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Abstract The Mahalanobis distance between pairs of multivariate observations is
used as a measure of similarity between the observations. The theoretical distribution
is derived, and the result is used for judging on the degree of isolation of an observation.
In case of spatially dependent data where spatial coordinates are available, different
exploratory tools are introduced for studying the degree of isolation of an observation
from a fraction of its neighbors, and thus to identify local multivariate outliers.

Keywords Robust statistics · Spatial dependence · Outliers · MCD estimator ·
Mahalanobis distance

1 Introduction

Multivariate outlier detection belongs to the most important tasks for the statistical
analysis of multivariate data. Their presence allows to draw conclusions about the data
quality and about atypical phenomena in the data. Multivariate outliers behave differ-
ently than the majority of observations which are assumed to follow some underlying
model like a multivariate normal distribution. The deviations of outlying observations
from the majority of data points can also be understood in an exploratory context, e.g.
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30 P. Filzmoser et al.

by visualizing a measure describing outlyingness and inspecting possible deviations
or gaps in the resulting plot. Examples for such an approach are Atkinson and Mulira
(1993), Atkinson et al. (2004), or Rousseeuw and Leroy (2003, Chap. 6).

The most commonly used measure of outlyingness is the Mahalanobis distance
(Mahalanobis 1936). This multivariate distance measure assigns each observation a
distance to the center, taking into account the multivariate covariance structure. Thus
for observations Z1, . . . , Zn in the p-dimensional space with center μ and covariance
�, the Mahalanobis distance is defined as

MDμ,�(Zi ) =
[
(Zi − μ)t�−1(Zi − μ)

]1/2
for i = 1, . . . , n. (1)

Practically, for obtaining a reliable distance measure for multivariate data it is crucial
how center μ and covariance � are estimated from the data. Classical estimates (arith-
metic mean and sample covariance matrix) can be influenced by outlying observations,
and thus robust estimates have to be used instead (Rousseeuw and Van Zomeren 1990;
Maronna et al. 2006). A frequently used robust estimator of multivariate location and
scatter is the Minimum Covariance Determinant (MCD) estimator. The MCD esti-
mator looks for a subset of observations with smallest determinant of the sample
covariance matrix. Rousseeuw and Van Driessen (1999) introduced a fast algorithm
for computing the MCD estimator. As a cut-off value for the robust Mahalanobis dis-

tance the value
√

χ2
p;0.975 is suggested, which is the square root of the 97.5 % quantile

of the chi-square distribution with p degrees of freedom. In the following we will use
the notation χp;0.975. Thus, values of the Mahalanobis distance larger than this cut-off
value are considered as potential multivariate outliers. Note that there are also other
proposals in the literature for finding an appropriate cut-off value, like an adaptive
cut-off value that also takes into account sample size and dimension of the data, see
Filzmoser et al. (2005).

The distance measure (1) for multivariate outlier detection does not account for
any spatial dependence among the observations. Moreover, it is limited to identify
overall, “global” outliers that differ from the main bulk of the data, but not necessarily
outliers in a local neighborhood. The detection of such “local” spatial outliers is of
interest in many fields where the data points have a spatial component, like in image
analysis, in market segmentation, or in the statistical analysis of environmental data.
Several approaches to local outlier identification for spatial data have been developed
in computer vision and computer science (Haslett et al. 1991; Breunig et al. 2000;
Chiu and Fu 2003; Papadimitriou et al. 2003). One of the goals of these exploratory
tools is to detect “spatial outliers”, i.e., observations that differ from their neighbors
(Haslett et al. 1991; Cressie 1993, p. 33).

Interestingly, spatial or “local” outliers are most often also outlying according to the
spatial dependence. Usually, it turns out that spatial data sets contain positive spatial
autocorrelation which means that observations with high (respectively low) values
for an attribute are surrounded by neighbors which are also associated with high
(respectively low) values. Thus, in a positive autocorrelation scheme, observations
that differ from their neighbors do not follow the same process of spatial dependence
as the main bulk of the data. Graphics such as the variogram cloud (Cressie 1993) and
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Identification of local multivariate outliers 31

the Moran scatterplot (Anselin 1995) are interesting tools for detecting local outliers
in a univariate framework. Cerioli et al. (1999) have used the forward search approach
to identify spatial outliers in the univariate context, that is, extreme observations with
respect to their neighboring values. However, up to our knowledge very few proposals
have been made in the multivariate context.

The main objective of the present paper is to introduce new exploratory tools in
order to detect outliers in multivariate spatial data sets. Our purpose is also to illustrate
that if global outliers are present in the data set, they are usually also local outliers and
they can completely mask other local outliers. The exploratory tools we introduce do
not only detect both kinds of outliers but also give an insight into their global or/and
local nature.

In Sect. 2 we introduce exploratory tools that compare pairwise distances in the
variable or attributes space (i.e. pairwise Mahalanobis distances) and in the coordinate
or geographic space (i.e. pairwise Euclidean distances). It turns out that this compar-
ison can be interpreted as multivariate counterpart to the variogram cloud (Cressie
1993). The relation between global and pairwise Mahalanobis distances is formalized
in Sect. 3, and distributional properties are derived. An exploratory tool for local out-
lier identification is introduced in Sect. 4 and applied in Sect. 5 to real data. The final
Sect. 6 provides conclusions and outlook for further research in this area.

2 Generalization of univariate tools for local outlier detection

2.1 Illustrative example

Throughout the paper we will illustrate the proposed concepts with a small artificial
data example shown in Fig. 1. We simulated n = 100 observations with two geo-
graphical coordinates in a square and two quantitative attributes. The left plot in Fig. 1
shows the two-dimensional data where the majority of the points come from a bivari-
ate normal distribution. The ellipse corresponds to values of χ2;0.975 = 2.72 of the
robust Mahalanobis distance based on MCD location and scatter estimates. Hence,
all squares and the filled rhomb are outside the ellipse and thus they are identified as
global outliers. Figure 1 (right) shows the spatial X- and Y-coordinates of the data. For
four selected points (shown by the filled symbols), circles are drawn that correspond
to a Euclidean distance of 2 units from the points. All points within this distance are
drawn with the corresponding open symbols and they can be considered as neighbors
to the points in the center of the circles. Since the same symbols were used in the left
plot of Fig. 1, it is possible to see the relation of the points in the variable space and in
the coordinate space. The filled square and all its neighbors (at a distance of 2 units)
are multivariate outliers. The filled rhomb is a multivariate outlier but not the neigh-
bors. The filled triangle is on the boundary of the cut-off value 2.72, and the neighbors
(open triangles) are far away in the variable space. Finally, the filled circle is in the
center of the data cloud but its neighbors are very different in the variable space. Filled
triangle and circle should thus be identified as local outliers because they neighboring
points are very different. The filled rhomb and the filled square are already identified
as global outliers and their neighbors are different for the rhomb but similar for the
square.
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Fig. 1 Illustrative two-dimensional example with two spatial coordinates. Left Plot of the two variables
with ellipse indicating global outliers; right plot of the spatial coordinates with circles indicating the
neighborhood structure. The same symbols are used in both plots for the observations. The filled rhomb and
the filled square are global outliers, the filled circle, the filled triangle and the filled rhomb are local outliers

Overall, we can distinguish the following cases:

(a) local, but not global outliers (filled triangle and filled circle);
(b) global, but not local outliers (filled square);
(c) local and global outliers (filled rhomb);
(d) neither local nor global outliers.

A reliable method for the identification of global and local outliers should be able to
distinguish among these different situations.

2.2 Review of related approaches

Detecting and locating global and local outliers is one of the main objective of
exploratory spatial data analysis. Graphics such as the Moran scatterplot (Anselin
1995) in econometrics and the variogram cloud (Chauvet 1982) in geostatistics are
helpful in order to detect spatial outliers in a univariate context.

A Moran scatterplot rests on the definition of a neighborhood matrix which specifies
in some sense the neighbors of each observation. In the econometrics literature, this
neighborhood matrix is usually row-standardized so that the Moran scatterplot plots
the values of the standardized observations in the abscissa and the values of the mean
of the neighbors in the ordinate. Interpreting this scatterplot consists in comparing the
value of an observation with the mean of its neighbors. When positive autocorrelation is
present in the data set, the point cloud may exhibit some linear trend and the quadrants
corresponding to positive/positive and negative/negative values contains the majority
of the observations. So, local outliers may be found on the other quadrants, namely the
positive/negative and negative/positive ones. But outliers may be also observations that
exert high influence or leverage on the linear regression slope fitting the point cloud
(Anselin 1996).
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Anselin et al. (2002) proposed a multivariate version of the Moran scatterplot which
consists in a scatterplot matrix with dimension the number of variables (2 × 2 in the
bivariate case). Each scatterplot takes into account a couple of standardized variables
(Zk, Zl ) and plots the mean of the neighbors for Zk on the ordinate versus the vari-
able Zl on the abscissa. Such a scatterplot matrix only takes into account bivariate
relationships and its interpretation becomes intractable as soon as the number of vari-
ables is moderate to large. In that case, a multivariate alternative could be to calculate
the Mahalanobis distance of each observation to the center of its neighbors as pro-
posed in Lu et al. (2004). But this proposal does not lead to any graphical exploratory
tool which could be interpreted as the Moran scatterplot. Another drawback of this
approach appears as soon as global outliers are present in the data set. Because global
outliers are likely to be associated with large Mahalanobis distances, they can com-
pletely mask other local outliers.

Another well-known exploratory tool, motivated by geostatistical ideas, is the var-
iogram cloud (Cressie 1993; Haslett et al. 1991). For a pair (ci , c j ) of data locations,
i, j = 1, . . . , n, i �= j , let us consider the geographical Euclidean distance

ED(ci , c j ) = [
(ci − c j )

t (ci − c j )
]1/2

. (2)

If the coordinates are univariate, this formula simplifies to ED(ci , c j ) = |ci − c j |.
The variogram cloud consists in plotting for all pairs (ci , c j ) and for a single variable

Z , the values 1/2
(
Z(ci ) − Z(c j )

)2 versus ED(ci , c j ). The Euclidean distances may
be calculated in some particular direction leading to a directional variogram cloud
or in any direction leading to the so-called omnidirectional variogram cloud. Cressie
(1993), claims that it is difficult to distinguish atypical observations from skewness
using the variogram cloud and proposes to use the square-root differences cloud by
replacing

(
Z(ci ) − Z(c j )

)2 with |Z(ci ) − Z(c j )|1/2 on the ordinate axis.
In the multivariate setting, the most adequate tool for comparing observations is the

Mahalanobis distance. So, our first proposal consists in a generalization of the vari-
ogram cloud for multivariate data by replacing the absolute differences with pairwise
Mahalanobis distances, defined as

MD�(Zi , Z j ) =
[
(Zi − Z j )

t�−1(Zi − Z j )
]1/2

for i, j = 1, . . . , n. (3)

Similar to the “global” Mahalanobis distance (1), this distance measure between all
pairs of observations accounts for the overall covariance structure.

The multivariate variogram cloud is a scatterplot of the MD�(Z(ci ), Z(c j )) versus
the geographical Euclidean distances ED(ci , c j ) for i, j = 1, . . . , n. Here we use the
same indices for the observations in the variable space and in the coordinate space,
i.e. Z(ci ) = Zi for i = 1, . . . , n.

Using the illustrative example from above, the generalized variogram cloud for
multivariate data is shown in Fig. 2 (left). The horizontal axis shows the pairwise
Euclidean distances (2) and the vertical axis shows all pairwise Mahalanobis distances
(3) using the MCD estimator for robustly estimating �. Since the illustrative data
set consists of n = 100 observations, the plot shows n ∗ (n − 1)/2 = 4,950 points
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Fig. 2 Multivariate variogram cloud (left) for the illustrative example shown in Fig. 1. Potential local
outliers are marked in the left plot, resulting in the linked pairs of observations in the coordinate plot (right)

representing all pairs (Zi , Z j ) for i < j . A region in the plot is selected, and the points
falling into this region are linked by lines in the plot of the coordinates (Fig. 2, right).
The marked region selects observations with low pairwise spatial and large pairwise
Mahalanobis distances, i.e. it should highlight potential local outliers. Figure 2 (right)
does not highlight all local outliers and their closest neighbors. For the triangles this
works quite well, but not for the circles. Moreover, the rhombs are clearly connected,
but the filled rhomb is a global outlier. Finally, the filled square as global outlier is not
highlighted, but only some of its neighbors. The picture would certainly be different
by marking a larger region in the left plot. However, these results already indicate
that the multivariate extension of the variogram cloud does not allow to distinguish
between local and global outliers.

In the above procedure we did not differentiate the potential local outliers with
respect to their location in the data cloud. For example, a local outlier in the center
of the data cloud (like the filled circle in Fig. 1, left) may be differently treated than
a local outlier on the boundary (the filled triangle). This is because in the center we
expect a higher point density than on the boundary, and thus for local outlyingness
central points may be more similar to their neighbors than boundary points. A more
formalized approach of this statement will be presented in the following section.

3 Theoretical properties of the pairwise Mahalanobis distances

Let us consider a sample Z1, . . . , Zn of i.i.d. random vectors in p dimensions following
a Gaussian distribution N p(μ,�) with μ ∈ R p and � a p × p symmetric positive
definite matrix. Hereafter, we denote by Zk

i , k = 1, . . . , p, the components of the
random vector Zi . The transformed random vectors Yi = �−1/2(Zi−μ), i = 1, . . . , n,
are i.i.d. and follow a Gaussian distribution Np(0, I ) where I denotes the p×p identity
matrix.

According to (1) the squared Mahalanobis distance between Zi , i = 1, . . . , n, and
the location parameter μ is:
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Identification of local multivariate outliers 35

MD2
μ,�(Zi ) = (Zi − μ)t�−1(Zi − μ) = Y t

i Yi .

It is well known that the MD2
μ,�(Zi ), i = 1, . . . , n, are i.i.d. and follow a χ2

p distrib-
ution.

Due to (3) the pairwise squared Mahalanobis distance between Zi , and Z j , i, j =
1, . . . , n is:

MD2
�(Zi , Z j ) = (Zi − Z j )

t�−1(Zi − Z j )

= (Yi − Y j )
t (Yi − Y j ).

Proposition 1 If we consider i.i.d. Gaussian random vectors Z1, . . . , Zn, the con-
ditional distribution of the pairwise squared Mahalanobis distances MD2

�(Zi , Z j ),
j = 1, . . . , n, given Zi is a non-central chi-square distribution with p degrees of
freedom and the non-centrality parameter MD2

μ,�(Zi ).

Proof We consider the conditional distribution of MD2
�(Zi , Z j ) when Zi = z with

z = (z1, . . . , z p)t ∈ R p. Let y = �−1/2(z − μ) = (y1, . . . , y p)t . We have

MD2
�(Z j , z) = (Z j − z)t�−1(Z j − z)

= (Y j − y)t (Y j − y)

=
p∑

k=1

(
Y k

j − yk
)2

.

We know that if Zk , k = 1, . . . , p, are p independent normally distributed random

variables with mean μk and variance σ 2
k , then the random variable

∑p
k=1

(
Zk/σk

)2

is distributed according to the non-central chi-square distribution with p degrees of
freedom and non-centrality parameter λ = ∑p

k=1 (μk/σk)
2 (see, e.g., Evans et al.

1993, p. 51). We will use the notation χ2
p(λ) for this distribution.

We have the terms (Y k
j − yk), k = 1, . . . , p, which are independent normally

distributed with mean −yk and variance 1. So, the MD2
�(Z j , z), j = 1, . . . , n follow

a non-central chi-square distribution with p degrees of freedom and non-centrality
parameter

λ =
p∑

k=1

(−yk)2 = yt y = (z − μ)t�−1(z − μ) = MD2
μ,�(z),

or, in our notation, χ2
p(MD2

μ,�(z)). ��
Using the result of Proposition 1 it is possible to define outlyingness in a local

sense. In the following we will use the notation z1, . . . , zn for the sample values,
MD(zi ) for the Mahalanobis distances (i = 1, . . . , n), and MD(zi , z j ) for the pairwise
Mahalanobis distances (i, j = 1, . . . , n). The Mahalanobis distances and the pairwise
Mahalanobis distances are estimated robustly using the MCD estimator.
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Fig. 3 Illustrative example from Fig. 1. Left Cut-off value for global outliers (dashed ellipse) and 10 %
quantiles of the non-central chi-square distribution for the points with the filled symbols (ellipses with solid
lines). Right Quantiles of the non-central chi-square distribution adjusted to include the next neighbor

Since local outliers are supposed to be different from their neighbors, one could
define a quantile of the non-central chi-square distribution and count the number of
neighbors falling into this defined range. This concept is visualized in Fig. 3 (left)
for the example data presented in Fig. 1. The dashed ellipse visualizes the cut-off
value χ2;0.975 for global outliers, see Fig. 1 (left). The other four ellipses correspond
to the values χ2;0.1(MD2(zi )) where zi , i = 1, . . . , 4 are the four points with the
filled symbols in the centers of these ellipses. Here the 10 % quantile was chosen
for inspecting the neighborhood, but any other value could also be selected. In case
of independence and normal distribution we would expect 10 % of the values falling
inside an ellipse. Consequently, the ellipses in the center of the data cloud are smaller
than on the boundary which is according to the non-centrality parameter of the chi-
square distribution. Figure 3 (left) shows that none of the neighbors (defined by the
circles in Fig. 1, right) falls into the ellipses, except for the filled square where all
neighbors (open squares) are inside the 10 % quantile. Thus, the filled circle and the
filled triangle are local outliers because they are isolated from their neighbors, the
filled rhomb is an isolated global outlier, and the filled square is a clustered global
outlier.

Remark The assumption of independence used in Proposition 1 will not be valid in
particular for spatially dependent data. Dale and Fortin (2009) discuss this issue in
the context of statistical testing for data with spatial autocorrelation. Moreover, the
assumption that � is the same for all observations is a simplification that would imply
some form of stationarity, in particular if the i.i.d. assumption is violated. Furthermore,
the distribution derived in Proposition 1 is valid either if � is known, or if n diverges.
In practice, however, we deal with a limited number of observations, and we have to
estimate �. Here, � will be estimated robustly, using the MCD estimator. The effect
of estimating the covariance matrix with the MCD estimator on the distribution of
the resulting Mahalanobis distances was addressed in several papers, like in Hardin
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and Rocke (2005), Riani et al. (2009), Cerioli (2010), or Cerioli et al. (2012). These
authors derived better approximations of the distribution in order to obtain a more
accurate cut-off value for outliers. However, since here we deal with the additional
problem of violation from the i.i.d. assumption, we stick to the distribution and cut-off
value proposed above, and note that this procedure for identifying local multivariate
outliers must be understood in an exploratory context rather than as a precise statistical
test. As an empirical evidence of this approach, it can be seen e.g. from Fig. 3 that our
approach fulfills the purpose.

The above characterization of outlyingness depends on the considered quantile
of the non-central chi-square distribution. However, local outlyingness could also be
defined differently, by measuring the distance to the next neighbor in terms of the
non-central chi-square distribution. This is illustrated in Fig. 3 (right). We compute
for the four points with filled symbols the sizes of the ellipses needed to “touch” the
next neighbor (with the corresponding open symbol). Let z j be the next neighbor of zi ,
i.e. the distance of c j and ci is the smallest among all the neighbors of observation zi .
According to Proposition 1, the pairwise squared Mahalanobis distance MD2(zi , z j )

is equal to a certain α( j)-quantile χ2
2;α( j)(MD2(zi )) of the non-central chi-square

distribution. The probabilities α( j) can then be easily determined, and the results
for our example are: 59 % (filled circle), 43 % (filled triangle), 26 % (filled rhomb),
and 0.02 % (filled square). These values give a good impression about the degree of
isolation from the next neighbor.

Since just by chance the next neighbor could be close but a third neighbor far away,
it can be more sensible to search for α-quantiles such that the corresponding ellipses
include a pre-defined percentage, e.g. 10 %, of the next neighbors.

4 Tools for identifying local outliers

4.1 What are local outliers?

A characterization of local outliers requires a definition of the local neighborhood. For
this purpose, two concepts are common, namely to fix a maximum distance dmax in
the space of the spatial coordinates, and to define the neighbors of an observation zi

as all points z j ( j = 1, . . . , n; j �= i) where the distance di, j between zi and z j is not
larger than dmax. As distance measure di, j the Euclidean distance can be considered,
see (2). A second concept is to define neighborhood by the nearest k observations. For
finding the k nearest neighbors (kNN) of an observation zi we have to consider the
sorted distances di,(1) ≤ di,(2) ≤ · · · ≤ di,(k) ≤ di,(n) to all other observations. The
kNN to zi are all observations where di, j ≤ di,(k) for j = 1, . . . , n, j �= i .

Using a neighborhood based on dmax sometimes results in difficulties at the bound-
ary of an area where usually less neighbors to an observation are found than away
from the boundary. This is avoided for kNN where the number of neighbors is always
fixed with k, regardless of the location of an observation.

The neighbors of an observation zi are all observations z j with j ∈ Ni =
{i1, . . . , in(i)}. Clearly, if kNN is used to define the neighbors, the number of neigh-
bors n(i) = k for i = 1, . . . , n. Local outlyingness of an observation implies that the
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observation is very different from most of its neighbors. Therefore, β will denote a
fraction, and �n(i) ·β	 is the number of neighbors of zi that can be similar to zi but the
remaining neighbors have to be reasonably different (here, �x	 means rounding to an
integer not smaller than x). Note that 0 ≤ β < 0.5 aims at looking for local outliers,
but for 0.5 ≤ β ≤ 1 it is possible to search for homogeneous regions.

Let MD2(zi , z( j)) denote the sorted squared pairwise Mahalanobis distances of
observation zi to all neighbors z j , with j ∈ Ni = {i1, . . . , in(i)}. Similar to the
previous section, the degree of isolation of an observation zi from a fraction (1 − β)

of its neighbors can be characterized by the α(i)-quantile

χ2
p;α(i)(MD2(zi )) = MD2(zi , z(�n(i)·β	)) for i = 1, . . . , n. (4)

α(i) measures the local outlyingness of an observation zi . For a large number of neigh-
bors, and in case of independence and normal distribution, α(i) should approximate β.
However, if α(i) is substantially larger than β, observation zi is considered as potential
local outlier.

This characterization of local outliers depends on the size of the neighborhood (dmax
or k), and on the fraction β. For the exploratory tools for local outlier identification
introduced in the following we either need to fix the fraction β of neighbors, or the
maximum distance dmax (alternatively k for kNN) in order to define the neighborhood
size, or both. The plots in the following demonstrate the ideas using the illustrative
example of Fig. 1. We use kNN for defining the neighborhood since the concept of
maximum distance could give instable results for small values of dmax because of
the small sample size. In all examples we use the MCD estimator to estimate the
covariance matrix �.

4.2 Variable neighborhood size and fixed fraction β of neighbors

In the first tool for local outlier identification we vary the number of neighbors of
each observation using kNN with k = 1, . . . , 99. So, if k = 99, all observations
are neighbors of any observation except itself. The fraction β is fixed with 10 %. For
each observation we are computing the degree of isolation from 1 − β = 90 % of
its neighbors, using Eq. (4). Figure 4 shows the results in two separate plots for the
regular observations and for (global) outlying observations. This separation avoids the
confusion of local outliers that are not global ones, and global outliers that could also
be local ones. Each line in the plots belongs to one specific observation. In both plots
we marked two lines (black) which are the two constructed local outliers in the left
plot (filled circle and triangle in Fig. 1) and the two constructed global outliers in the
right plot (filled square and rhomb in Fig. 1).

All outlier detection tools proposed in this paper are implemented in the R pack-
age mvoutlier (Filzmoser and Gschwandtner 2012). The data of the toy example are
available in the package via data(dat) (bivariate data), and data(X), data(Y)
(spatial coordinates). Figure 4 can be generated by:

locoutNeighbor(dat,X,Y,propneighb=0.1,chisqqu=0.975,

variant=’’knn’’,usemax=1,npoints=100,indices=c(1,11,24,36))
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Fig. 4 Degree of isolation of each observation (lines) from 90 % of the neighbors. The size of the neigh-
borhood is changed (horizontal axes). Separate plots are drawn for regular (left) and outlying (right)
observation. The data are from the illustrative example shown in Fig. 1

The parameter propneighb corresponds to the fraction β, chisqqu provides the
quantile for the chi-square distribution separating regular observations from outliers,
variant defines the distance measure used (here kNN), usemax controls the frac-
tion of closest points that are used in the plot (here all neighbors are used), npoints
defines the number of points for which the calculations are done (here at each of the
100 data points), and indices highlights the observations with the corresponding
indices in the plot (these are the indices of the observations with the filled symbols).

For very small values of k we observe some instability. The reason is that just
by chance two observations could be close in the spatial sense but very different
in the variable space. For a larger neighborhood the local outlier measure becomes
more reliable. The two black lines in the left plot of Fig. 4 are exceptionally high
for small neighborhoods, i.e. their degree of isolation α(i) is substantially larger than
β = 10 %. There are also other observations that have a high degree of isolation for
certain neighborhood sizes. This can of course happen since we did not control the
structure of the observations marked with “+” in Fig. 1. The two marked outliers in the
right plot have different behavior; one is identified as local outlier with a high degree
of isolation (filled rhomb) and the second is a clustered outlier (filled square).

This plot can give an idea at which size of the neighborhood local outliers are
highlighted. For example, k = 10 neighbors flags the constructed outliers quite well.

4.3 Fixed neighborhood size and variable fraction β of neighbors

The plots in Fig. 4 have shown exceptional behavior of some observations for a neigh-
borhood size of k = 10. Now we fix the value k = 10 but vary the fraction β to
compute the degree of isolation. Figure 5 shows the resulting plots for the regular
observations (left) and for the outliers (right). The horizontal axes represent β and the
vertical axes are the degrees of isolation, see (4). We marked the same observations
as in Fig. 4 with dark lines. Obviously, the results in Fig. 4 for k = 10 neighbors
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Fig. 5 Degree of isolation of each observation (lines) from a varying percentage β of the next 10 neighbors.
Separate plots are drawn for regular (left) and outlying (right) observation. The data are from the illustrative
example shown in Fig. 1

which were computed for β = 10 % correspond to the results for β = 10 % in Fig. 5.
Here we get additional information about the isolatedness of each observation from a
varying percentage of the nearest 10 neighbors. The two marked observations in the
left plot are very isolated already from all 10 neighbors, but are still isolated from
half of their next 10 neighbors. The right plot reveals again the filled rhomb as very
isolated local outlier, and the filled square as outlier being very similar to the next 10
neighbors.

Figure 5 can be generated in R by:

locoutPercent(dat,X,Y,k=10,chisqqu=0.975,indices=c(1,11,24,36))

The parameter k controls the considered number of next k neighbors, and the other
parameters are the same as explained in the R code to Fig. 4.

At each fixed value of β we obtain an order of the observations according to their
degree of isolation. This ordering will be used in the next tool.

4.4 Fixed neighborhood size and fixed fraction β of neighbors

The plots in Figs. 4 and 5 allowed to pursue the degree of isolation of each observation
by varying k and β. We fix these parameters for the plots in Fig. 6, and we select
k = 10 and β = 10 % because these values were revealing our constructed local
outliers. The left plot in Fig. 6 shows the sorted index of the observations, where the
sorting is from smallest (left) to highest (right) degree of isolation, against the pairwise
Mahalanobis distance to the k neighbors. Thus each point in the plot represents one
neighbor to a selected observation, and all k neighbors to a specific observations are
arranged on the same horizontal position (Sorted index). The plot window is split by
a vertical line into two parts, the left part for the regular observations, and the right
plot for the outliers. In this plot we can interactively select regions. Here we selected
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Fig. 6 Left Interactive plot of the observation index sorted by the degree of isolation versus the distance to
all neighbors. Right Spatial coordinates of the observations. The marked points in the left plot are connected
by lines in the right plot. The data are from the illustrative example shown in Fig. 1

for the two most isolated regular observations all neighbors. The right plot in Fig. 6
shows the spatial coordinates of the observations, and the selected observations and
their neighbors are connected by lines. Thus it is easy to identify the observations with
highest degree of isolation, the potential local outliers, together with their neighbors.
These are the two constructed local outliers of Fig. 1 and the neighbors thereof.

Figure 6 can be generated in R by:

locoutSort(dat,X,Y,k=10,propneighb=0.1,chisqqu=0.975)

The parameters are the same as used earlier for Figs. 4 and 5. By defining an area
interactively in the generated plot (Fig. 6, left), points can be selected and analyzed in
the next plot (Fig. 6, right).

In Fig. 6 one could mark more observations in order to study the local behavior. One
could also select observations from the global outliers to study their local outlyingness.
Furthermore, it is possible to identify regions that are locally homogeneous. For this
purpose the left plot of Fig. 6 has to be made for a larger value of β, e.g. for β = 0.9.
Locally homogeneous observations are in the lower left part where the indices refer
to observations which are very similar to a fraction β of the nearest k neighbors.

5 Application to real data

5.1 Geochemical data from northern Europe

The so-called Baltic Soil Survey (BSS) data originates from a large-scale geochemistry
project carried out in northern Europe, in an area of about 1,800,000 km2 (Reimann et
al. 2003). In two different layers, 769 samples of agricultural soils have been collected.
The samples were analyzed for the concentration of more than 40 chemical elements.
This project was carried out to document element concentrations and spatial variation
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Fig. 7 Plots for identifying local outliers in the BSS data set. The 20 observations and their neighbors
(k = 10) with the highest degree of isolation (β = 10 %) are highlighted

in agricultural soils from northern Europe. The element distributions will not only
be influenced by the underlying lithology but also by other factors like climate, the
input of marine aerosols, agricultural practice and contamination. The data sets of both
layers are available in the R package mvoutlier as data files bsstop and bssbot.

As an example for local outlier identification we use the elements Al2O3, Fe2O3,
K2O, MgO, MnO, CaO, TiO2, Na2O, P2O5 and SiO2 from the top layer (0–25 cm).
These are major elements and their element concentrations sum up to almost 100 %. In
the literature, this kind of data is known as compositional data (Aitchison 1986). Before
continuing with outlier detection an appropriate transformation has to be made, and
therefore we use the isometric logratio transformation (Filzmoser and Hron 2008; Filz-
moser et al. 2012). We apply the interactive plot from Fig. 6 by selecting the parameters
k = 10 and β = 10 %. So, we are interested in deviations in small neighborhoods,
which, because of the large scale, still correspond to quite big areas. Highlighting the
20 observations and their neighbors with the highest degree of isolation (of the regular
observations) results in the plots in Fig. 7.

The identified points in the map of Fig. 7 are mainly boundary points which have
a higher probability of local outlyingness. Some of these observations are known to
behave differently, e.g. those on the northern coast. However, finding the reason for
local outlyingness of all marked points would require much more detailed study of
the single element maps. Reasons for their abnormal behavior could be a different
data structure caused by local artefacts in the soil, or exchanged samples, incorrect
sample preparation, wrong laboratory analyses, etc. Rather than going into detail with
studying the identified points, we want to test the proposed procedures by exchanging
the spatial locations of two samples. This sometimes happens in the laboratory where
the chemical analysis of the samples was correctly done, but the assignment of the
samples to the locations was mixed up. The samples to be exchanged are marked by
circles in the right plot of Fig. 7. Figure 8 shows the result where we again marked
the 20 observations and their neighbors with the highest degree of isolation. Both of the
exchanged samples appear now as local outliers, or more precisely, they are among the
20 most isolated regular observations. This means that their multivariate data structure
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Fig. 8 Plots for identifying local outliers in the BSS data set. The 20 observations and their neighbors
(k = 10) with the highest degree of isolation (β = 10 %) are highlighted. The observations marked by
circles were exchanged

is now quite different from their neighbors, although the exchanged samples are not
that distant (around 200 km) compared to the size of the whole survey area.

We are also interested in the actual degree of isolation in order to get an idea of
the strength of local outlyingness. Since we selected β = 10 % we would expect a
degree of isolation of about 10 % in case of independent normally distributed data.
Using the tools of Fig. 5 we inspect the behavior of the original and manipulated
data. Since we were only investigating the regular observations, Fig. 9 shows the
appropriate plots only for the regular observations. The left plot shows the original
data where the observations that will be exchanged are marked by black lines. They
are very homogeneous to their neighbors. In fact there are only about 10 observations
being exceptionally different from their neighbors. The right plot shows the graph for
the manipulated data, with the exchanged observations marked by black lines. They
clearly increased the degree of isolation, even for a wide range of β, and therefore
they are identified as local outliers.

In a further experiment with this data set, we test the local outlier identification
procedure by means of a small simulation study. This time we randomly pick up two
observations, which could be regular or outlying observations. For each observation we
compute their rank of isolation. A rank of one refers to the most isolated observation (of
the regular or outlying points). We store the minimal rank of both observations. Then
the spatial coordinates of these observations are exchanged. Again, the minimal rank
of the exchanged observations is computed. This procedure is repeated 100 times, and
the results are shown in Fig. 10. On the horizontal axis, the distance between the two
selected observations is shown. The points with the dark symbols refer to the minimal
rank of the pairs for the original data. The lines connecting to the open symbols refer
to the minimal rank, as it occurs after exchanging the coordinates. It can be seen that
in almost all cases, the rank of isolatedness gets much lower after exchanging the
coordinates. Most of the points fall below rank 20, indicated by the dashed horizontal
line, which means that at least one of these points will very likely be identified as
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Fig. 9 Plots for visualizing the degree of isolation for each observation of the BSS data set. The marked
lines refer to two observations for which the spatial coordinates have been exchanged in the right plot
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Fig. 10 Pairs of observations are selected randomly, and their isolatedness is ranked. The minimum of
their rank is shown by dark symbols, as well as the spatial distance of the pairs. The connected points with
the open symbols show the (minimum) rank after exchanging the spatial coordinates. The horizontal line
indicates rank 20

local outlier. If the distance between both points is very low, the rank improvement is
somewhat smaller.

5.2 Social data from France

The data set considered here originates from Guerry (1833), who collected and ana-
lyzed social data from the 86 departments of France around 1830, with the view to
determining social laws. The data set is available in the R package Guerry. In the
following we will use only 85 departments by excluding Corsica (which is an outlier
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Fig. 11 Degree of isolation of each observation (lines) from 90 % of the neighbors for the social data

0 10000 20000 30000 40000

0
50

00
10

00
0

15
00

0
20

00
0

Population per crime against persons

P
op

ul
at

io
n 

pe
r 

cr
im

e 
ag

ai
ns

t p
ro

pe
rt

y

2e+05 4e+05 6e+05 8e+05 1e+06

18
00

00
0

22
00

00
0

26
00

00
0

X coordinate

Y
 c

oo
rd

in
at

e

Fig. 12 Identification of the most extreme local outlier and its next 20 neighbors

both spatially and statistically), and the two variables “population per crime against
persons” and “population per crime against property”. Considering only two variables
allows to graphically inspect the data, see Fig. 12 (left). Figure 12 (right) shows the
85 departments, where the indicated points are used as spatial coordinates.

Using the ideas from Sect. 4.2 we can analyze the degree of isolation from a fraction
1 − β of the neighbors. We will consider again β = 10 %, and vary the neighborhood
size with kNN. The resulting plots are shown in Fig. 11. In the right plot we can see
that four global outliers are identified, which we will not further pursue here. The left
plot for the regular observations reveals one observation as clearly deviating, even for
a large range of next neighbors. We will analyze this local outlier in the following.

Selecting this most isolated local (but not global) outlier in the same way as in Figs.
6, 7 and 8, by considering the k = 20 next neighbors, gives the plot in Fig. 12 (right).
The local outlier is shown by the filled circle, the 20 neighbors are linked and marked
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by circles. In the left plot we show here the original data, where the same symbols
are used as in the right plot. Indeed, the local outlier is very different from most of
its neighbors. The region of the outlier and its neighbors corresponds more or less to
the Rhône-Alpes region, an alpine region next to Switzerland. The local outlier is the
department Rhône with the capital Lyon. In the nineteenth century, Lyon was already
a famous industrial city, with focus on silk production. The region around Lyon was
densely populated, quite different from most of its neighboring departments. This
might be possible reasons why the crime rates are different to most other neighbors.

6 Conclusions

When analyzing multivariate data it is of interest to identify outliers or other relevant
structures in the data set. Here we assume the additional availability of spatial coor-
dinates (one-, two- or three-dimensional) for each multivariate observation. Spatial
dependence is in fact a quite frequent situation, but often the coordinates are either not
reported or ignored for the analysis. We have introduced different exploratory tools
to identify outliers in a local spatial neighborhood. The tools are based on pairwise
robust Mahalanobis distances between the observations. The robustness of the method
is the result of plugging in a robust covariance estimation for computing the Maha-
lanobis distances. The determination of the distribution of these pairwise distances
allows deriving a measure for local outlyingness. The local behavior of the method
can be regulated by changing the size of the neighborhood. Additional “robustness”
for identifying local outliers is included by tolerating a (small) percentage of similar
neighbors, which can be similar just by chance. By increasing this percentage, the
tools can even be used for finding locally homogeneous regions.

Acknowledgments The ideas are not limited to data with spatial coordinates; they could also be extended
to time series data, or data with spatial and temporal dependence. These will be tasks for future research.
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