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Abstract In this paper we study the life behavior of δ-shock models when the shocks
occur according to a renewal process whose interarrival distribution is uniform. In
particular, we obtain the first two moments of the corresponding lifetime random vari-
ables for general interarrival distribution, and survival functions when the interarrival
distribution is uniform.

Keywords δ-Shock model · Interarrival distribution · Survival function · Uniform
distribution

1 Introduction

In the general setup of shock models, the system is assumed to subject shocks that
occur randomly over time and they are usually defined by the help of renewal processes
whose interarrival times represent the times between successive shocks. The literature
includes various kind of shock models such as an extreme shock model, cumulative
shock model, and run shock model (see, e.g. Sumita and Shanthikumar 1985; Gut
1990; Mallor and Omey 2001).

Assume that a system is subjected to external shocks that arrive according to a
renewal process N (t) defined by
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842 S. Eryilmaz, K. Bayramoglu

N (t) = sup {n : Sn ≤ t} ,

where Sn = ∑n
i=1 Xi is the time of the nth shock and the interarrival times between two

successive shocks, Xi , i = 1, 2, . . . are independent random variables with common
cumulative distribution function (cdf) F (F(0) = 0).

According to the δ-shock model, the system fails when the time between two
consecutive shocks falls below a fixed threshold δ (Wang and Zhang 2001; Li and Kong
2007; Li and Zhao 2007; Eryilmaz 2012, 2013). That is, if Xn > δ, the system can
recover before the nth shock, and does not fail; if Xn ≤ δ, the system fails. Therefore
the lifetime of system is defined by the following compound random variable

T =
N∑

i=1

Xi ,

where N is the waiting time for the first interarrival time which is less than a threshold
δ, i.e.

{N = n} iff {X1 > δ, . . . , Xn−1 > δ, Xn ≤ δ} .

This δ-shock model has a potential application in various fields such as inventory,
insurance and system reliability. In insurance, the random variables Xi , i = 1, 2, . . .

represent the interclaim times. In the model of a queueing system, Xi is the waiting
time between the arrivals of consecutive customers. Thus a relevant problem might be
of interest in the fields such as economics and operational research.

Recently, Ma and Li (2010) have introduced and studied a censored δ-shock model.
According to this model, the lifetime of the system is defined by the random variable

T̄ =
N̄∑

i=0

Xi + δ,

where

{
N̄ = n

}
iff {X1 < δ, . . . , Xn < δ, Xn+1 ≥ δ} ,

with X0 ≡ 0.

So far in the literature, the above mentioned shock models have been studied only for
the case when N (t) is a Poisson process, i.e. the interarrival times between successive
shocks follow exponential distribution. However, there might be a situation that the
time between shocks has an arbitrary distribution such as uniform, gamma and weibull.
In the present paper we study the random variables T and T̄ when the shocks occur
according to a renewal process whose interarrival times follow uniform distribution.
The uniform distribution is useful when we wish to observe the first order effects of
stochastic variation. That is, it is a useful distribution when we want to show the main
differences between deterministic and stochastic models. For the queueing systems
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Life behavior of δ-shock models 843

and renewal processes with uniform interarrival times see, e.g. Rosberg (1987) and Kao
(1997). In particular, we obtain the first two moments of the corresponding random
variables for general F. The survival functions of T and T̄ are explicitly derived when
the interarrival distribution F is uniform distribution function on (0, a).

2 Results for δ-shock model

If the interarrival times between two successive shocks, Xi , i = 1, 2, . . . are indepen-
dent random variables with common cdf F, then the probability mass function of the
random variable N is

P {N = n} = (F̄(δ))n−1 F(δ), (1)

for n = 1, 2, . . ..

Lemma 1 For a sequence of interarrival times X1, X2, . . . with common cdf F,

P {T > t} =
∞∑

n=1

(F̄(δ))n−1

δ∫

0

P
{

S∗
n−1 > t − x

}
d F(x), (2)

where S∗
n is the nth arrival time of a renewal process whose interarrival times have

the cdf

F∗
δ (x) = F(x) − F(δ)

1 − F(δ)
,

for x > δ.

Proof By conditioning on N ,

P {T > t} = P

{
N∑

i=1

Xi > t

}

=
∞∑

n=1

P {Sn > t, X1 > δ, . . . , Xn−1 > δ, Xn ≤ δ}

Because Sn = Sn−1 + Xn and Xn is independent of Sn−1 one obtains

P {Sn > t, X1 > δ, . . . , Xn−1 > δ, Xn ≤ δ}

=
δ∫

0

P {Sn−1 > t − x, X1 > δ, . . . , Xn−1 > δ} d F(x)
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= P {X1 > δ, . . . , Xn−1 > δ}

×
δ∫

0

P {Sn−1 > t − x | X1 > δ, . . . , Xn−1 > δ} d F(x).

The conditional distribution of Sn−1 given {X1 > δ, . . . , Xn−1 > δ} is same with the
distribution of the sum of n − 1 independent random variables having truncated cdf

F∗
δ (x) = P {X1 ≤ x | X1 > δ} = F(x) − F(δ)

1 − F(δ)
,

for x > δ, that is

P {Sn−1 > t − x | X1 > δ, . . . , Xn−1 > δ} = P
{

S∗
n−1 > t − x

}
,

where S∗
n−1 = ∑n

i=1 X∗
i and F∗

δ (x) = P
{

X∗
i ≤ x

}
, i = 1, 2, . . . , n. Thus the proof

is completed. ��
In the following we obtain the first two moments of T .

Proposition 1 For a sequence of interarrival times X1, X2, . . . with common cdf F,

E(T ) = E(X1)

F(δ)
,

and

E(T 2) =
(

1 − F(δ)

F(δ)

)

E(X2
1 | X1 > δ) + E(X2

1 | X1 ≤ δ)

+2

(
1 − F(δ)

F(δ)

)2

[E(X1 | X1 > δ)]2

+2

(
1 − F(δ)

F(δ)

)

[E(X1 | X1 > δ)E(X1 | X1 ≤ δ)] .

Proof Since the event {N = n} is independent of Xn+1, Xn+2, . . . for all n = 1, 2, . . .

the random variable N is a stopping time for X1, X2, . . . Thus from Wald’s equation
we readily have

E(T ) = E(N )E(X1) = E(X1)

F(δ)
.

For the second moment, by conditioning on N ,

E(T 2)=
∞∑

n=1

E

⎛

⎝

(
n∑

i=1

Xi

)2

| N =n

⎞

⎠ P {N =n} . (3)
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It is clear that

E

⎛

⎝

(
n∑

i=1

Xi

)2

| N =n

⎞

⎠ =
n∑

i=1

E(X2
i | N =n)+2

∑ ∑

1≤i< j≤n

E(Xi X j | N =n). (4)

By the definition of N ,

n∑

i=1

E(X2
i | N = n) = (n − 1)E(X2

1 | X1 > δ) + E(X2
n | Xn ≤ δ), (5)

and

∑ ∑

1≤i< j≤n

E(Xi X j | N = n) =
(

n − 1

2

)

[E(X1 | X1 > δ)]2

+(n − 1)E(X1 | X1 > δ)E(Xn | Xn ≤ δ). (6)

Using (5) and (6) in (4) and then via (3) one obtains

E(T 2) = (E(N ) − 1)E(X2
1 | X1 > δ) + E(X2

1 | X1 ≤ δ)

+E [(N − 1)(N − 2)] [E(X1 | X1 > δ)]2

+2(E(N ) − 1) [E(X1 | X1 > δ)E(X1 | X1 ≤ δ)]

and the results follows noting that E [(N − 1)(N − 2)] = 2 (1−F(δ))2

F2(δ)
. ��

As it can be seen from Lemma 1, the derivation of the survival function of T needs
to determine the distribution of the sum S∗

n of n independent random variables having
the cdf F∗

δ (x). Obviously, this is not an easy task except for some special cases. In the
following we evaluate (2) when F is uniform on (0, a) for a > δ.

Theorem 1 For a sequence of interarrival times X1, X2, . . . having uniform distrib-
ution on (0, a) (a > δ),

P {T > t} =
1+[ t

δ

]

∑

n=2+
[

t−δ
a

]

(

1 − δ

a

)n−1
min(δ,t−(n−1)δ)∫

max(0,t−(n−1)a)

1

a
P

{
S∗

n−1 > t − x
}

dx

+
∞∑

n=1+[ t
δ

]

(

1 − δ

a

)n−1 {
δ − max(0, t − (n − 1)δ)

a

}

,

for t > δ, and P {T > t} = 1 − t
a for t ≤ δ, where
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P
{

S∗
n > t

} = 1

(a − δ)n(n − 1)!
n∑

k=0

(−1)k
(n

k

) 1

n

{
[n(a − δ) − k(a − δ)]n

− [max(t − nδ, k(a − δ)) − k(a − δ)]n}
,

for t > nδ and P
{

S∗
n > t

} = 1 if t ≤ nδ.

Proof If F is uniform on (0, a) (a > δ), then F∗
δ is a uniform distribution function

defined on (δ, a). Thus S∗
n is the sum of n independent uniform random variables

defined on (δ, a). Equivalently, we can write

P
{

S∗
n > t

} = P

{
n∑

i=1

Yi > t − nδ

}

,

where Yi s are uniformly distributed random variables on (0, a − δ) . From Theorem
1 of Sadooghi-Alvandi et al. (2009) the density function of

∑n
i=1 Yi is

f (s) = 1

(a − δ)n(n − 1)!
n∑

k=0

(−1)k
(n

k

) [
(s − k(a − δ))+

]n−1
, (7)

for n ≥ 2 and 0 < s < n(a − δ), where x+ = max(0, x). Using (7) the survival
function of S∗

n is obtained as

P
{

S∗
n > t

} =
n(a−δ)∫

t−nδ

f (s)ds

= 1

(a − δ)n(n − 1)!
n∑

k=0

(−1)k
(n

k

) 1

n

{

[n(a − δ) − k(a − δ)]n

− [max(t − nδ, k(a − δ)) − k(a − δ)]n
}

,

for t > nδ and P
{

S∗
n > t

} = 1 if t ≤ nδ.

Because P
{

S∗
n−1 > t − x

} = 1 if t − x ≤ (n − 1)δ the integral in (2) can be
evaluated as

δ∫

0

P
{

S∗
n−1 > t − x

}
d F(x) =

δ∫

max(0,t−(n−1)δ)

1

a
dx

+
min(δ,t−(n−1)δ)∫

max(0,t−(n−1)a)

1

a
P

{
S∗

n−1 > t − x
}

dx .
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Table 1 Survival function of T for unit uniform distribution

δ t = 0.1 t = 0.3 t = 0.5 t = 0.7 t = 1 t = 1.5

0.3 0.9 0.7 0.6822 0.6250 0.5273 0.4013
0.5 0.9 0.7 0.5 0.4804 0.3776 0.2303
0.7 0.9 0.7 0.5 0.3 0.2531 0.1111

Thus we obtain

P {T > t} =
1+[ t

δ

]

∑

n=2+
[

t−δ
a

]

(

1 − δ

a

)n−1
min(δ,t−(n−1)δ)∫

max(0,t−(n−1)a)

1

a
P

{
S∗

n−1 > t − x
}

dx

+
∞∑

n=1+[ t
δ

]

(

1 − δ

a

)n−1 {
δ − max(0, t − (n − 1)δ)

a

}

,

for t > δ, and P {T > t} = 1 − t
a for t ≤ δ ��

Proposition 2 For a sequence of interarrival times X1, X2, . . . having uniform dis-
tribution on (0, a),

E(T ) = a2

2δ
,

and

E(T 2) = (a − δ)
[
3(a + δ)2 + (a − δ)2

]

12δ
+ δ2

3

+ (a − δ)2(a + δ)2

2δ2 + (a − δ)(a + δ)

2
.

Proof The proofs are immediate since the conditional random variables (X1 | X1 > δ)

and (X1 | X1 ≤ δ) have uniform distributions on (δ, a) and (0, δ), respectively. ��
Although the survival function of T is given as series of terms involving integrals,

it can be computed numerically using mathematical packages. In Table 1, we compute
P {T > t} for selected values of δ and t when F is uniform on (0, 1). Table 2 includes
the mean time to failure of the system (E(T )) and V ar(T ) for different choices of a
and δ.

2.1 Estimation problem

Because the random variables Xi , i = 1, 2, . . . represent the interarrival times between
successive events (claims, arrivals, failures etc.) the system failure occurs if the waiting
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Table 2 Mean and variance
of T

a δ E(T ) V ar(T )

1 0.3 1.6667 3.3889
0.5 1.0000 1.1667
0.7 0.7143 0.4864

2 0.3 6.6667 51.3333
0.5 4.0000 19.3333
1.0 2.0000 4.6667

time between two successive events is below a threshold parameter δ. That is, the
system cannot recover if the length between two successive occurrences is below δ. In
most cases, we only observe the system’s lifetime and the data between the occurrences
of the events is not recorded. In this framework, the problem of estimating threshold
parameter δ from system’s lifetime data might be interesting from statistical point of
view. If t1, . . . , tn represent the lifetime data based on n independent systems, then
using Proposition 2 we can obtain the moment estimators of the parameters a and δ

by solving

E(T ) = a2

2δ
= 1

n

n∑

i=1

ti ,

and

E(T 2) = (a − δ)
[
3(a + δ)2 + (a − δ)2

]

12δ
+ δ2

3

+ (a − δ)2(a + δ)2

2δ2 + (a − δ)(a + δ)

2
= 1

n

n∑

i=1

t2
i .

Similar estimation problems have been considered in Xu and Li (2004) and Li et
al. (2007).

3 Results for censored δ-shock model

If the interarrival times between two successive shocks, Xi , i = 1, 2, . . . are indepen-
dent random variables with common cdf F, then the probability mass function of the
random variable N̄ is

P
{

N̄ = n
} = (F(δ))n(1 − F(δ)),

for n = 0, 1, . . . and

E(N̄ ) = F(δ)

1 − F(δ)
, V ar(N̄ ) = F(δ)

(1 − F(δ))2 .
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Lemma 2 Let X1, X2, . . . be a sequence of interarrival times with common cdf F.

Then for t ≥ δ

P
{
T̄ > t

} =
∞∑

n=1

P
{

S̄n > t − δ
}
(F(δ))n(1 − F(δ)),

where S̄n is the nth arrival time of a renewal process whose interarrival times have
the cdf

Gδ(x) =
{ F(x)

F(δ)
i f x < δ

1 i f x ≥ δ
,

and P
{
T̄ > t

} = 1 for t < δ.

Proof By conditioning on the value of N̄ ,

P
{
T̄ > t

} = P
{
T̄ > t, N̄ = 0

} +
∞∑

n=1

P
{
T̄ > t, N̄ = n

}
.

If t ≥ δ, then P
{
T̄ > t, N̄ = 0

} = 0 and hence

P
{
T̄ > t

} =
∞∑

n=1

P
{

Sn > t − δ, N̄ = n
}

=
∞∑

n=1

P {Sn > t − δ | X1 < δ, . . . , Xn < δ} (F(δ))n(1 − F(δ)),

for t ≥ δ. The proof follows since the distribution of {Sn | X1 < δ, . . . , Xn < δ} is
same with the distribution of S̄n which is the sum of n independent random variables
having common cdf Gδ . ��
Remark 1 The distribution of T̄ is neither discrete nor continuous since P

{
T̄ = δ

} =
P

{
N̄ = 0

} = 1 − F(δ) > 0.

Proposition 3 Let X1, X2, . . . be a sequence of interarrival times with common cdf
F. Then

E(T̄ ) = F(δ)

(1 − F(δ))
E(X1 | X1 < δ) + δ, (8)

and

V ar(T̄ ) = F(δ)

(1 − F(δ))
V ar(X1 | X1 < δ) + F(δ)

(1 − F(δ))2 [E(X1 | X1 < δ)]2 . (9)
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Proof By the definition of T̄ ,

E(T̄ ) = E

⎛

⎝
N̄∑

i=1

Xi

⎞

⎠ + δ

By conditioning on N̄ ,

E

⎛

⎝
N̄∑

i=1

Xi

⎞

⎠ =
∞∑

n=1

nE(X1 | X1 < δ)P
{

N̄ = n
}

= E(X1 | X1 < δ)E(N̄ ) (10)

which completes the proof of (8).

V ar(T̄ ) = V ar

⎛

⎝
N̄∑

i=1

Xi

⎞

⎠ = E

⎛

⎝
N̄∑

i=1

Xi

⎞

⎠

2

−
⎡

⎣E

⎛

⎝
N̄∑

i=1

Xi

⎞

⎠

⎤

⎦

2

. (11)

We have

E

⎛

⎝
N̄∑

i=1

Xi

⎞

⎠

2

=
∞∑

n=1

E

⎛

⎝

(
n∑

i=1

Xi

)2

| N̄ = n

⎞

⎠ P
{

N̄ = n
}
,

where

E

⎛

⎝

(
n∑

i=1

Xi

)2

| N̄ = n

⎞

⎠ = nE(X2
1 | X1 < δ) + n(n − 1) [E(X1 | X1 < δ)]2 .

Simple manipulations yield

E

⎛

⎝
N̄∑

i=1

Xi

⎞

⎠

2

= E(N̄ )V ar(X1 | X1 < δ) + E(N̄ 2) [E(X1 | X1 < δ)]2 . (12)

Thus the proof of (9) is completed using (10) and (12) in (11). ��
Theorem 2 For a sequence of interarrival times X1, X2, . . . having uniform distrib-
ution on (0, a) (a > δ),

P
{
T̄ > t

} =
(

1 − δ

a

) ∞∑

n=1

n∑

k=0

(−1)k
(

n

k

)
1

n!an

× {
(max(t − δ, kδ) − kδ)n − δn(n − k)n}

,

for t ≥ δ and P
{
T̄ > t

} = 1 for t < δ.
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Proof If F is uniform on (0, a) (a > δ), then Gδ is a uniform distribution function
defined on (0, δ). Thus S̄n is the sum of n independent uniform random variables
defined on (0, δ) and its pdf is

f S̄n
(s) = 1

δn(n − 1)!
n∑

k=0

(−1)k
(n

k

) [
(s − kδ)+

]n−1
,

for n ≥ 2 and 0 < s < nδ. Therefore the required result is obtained using

P
{

S̄n > t − δ
} =

nδ∫

t−δ

f S̄n
(s)ds = 1

n

{
(max(t − δ, kδ) − kδ)n − δn(n − k)n}

in Lemma 2. ��
The following result can be immediately obtained using Proposition 3 since the

conditional random variable (X1 | X1 < δ) has uniform distribution on (0, δ).

Proposition 4 For a sequence of interarrival times X1, X2, . . . having uniform dis-
tribution on (0, a),

E(T̄ ) = δ(2a − δ)

2(a − δ)
, V ar(T̄ ) = δ3(4a − δ)

12(a − δ)2 ,

for a > δ.

4 Summary and Conclusions

In this paper, we have studied δ-shock and censored δ-shock models for uniformly
distributed interarrival times. In particular, we have obtained explicit expressions for
the survival functions of the corresponding lifetime random variables. Our derivations
are mainly based on the distribution of the sum of independent uniform random vari-
ables. We have also obtained expressions for the first two moments of the lifetime
random variables for an arbitrary interarrival time distribution.

The study of δ-shock and censored δ-shock models for general interarrival distri-
bution will be among our future research problems. On the other hand, the statistical
estimation problem mentioned in Sect. 2.1 can also be studied extensively using other
estimation methods.
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