according to specification type. Again, there is a striking difference between the
performance of the penalized estimator versus the performance of the unpenalized
estimator. We can also see that, on average, specification types 1, 4 and 5 are very
similar. It would appear that, on average, the model selection criteria have a high suc-
cess rate for these types and do not seem to systematically overfit or underfit. With a
slightly worse performance, and a slight tendency to overfit, it also seems that adding
superfluous covariates is quite innocuous. Dropping a covariate however, t = 3, has a
large negative effect but it does not systematically lead to overfitting or underfitting.
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Fig. 4 Rates of underfitting, correct fitting and overfitting by order selection method. The dark bars
represent the penalized estimator and the lighter bars represent the unpenalized estimator

Error misspecification also decreases the average success rates and has a tendency to
lead to overfitting. This is not surprising as the errors for these types naturally lend
themselves to be fit by more than 1 normal component. Finally, it can be observed
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Fig. 5 Rates of underfitting, correct fitting and overfitting by specification type. The dark bars represent
the penalized estimator and the lighter bars represent the unpenalized estimator
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that in the autoregressive models the probability to select the correct number of com-
ponents is, on average, only slightly larger than the probability of underfitting by 1
component and is smaller than the probability of underfitting.

Tables 6, 7 and 8 summarize the main results.11 In Table 6 one can find the results
of the case where the true number of components is 1 (K ∗ = 1). Order selection in this
case entails the important decision whether there is actually heterogeneity in the pop-
ulation in the form of multiple groups or not. Only the results of order selection based
on the penalized estimator are presented here as every selection method performed
better based on this estimator. It can readily be seen that the best performing criteria
here are AW E , M DL5, M RC , M RCk , I C L and I C L–B I C . It should however be
noted that the performance of these criteria in this case is not a completely reliable
quality measure as a success rate of 100 % can be achieved by making the penalty
term on the number of parameters large enough. On the other side of the spectrum
one can see that AI C and AI Cc perform dreadfully as they overfit in nearly every
case. A curious result is that the performance of several criteria diminishes or does not
increase when the sample size is larger among all types of true model specification.
These criteria are AI C , AI Cc, K I C , K I Cc, AI C4, C AI C and M DL2. This is not
a desirable result as more information should lead to better inference. This implies
that, as the number of observations per parameter increases, these criteria tend to
overfit. With respect to the type of model (mis)specification, one can observe that
even without any misspecification, AI C , AI Cc, K I C , K I Cc and a B I C have poor
performances. Among the selection criteria that consistently perform well, there is not
much of a drop comparing no misspecification to the various other specification types.
Another notable effect is that B I C , C AI C and C LC tend to vary between excellent
performance and very poor performance for different types of model specification.
B I C and C AI C appear sensitive to error misspecification and specification type 3,
a missing covariate. Their success rates drop sharply for larger sample sizes in these
settings. C LC , on the other hand, appears to be most sensitive to small samples as
its success rate increases sharply in going from n = 100 to 300. On average, it can
also be seen that error misspecification causes the most severe problems for various
selection methods.

Table 7 summarizes the main results of the two-component models which are more
challenging as there are more parameters per observation and a selection method can err
in two directions. It turns out that equal or unequal component sizes do not have large
impacts on the success rates of the selection criteria and this differentiation is therefore
not shown here. Again, only the results based on the penalized estimator are shown as
every selection method did better or nearly as well based on this estimator. There is
here, however, a small exception. I C L , I C L–B I C and N EC perform substantially
better based on the unpenalized estimator in the case of specification type 9, the mixture
autoregressive model. Unfortunately, substantially better does not imply well as their
performance rates increase to about 0.52–0.66, 0.32–0.46 and 0.27–0.35 for sample
sizes n = 100, 300 or 600 respectively. On average, M DL2, M RC , M RCk , I C L ,
I C L–B I C and N EC perform best here across all other experimental settings. AI C ,

11 The complete collection of tables with success rates for each combination of the experimental settings
can be found in the supplementary materials.
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Table 6 Success rates of the penalized estimator with respect to the true number of components when
K ∗ = 1

Type 1 2 3 4 5

n 100 300 600 100 300 600 100 300 600 100 300 600 100 300 600

AIC 0.07 0.02 0.01 0.00 0.00 0.00 0.13 0.06 0.04 0.07 0.02 0.01 0.06 0.02 0.01

AICc 0.28 0.04 0.01 0.00 0.00 0.00 0.24 0.07 0.04 0.25 0.04 0.02 0.28 0.05 0.01

KIC 0.65 0.53 0.40 0.03 0.01 0.00 0.49 0.24 0.18 0.60 0.47 0.40 0.62 0.51 0.41

KICc 0.86 0.62 0.45 0.60 0.05 0.01 0.61 0.26 0.19 0.84 0.58 0.45 0.85 0.60 0.46

AIC4 0.96 0.92 0.87 0.68 0.52 0.36 0.75 0.36 0.27 0.94 0.92 0.87 0.93 0.91 0.87

CAIC 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.61 0.41 1.00 1.00 1.00 1.00 1.00 1.00

MRC 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MRCk 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BIC 0.99 1.00 1.00 0.94 1.00 1.00 0.84 0.51 0.38 0.99 1.00 1.00 0.99 1.00 1.00

aBIC 0.00 0.22 0.54 0.00 0.00 0.01 0.03 0.15 0.21 0.00 0.19 0.56 0.00 0.21 0.56

HQ 0.67 0.77 0.79 0.04 0.13 0.15 0.50 0.31 0.26 0.65 0.75 0.79 0.65 0.74 0.78

MDL2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.66 1.00 1.00 1.00 1.00 1.00 1.00

MDL5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CLC 0.92 0.99 0.99 0.39 0.97 0.99 0.82 0.99 1.00 0.91 0.99 0.99 0.90 0.98 0.99

AWE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ICL 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ICL–BIC 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NEC 0.92 0.99 0.99 0.39 0.97 0.99 0.82 0.99 1.00 0.91 0.99 0.99 0.90 0.98 0.99

Type 6 7 8 9

n 100 300 600 100 300 600 100 300 600 100 300 600

AIC 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.03 0.01

AICc 0.04 0.00 0.00 0.01 0.00 0.00 0.04 0.00 0.00 0.26 0.06 0.01

KIC 0.15 0.01 0.00 0.03 0.00 0.00 0.12 0.00 0.00 0.62 0.52 0.39

KICc 0.32 0.01 0.00 0.08 0.00 0.00 0.30 0.00 0.00 0.85 0.61 0.43

AIC4 0.47 0.07 0.00 0.16 0.00 0.00 0.48 0.01 0.00 0.95 0.92 0.86

CAIC 0.78 0.42 0.08 0.46 0.01 0.00 0.89 0.34 0.00 1.00 1.00 1.00

MRC 0.99 0.94 0.96 0.84 0.88 0.99 1.00 0.99 1.00 1.00 1.00 1.00

MRCk 1.00 0.96 0.97 0.90 0.89 0.99 1.00 1.00 1.00 1.00 1.00 1.00

BIC 0.61 0.29 0.04 0.26 0.00 0.00 0.71 0.14 0.00 0.99 1.00 1.00

aBIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.52

HQ 0.17 0.03 0.00 0.03 0.00 0.00 0.14 0.00 0.00 0.65 0.79 0.76

MDL2 0.97 0.91 0.53 0.92 0.29 0.00 1.00 0.96 0.35 1.00 1.00 1.00

MDL5 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00 1.00 1.00 1.00 1.00

CLC 0.36 0.56 0.90 0.27 0.79 0.99 0.80 0.97 1.00 0.89 0.98 0.99

AWE 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ICL 0.88 0.88 0.96 0.79 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00

ICL–B I C 0.88 0.87 0.96 0.78 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00

NEC 0.36 0.56 0.90 0.27 0.79 0.99 0.80 0.97 1.00 0.89 0.98 0.99
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Table 7 Success rates of the penalized estimator with respect to the true number of components when
K ∗ = 2

Type 1 2 3 4 5

n 100 300 600 100 300 600 100 300 600 100 300 600 100 300 600

AIC 0.82 0.71 0.62 0.65 0.49 0.38 0.37 0.09 0.05 0.82 0.68 0.63 0.78 0.66 0.61

AICc 0.93 0.77 0.66 0.90 0.63 0.46 0.60 0.11 0.05 0.93 0.76 0.67 0.92 0.73 0.64

KIC 0.95 0.93 0.91 0.85 0.83 0.78 0.70 0.29 0.12 0.95 0.92 0.91 0.93 0.92 0.90

KICc 0.98 0.95 0.92 0.99 0.91 0.83 0.83 0.34 0.13 0.99 0.95 0.93 0.99 0.96 0.92

AIC4 0.98 0.99 0.99 0.96 0.97 0.96 0.84 0.54 0.21 0.99 0.99 0.99 0.98 0.99 0.99

CAIC 0.99 1.00 1.00 0.98 0.99 1.00 0.81 0.88 0.65 0.99 1.00 1.00 0.98 0.99 1.00

MRC 0.97 0.97 0.96 0.96 0.97 0.96 0.60 0.60 0.62 0.96 0.97 0.97 0.95 0.94 0.95

MRCk 0.96 0.97 0.96 0.96 0.97 0.96 0.59 0.60 0.62 0.96 0.96 0.97 0.94 0.94 0.95

BIC 0.99 1.00 1.00 0.98 1.00 1.00 0.84 0.82 0.53 0.99 1.00 1.00 0.99 0.99 1.00

aBIC 0.70 0.85 0.93 0.53 0.69 0.83 0.20 0.17 0.14 0.70 0.84 0.94 0.64 0.82 0.93

HQ 0.95 0.97 0.97 0.86 0.92 0.93 0.71 0.40 0.18 0.96 0.97 0.98 0.94 0.97 0.98

MDL2 0.97 0.99 0.99 0.95 0.99 0.99 0.67 0.85 0.92 0.96 0.99 1.00 0.96 0.99 0.99

MDL5 0.85 0.97 0.99 0.63 0.94 0.97 0.32 0.63 0.77 0.84 0.97 0.99 0.79 0.95 0.98

CLC 0.94 0.97 0.96 0.82 0.95 0.96 0.52 0.57 0.61 0.94 0.96 0.97 0.92 0.94 0.95

AWE 0.90 0.95 0.95 0.85 0.94 0.94 0.43 0.53 0.58 0.90 0.95 0.97 0.87 0.92 0.94

ICL 0.95 0.96 0.96 0.95 0.96 0.95 0.56 0.59 0.61 0.95 0.96 0.97 0.93 0.94 0.95

ICL–B I C 0.95 0.96 0.96 0.95 0.96 0.95 0.56 0.59 0.61 0.95 0.96 0.97 0.93 0.94 0.95

NEC 0.97 0.97 0.96 0.94 0.97 0.96 0.61 0.63 0.63 0.96 0.97 0.97 0.95 0.95 0.95

Type 6 7 8 9

n 100 300 600 100 300 600 100 300 600 100 300 600

AIC 0.60 0.10 0.00 0.47 0.02 0.00 0.41 0.02 0.00 0.17 0.13 0.11

AICc 0.72 0.12 0.00 0.58 0.02 0.00 0.62 0.02 0.00 0.50 0.22 0.14

KIC 0.77 0.22 0.01 0.63 0.04 0.00 0.70 0.08 0.00 0.47 0.55 0.52

KICc 0.87 0.26 0.01 0.76 0.04 0.00 0.89 0.11 0.00 0.57 0.64 0.56

AIC4 0.88 0.39 0.05 0.77 0.08 0.00 0.90 0.27 0.00 0.49 0.67 0.72

CAIC 0.96 0.76 0.40 0.91 0.39 0.01 0.97 0.88 0.35 0.38 0.58 0.64

MRC 0.97 0.94 0.90 0.96 0.86 0.90 0.91 0.92 0.92 0.19 0.23 0.22

MRCk 0.97 0.95 0.91 0.96 0.88 0.91 0.91 0.92 0.92 0.18 0.23 0.21

BIC 0.93 0.65 0.27 0.84 0.24 0.00 0.94 0.73 0.17 0.45 0.62 0.67

aBIC 0.50 0.16 0.02 0.40 0.03 0.00 0.27 0.04 0.00 0.06 0.35 0.59

HQ 0.77 0.30 0.03 0.63 0.05 0.00 0.71 0.15 0.00 0.48 0.65 0.71

MDL2 0.98 0.96 0.86 0.97 0.88 0.33 0.93 0.98 0.98 0.25 0.48 0.55

MDL5 0.86 0.98 0.99 0.85 0.97 0.99 0.66 0.92 0.97 0.08 0.28 0.39

CLC 0.76 0.61 0.73 0.67 0.62 0.86 0.76 0.87 0.91 0.23 0.24 0.23

AWE 0.92 0.96 0.96 0.91 0.95 0.96 0.79 0.88 0.90 0.10 0.18 0.19

ICL 0.94 0.88 0.89 0.90 0.84 0.91 0.88 0.90 0.91 0.16 0.22 0.21

ICL–B I C 0.94 0.88 0.89 0.90 0.85 0.92 0.88 0.90 0.91 0.16 0.22 0.21

NEC 0.94 0.93 0.94 0.91 0.93 0.97 0.89 0.91 0.92 0.25 0.25 0.23
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AI Cc and a B I C perform poorly again and one can observe that AI C , AI Cc, K I C
and K I Cc again show decreasing success rates as the sample size increases due to
their overfitting nature. We can also observe that there are several specification types
that have a substantial impact on otherwise well performing criteria. It appears that
type 9 has the largest impact followed by type 3. Error misspecifications also have
a negative impact but to a lesser extent than the former two. It can also be seen that
selection criteria that tend to overfit in many specifications achieve higher success
rates in the mixture autoregressive model. The criteria that tend to underfit on the
other hand, perform very badly for this specification type, especially compared with
other model specifications. These criteria do appear to be relatively robust with respect
to error misspecifications but not with respect to a missing covariate, t = 3. B I C and
C AI C again vary wildly between excellent performance for specification types 1, 2, 4
and 5 and poor performances for error misspecification where they have substantially
decreasing success rates for larger samples. M DL2 appears to be the only criterion
that performs well when there is a missing covariate in the sense that it achieves a
nice performance for large samples whereas K I C , K I Cc, AI C4 and B I C achieve
decreasing success rates for larger samples but good rates for small samples. It can
also be observed that the inclusion of superfluous explanatory variables, a missing
interaction term or multicollinearity do not seem very detrimental to the criteria that
perform well in correctly specified models. These specifications have a large negative
impact on AI C and AI Cc though.

Table 8 presents the results of order selection based on the penalized and the unpe-
nalized estimation when the true number of components was K ∗ = 3. The results are
again averaged over the component size equality setting as the success rates were very
similar for both settings. Contrary to the previous cases however, there is a substantial
difference between order selection based on the penalized estimator and the unpenal-
ized estimator in several experimental settings. These differences can be seen as small
sample effects on M RC , M RCk , M DL2, M DL5 and AW E . It appears that these
criteria tend to be too conservative here due to the smaller number of observations
per parameter. Hence, their selection performance can be improved by considering
spurious optima as the mean squared errors indicate that the penalized estimator is,
on average, better for these sample sizes. There are also substantial differences for
the mixture autoregressive model and the missing covariate specification in smaller
samples. K I Cc, AI C4,C AI C , B I C I C L , I C L–B I C and N EC are most affected
here. The resulting inference for these specification types based on both estimators
for the last 3 criteria in this group is poor however, for both specifications. Once
again it can be observed that AI C and AI Cc perform worse in larger samples but for
these settings they generally start from relatively high success rates. The model spec-
ification with the lowest success rates is once again the autoregressive model. None
of the criteria considered here can be said to be reliable to select the correct order
for this specification type with maximum success rates well below 0.6. The second
hardest model specification is once again a missing covariate and only C AI C , B I C
and M DL2 seem to do relatively well here with respectable success rates for larger
samples. Model specification types 1, 2, 4 and 5 seem very similar again. Misspecified
errors do have a negative impact on most criteria although there are several criteria
that perform well for one or more of these settings. Unfortunately, there does not seem
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Table 8 Success rates of the penalized (P) and unpenalized (U) estimator with respect to the true number
of components when K ∗ = 3

Type 1 2 3 4 5

n Pen 100 300 600 100 300 600 100 300 600 100 300 600 100 300 600

AIC P 0.95 0.83 0.74 0.93 0.65 0.44 0.53 0.17 0.05 0.94 0.83 0.72 0.92 0.79 0.68

U 0.35 0.04 0.01 0.54 0.01 0.00 0.18 0.02 0.00 0.35 0.04 0.01 0.19 0.01 0.00

AICc P 0.97 0.89 0.78 0.95 0.79 0.55 0.66 0.24 0.06 0.97 0.89 0.78 0.95 0.86 0.74

U 0.53 0.06 0.01 0.74 0.02 0.00 0.33 0.03 0.00 0.52 0.06 0.01 0.36 0.02 0.00

KIC P 0.96 0.96 0.96 0.95 0.89 0.85 0.60 0.47 0.19 0.96 0.95 0.93 0.94 0.94 0.94

U 0.50 0.14 0.06 0.62 0.04 0.00 0.34 0.10 0.02 0.47 0.15 0.06 0.32 0.06 0.02

KICc P 0.95 0.98 0.96 0.90 0.95 0.91 0.53 0.56 0.22 0.94 0.97 0.95 0.93 0.97 0.96

U 0.73 0.21 0.08 0.84 0.07 0.00 0.55 0.15 0.03 0.72 0.23 0.08 0.61 0.10 0.03

AIC4 P 0.94 0.98 0.99 0.92 0.97 0.97 0.47 0.65 0.38 0.94 0.98 0.99 0.92 0.98 0.98

U 0.66 0.35 0.24 0.71 0.09 0.01 0.50 0.29 0.11 0.65 0.35 0.23 0.51 0.22 0.14

CAIC P 0.90 0.98 0.98 0.84 0.96 0.98 0.31 0.64 0.73 0.91 0.97 0.99 0.87 0.96 0.98

U 0.84 0.86 0.89 0.81 0.60 0.62 0.43 0.62 0.71 0.84 0.85 0.89 0.76 0.81 0.86

MRC P 0.77 0.89 0.89 0.75 0.89 0.87 0.20 0.25 0.25 0.79 0.89 0.91 0.72 0.83 0.84

U 0.84 0.77 0.72 0.80 0.61 0.38 0.29 0.23 0.23 0.85 0.79 0.74 0.77 0.69 0.63

MRCk P 0.75 0.89 0.89 0.70 0.88 0.87 0.17 0.25 0.25 0.76 0.89 0.90 0.68 0.82 0.84

U 0.84 0.83 0.79 0.79 0.70 0.50 0.26 0.24 0.23 0.86 0.84 0.79 0.78 0.75 0.71

BIC P 0.92 0.98 0.99 0.90 0.97 0.98 0.40 0.68 0.71 0.93 0.97 0.99 0.90 0.97 0.98

U 0.75 0.74 0.79 0.75 0.37 0.35 0.52 0.60 0.65 0.73 0.74 0.77 0.63 0.64 0.74

aBIC P 0.92 0.92 0.97 0.90 0.79 0.90 0.36 0.33 0.24 0.91 0.92 0.96 0.87 0.90 0.96

U 0.30 0.08 0.08 0.52 0.02 0.00 0.11 0.05 0.03 0.30 0.09 0.08 0.14 0.03 0.03

HQ P 0.96 0.98 0.99 0.95 0.94 0.96 0.60 0.59 0.33 0.96 0.97 0.98 0.94 0.97 0.98

U 0.50 0.23 0.17 0.63 0.06 0.01 0.35 0.18 0.07 0.49 0.24 0.17 0.32 0.12 0.08

MDL2 P 0.76 0.95 0.97 0.59 0.91 0.95 0.13 0.41 0.61 0.77 0.95 0.98 0.70 0.91 0.96

U 0.79 0.95 0.97 0.67 0.90 0.94 0.15 0.41 0.61 0.80 0.94 0.98 0.74 0.91 0.96

MDL5 P 0.07 0.78 0.90 0.00 0.55 0.81 0.00 0.11 0.28 0.06 0.78 0.92 0.07 0.68 0.87

U 0.12 0.78 0.90 0.00 0.55 0.81 0.00 0.11 0.28 0.13 0.78 0.92 0.12 0.68 0.87

CLC P 0.88 0.90 0.90 0.90 0.89 0.89 0.32 0.26 0.26 0.89 0.90 0.91 0.85 0.85 0.85

U 0.37 0.22 0.24 0.51 0.07 0.03 0.24 0.14 0.15 0.37 0.22 0.23 0.23 0.12 0.14

AWE P 0.47 0.81 0.85 0.20 0.74 0.81 0.04 0.14 0.18 0.45 0.80 0.85 0.39 0.70 0.78

U 0.55 0.82 0.85 0.33 0.74 0.81 0.05 0.14 0.18 0.54 0.81 0.86 0.48 0.71 0.78

ICL P 0.78 0.88 0.89 0.76 0.87 0.86 0.17 0.23 0.24 0.79 0.88 0.89 0.71 0.80 0.82

U 0.70 0.66 0.70 0.72 0.37 0.36 0.28 0.21 0.22 0.69 0.66 0.68 0.57 0.55 0.60

ICL–B I C P 0.78 0.88 0.89 0.76 0.86 0.86 0.17 0.23 0.24 0.79 0.88 0.89 0.71 0.80 0.82

U 0.71 0.67 0.71 0.72 0.39 0.37 0.29 0.22 0.22 0.70 0.67 0.70 0.59 0.56 0.61

NEC P 0.48 0.53 0.55 0.49 0.52 0.56 0.19 0.15 0.16 0.50 0.53 0.56 0.44 0.46 0.47

U 0.40 0.30 0.32 0.42 0.20 0.17 0.28 0.14 0.13 0.38 0.32 0.32 0.33 0.23 0.23
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Table 8 continued

Type 6 7 8 9

n Pen 100 300 600 100 300 600 100 300 600 100 300 600

AI C P 0.88 0.23 0.02 0.84 0.11 0.00 0.67 0.06 0.00 0.30 0.20 0.17

U 0.33 0.01 0.00 0.30 0.01 0.00 0.25 0.01 0.00 0.06 0.02 0.02

AICc P 0.94 0.28 0.02 0.92 0.12 0.00 0.87 0.10 0.00 0.51 0.34 0.23

U 0.45 0.02 0.00 0.43 0.01 0.00 0.43 0.01 0.00 0.25 0.03 0.02

KIC P 0.93 0.39 0.06 0.91 0.18 0.00 0.83 0.28 0.01 0.38 0.49 0.53

U 0.42 0.04 0.00 0.40 0.01 0.00 0.38 0.03 0.00 0.17 0.08 0.07

KICc P 0.95 0.48 0.07 0.93 0.22 0.00 0.82 0.42 0.01 0.23 0.51 0.57

U 0.65 0.06 0.00 0.62 0.02 0.00 0.64 0.05 0.00 0.41 0.14 0.09

AIC4 P 0.95 0.58 0.15 0.92 0.32 0.01 0.81 0.62 0.08 0.20 0.41 0.53

U 0.57 0.11 0.01 0.54 0.03 0.00 0.56 0.11 0.01 0.31 0.22 0.19

CAIC P 0.92 0.86 0.61 0.91 0.73 0.20 0.67 0.90 0.78 0.09 0.24 0.36

U 0.78 0.52 0.36 0.76 0.39 0.08 0.73 0.70 0.62 0.43 0.51 0.49

MRC P 0.82 0.86 0.82 0.81 0.85 0.79 0.49 0.61 0.65 0.04 0.05 0.05

U 0.86 0.74 0.68 0.84 0.61 0.68 0.58 0.52 0.56 0.08 0.07 0.07

MRCk P 0.79 0.87 0.84 0.78 0.87 0.80 0.43 0.60 0.64 0.03 0.05 0.05

U 0.87 0.78 0.72 0.85 0.68 0.71 0.55 0.54 0.57 0.07 0.07 0.07

BIC P 0.94 0.78 0.48 0.93 0.62 0.10 0.76 0.88 0.62 0.14 0.28 0.39

U 0.66 0.35 0.20 0.64 0.22 0.03 0.64 0.51 0.37 0.38 0.46 0.45

aBIC P 0.84 0.32 0.07 0.79 0.14 0.00 0.53 0.14 0.02 0.14 0.41 0.56

U 0.29 0.03 0.00 0.27 0.01 0.00 0.20 0.02 0.00 0.04 0.04 0.09

HQ P 0.93 0.50 0.12 0.91 0.24 0.01 0.83 0.45 0.05 0.37 0.47 0.55

U 0.43 0.06 0.01 0.41 0.02 0.00 0.39 0.05 0.00 0.18 0.14 0.15

MDL2 P 0.79 0.93 0.93 0.79 0.94 0.78 0.37 0.79 0.91 0.04 0.15 0.25

U 0.82 0.88 0.88 0.81 0.89 0.72 0.43 0.79 0.90 0.15 0.17 0.26

MDL5 P 0.08 0.79 0.91 0.08 0.81 0.92 0.00 0.33 0.66 0.00 0.04 0.11

U 0.14 0.79 0.91 0.15 0.82 0.92 0.00 0.33 0.66 0.01 0.04 0.11

CLC P 0.87 0.58 0.57 0.84 0.52 0.64 0.63 0.61 0.64 0.13 0.07 0.06

U 0.36 0.16 0.28 0.35 0.17 0.49 0.29 0.20 0.37 0.09 0.13 0.08

AWE P 0.50 0.82 0.86 0.50 0.84 0.87 0.08 0.39 0.52 0.00 0.03 0.04

U 0.59 0.80 0.84 0.58 0.83 0.85 0.12 0.40 0.52 0.03 0.04 0.04

ICL P 0.82 0.81 0.81 0.81 0.81 0.80 0.43 0.55 0.60 0.03 0.05 0.05

U 0.65 0.44 0.51 0.64 0.48 0.66 0.54 0.38 0.45 0.24 0.14 0.10

ICL–B I C P 0.81 0.81 0.81 0.80 0.81 0.80 0.42 0.55 0.60 0.03 0.05 0.05

U 0.66 0.45 0.52 0.65 0.49 0.67 0.55 0.39 0.46 0.24 0.14 0.10

NEC P 0.49 0.50 0.55 0.49 0.50 0.51 0.34 0.34 0.35 0.09 0.02 0.02

U 0.39 0.26 0.33 0.38 0.32 0.44 0.35 0.19 0.24 0.11 0.11 0.08
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to be a clear best criterion here, unless, perhaps, M DL2 if one overlooks the autore-
gressive specification. On average, disregarding specification types 3 and 9, C AI C ,
B I C and M DL2 perform best.

The supplementary material contains a figure which is similar to Fig. 4. The differ-
ence, however, is that this figure relates to the maximum log likelihood in a validation
sample generated by the true data generation process. Only cases where the true num-
ber of components differed from the optimal out of sample model are considered.
Not surprisingly, these are mostly cases with specification types 3, 6, 7, 8 and 9.
An interesting pattern can be found here. The criteria which were relatively bad in
selecting the true number of components, AI C , AI Cc, K I C , K I Cc, AI C4, H Q
and a B I C , have relatively high success rates here whereas M RC , M RCk , M DL2,
M DL5, C LC , AW E , I C L and I C L–B I C do very bad here. The latter criteria tend
to underfit with respect to prediction. C AI C and B I C are somewhere in between.
In conclusion, a trade-off appears to be noticeable between selecting the number of
components and selecting a model which predicts future samples best. Hence, AI C
and its relatives in fact do what they are designed to do. Unfortunately, the success
rates are not overwhelming as they are, on average, around 0.4. Perhaps, with larger
sample sizes, this performance would increase and if Burnham and Anderson (2002)
are right in the sense that there do not exist any simple models (i.e. truth has nearly an
infinite number of parameters), the AI C family of efficient selection criteria would
be preferred. However, selecting the correct number of components can also be very
important and we feel it would be preferable to remedy misspecification by data trans-
formations or different model specifications rather than by adding components which
are not represented in the population.

In order to study the results of the penalized estimator while controlling for the sep-
aration between the components, Table 9 presents the odds ratios for the experimental
factors for the cases where K ∗ > 1. These odds ratios were calculated from logistic
regressions for each order selection method. Correctly selecting the true number of
components was taken as a success. Two of the covariates in the model warrant some
clarification. First, the minimum separation between the components is included in
the models. In case K ∗ = 2 this is simply the separation between components 1 and
2. In case K ∗ = 3, the minimum of the three pairwise separations is taken because the
components for which the separation is minimal will be harder to separate. Second, the
covariate ‘max est’ represents the maximum number of components for which a proper
solution was found and is taken as a continuous effect. This covariate was included in
the models as it limits the possible amount of overfitting. To illustrate the interpreta-
tion of the table entries, consider the estimated odds ratio of AI C with respect to the
sample size factor n = 300 vs n = 600. This odds ratio was estimated at 1.27 and
indicates that the odds of a success, i.e. selecting the true number of components, when
using AI C was on average approximately 1.3 times larger in a sample of size 300 than
in a sample of size 600, controlling for the other experimental factors. Table entries
marked by a † are not significantly different from 1 at a significance level of 5 %.

Again it can be seen that several criteria perform worse in larger samples. These
criteria are AI C , AI Cc, K I C , K I Cc, AI C4, C AI C , B I C , H Q and N EC . What
is also noticeable is that the effect of a small sample size has very large negative
effects on a B I C , which is counterintuitive, M DL2, M DL5 and AW E . The effect of
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the true number of components is also very dissimilar across the different selection
criteria and several of the estimated odds ratios are very far from 1. It appears that
criteria that tend to overfit perform much better when there are 3 components whereas
criteria that tend to underfit perform better when there are 2 components. Hence, for a
fixed sample size, more true parameters to estimate favors overfitting criteria. Equal or
unequal mixture proportions also have different effects across all methods but the size
of these effects is much smaller than the effects of the sample size or the number of
components. We can conclude that in most cases the criteria which performed better
for smaller samples also perform better in case of equal mixture proportions and with
3 true components. Conversely, selection methods which perform better for larger
samples tend to perform better in case of unequal mixture proportions and with 2 true
components. This distinction largely coincides with a criterion’s proneness to respec-
tively overfit or underfit. It can be noted that the odds of successfully selecting the true
number of components increase when the minimum separation increases as would
be expected. The criteria which do not perform well across experimental conditions
seem to be less affected by the separation and for AI C4, C AI C and B I C , which did
perform well in many settings, the effect seems to be relatively small. Furthermore,
the performance of all criteria decreased as the range of models which could be fit-
ted increased. However, there is an exception here, namely N EC , the criterion which
showed the highest rate of underfitting by exactly 1 component. Focusing on the group
of order selection criteria which, on average, performed best (M DL2, M RC , M RCk ,
I C L–B I C , I C L , C AI C , B I C and C LC , in that order), one can see that, controlling
for all other factors, the effect of various model (mis)specifications compared to no
model misspecification is much larger than it appeared earlier. Including superflu-
ous explanatory variables has a large negative effect on M DL2. Omitting a relevant
explanatory variable has by far the largest negative effect on all these criteria. The
effect of excluding a real interaction and multicollinearity seems to be largely similar
within these methods respectively and C AI C , B I C and M DL2 appear to be most
robust here. For these eight criteria, heteroskedasticity within the components seems
to have the largest negative effect of all error misspecifications for M RC , M RCk ,
I C L and I C L–B I C . These criteria seem to be relatively robust with respect to errors
with heavy tails and skewed errors though. M DL2, C AI C and B I C on the other
hand, appear to be most affected by skewed errors and the latter two criteria appear to
be much less robust when the errors are misspecified. Curiously enough, M DL5 and
AW E actually performed better for heavier tailed or skewed error specifications rel-
ative to no misspecification. This would indicate that such misspecifications counter
their tendency to underfit due to their large penalty term. On the other hand, these
criteria were heavily affected by heteroskedastic errors. Finally, one can see that the
autoregressive specification appears to have the second largest negative effect on all
these criteria and that M RC , M RCk , I C L and I C L–B I C appear to be least affected.

5 Conclusion

Order selection in finite mixture models is not a simple problem which seems to be
confirmed by our simulation study. Different experimental settings influence the order

123



908 N. Depraetere, M. Vandebroek

selection criteria differently. Some results however are obtained on which criteria seek
to select the number of components rather than minimizing the expected prediction
error. For order selection it appears that the newly developed mixture criteria (M RC
and M RCk) perform rather well on many occasions, especially for larger samples.
Similar things can be said about M DL2, C LC , I C L and I C L–B I C . For the tradi-
tional model selection criteria, AI C and B I C , we can conclude that they often have
lower success rates when the sample size increases. B I C , however, shows good perfor-
mance, especially in smaller samples and for model specification types which are not
very detrimental to the overall success rates, whereas AI C still tends to overfit there.
C AI C is quite similar to B I C and also performs well often. Therefore, based on our
findings, we would recommend using selection methods which have been specifically
derived for finite mixture models or the lesser known M DL2 in larger samples and
B I C or C AI C in smaller samples. Furthermore, there is some evidence that including
irrelevant explanatory variables, excluding interaction effects or multicollinearity are
not very detrimental to order selection if one chooses a correct criterion. Not including
an important explanatory variable on the other hand does have a substantial negative
effect on all criteria. We have also found that distributional misspecification of the
error terms has a non-uniform negative effect on the selection criteria. It was also
found that several criteria are nearly flawless to reject more components in a one com-
ponent autoregressive model. In multiple component autoregressive models however,
one is better of using one of the better overfitting criteria (AI C4 or K I Cc) or one
of either C AI C or B I C . In conclusion, we found that none of the selection criteria
was robust to every sort of (mis)specification we tested. A limitation of our simulation
was that all (mis)specifications were present in all components. Furthermore, we only
tested for one particular ‘amount’ of misspecification each time, rather than a range of
mild to severe misspecifications. Both of these settings could be interesting avenues to
explore further. There is one, nearly constant, positive effect present in all our results:
it pays to penalize. We have found that appropriately penalizing the likelihood resulted
in fewer spurious solutions. This had a positive effect on the estimation error of the
model parameters and on the performance of the order selection criteria. Hence we
think a useful future research direction could be to further investigate the choice of a
penalty function, the choice of its tuning parameters and its (finite sample) properties
for normal mixture models to avoid spurious solutions.
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