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Abstract The penalized maximum likelihood estimator (PMLE) has been widely
used for variable selection in high-dimensional data. Various penalty functions have
been employed for this purpose, e.g., Lasso, weighted Lasso, or smoothly clipped
absolute deviations. However, the PMLE can be very sensitive to outliers in the data,
especially to outliers in the covariates (leverage points). In order to overcome this disad-
vantage, the usage of the penalized maximum trimmed likelihood estimator (PMTLE)
is proposed to estimate the unknown parameters in a robust way. The computation
of the PMTLE takes advantage of the same technology as used for PMLE but here
the estimation is based on subsamples only. The breakdown point properties of the
PMTLE are discussed using the notion of d-fullness. The performance of the pro-
posed estimator is evaluated in a simulation study for the classical multiple linear and
Poisson linear regression models.
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188 N. M. Neykov et al.

1 Introduction

Let (yi , xT
i ), for i = 1, . . . , n, be identically and independently distributed obser-

vations, where yi is the i th observation of the response variable Y and xT
i =

(x11, x12, . . . , x1p) is the i th row of the covariates matrix X . Assume that yi depends
on xi through a linear predictor ηi (θ) = xT

i θ via the objective function L(ηi (θ), yi ).
For instance, L(ηi (θ), yi ) might be a probabilistic model such as likelihood, quasi-
likelihood or another discrepancy function related with the i th observation. Without
loss of generality, we shall assume that L(ηi (θ), yi ) is the log-likelihood. The Maxi-
mum Likelihood Estimator (MLE) is defined as

θ̂n,M L E := arg max
θ

{
�n(θ) =

n∑
i=1

L(ηi (θ), yi )

}
. (1)

The Penalized MLE (PMLE) is defined as

θ̂n,P M L E := arg max
θ

⎧⎨
⎩�n(θ) − n

p∑
j=1

pλ(
∣∣θ j
∣∣)
⎫⎬
⎭ . (2)

Here, pλ(.) is a penalty function indexed by the regularization parameter λ ≥ 0. Due
to the penalty function, some of the components of θ are shrunk to zero automatically
and thus variables selection is performed. A large value of λ tends to choose a simple
model whereas a small value of λ favors a complex model. In real applications the
parameter λ is not known. It may be chosen by cross-validation or using an information
criterion like the Bayesian Information Criterion (BIC), see Bühlmann and van der
Geer (2011).

Commonly used penalty functions are the L1 penalty pλ(
∣∣θ j
∣∣) = λ

∣∣θ j
∣∣ called

LASSO (least absolute shrinkage and selection operator) by Tibshirani (1996), the
Lq -norm penalty pλ(|θ |) = λ

∣∣θ j
∣∣q for 0 < q ≤ 2, (Frank and Friedman 1993), the

smoothly clipped absolute deviation (SCAD) penalty (Fan and Li 2001), which is a
quadratic spline

pλ(|θ |) =

⎧⎪⎨
⎪⎩

λ|θ | if |θ | < λ,
(a2−1)λ2−(|θ |−aλ)2

2(a−1)
if λ ≤ |θ | < aλ,

(a+1)λ2

2 if |θ | ≥ aλ,

(3)

where a = 3.7, or the minimum concavity penalty (MCP) p′
λ(
∣∣θ j
∣∣) = (λ − |θ | /a)+

considered by Zhang (2008). The SCAD and MCP are non-convex penalty functions
which possess the oracle property. This means that the important variables can be
correctly selected with a high probability whereas the remaining variables will be
dropped from the model. Antoniadis et al. (2011) discussed about many other penalty
functions and selection criteria for the regularization parameter λ for the generalized
linear models (GLMs) framework.
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Ultrahigh dimensional variable selection through the PMTLE 189

The problem (2) is a convex optimization problem if the �n(θ) is concave and
the L1 penalty is used. In general, for fixed parameter λ, the penalized likelihood
with SCAD penalty function is non-convex and thus special algorithms have been
developed to obtain a solution. For instance, Zou and Li (2008) propose an effective
locally linear approximation algorithm (LLA) for optimization of (2) with the SCAD
penalty function. The idea is to approximate (majorize) the SCAD function by a linear
function at the mth iteration

pλ(|θ |) ≈ pλ(|θ(m)|) + p′
λ(|θ(m)|)(|θ | − |θ(m)|). (4)

As a consequence the penalized maximum likelihood (2) reduces to

�n(θ) − n
p∑

j=1

w
(m)
j

∣∣θ j
∣∣ , (5)

where w
(m)
j = p′

λ(|θ(m)
j |). By the quadratic approximation of �n(θ) at θ(m) this opti-

mization problem becomes weighted L1 penalized least squares closely related with
the adaptive LASSO estimation procedure (Zou 2006) that produce sparse fits and
performs variable selection automatically. The LLA algorithm is implemented as a
function in the R (R Development Core Team 2012) package SIS of Fan et al. (2009).
Zou and Li (2008) discussed also other iterative approaches for solving the corre-
sponding weighted L1 penalized least squares problem efficiently by the least angle
regression (LARS) algorithm (Efron et al. 2004).

For further consideration we use a well known result of Green (1984) concerning
computational aspects of the MLE in fitting probabilistic regression models. Because
the log-likelihood �n(θ) is a composite function of the linear predictors ηi (θ), the
Fisher scoring algorithm for maximization of �n(θ) reduces to an iteratively re-
weighted least squares (IRLS) algorithm. Thus the optimization problem (5) at the
(m + 1)th iteration can be replaced by the following weighted least squares problem
with weighted L1 penalty

(z(m) − Xθ)T A(m)(z(m) − Xθ) + n
p∑

j=1

w
(m)
j

∣∣θ j
∣∣ , (6)

where z = A−1u + η is an adjusted dependent variable, u = (∂�n(θ)/∂η), η = Xθ

and A = (uuT ), and all these elements are evaluated at the current value θ(m). The
working weight matrix A is diagonal as the observations are independent.

Hence an efficient standard regression procedure with L1 penalty, e.g., based on the
LARS algorithm of Efron et al. (2004) or the coordinate descent algorithm (Friedman
et al. 2007, 2010), can be adapted to calculate θ̂n,P M L E via an IRLS algorithm. A
discussion about the applicability and implementation of these two approaches for
the penalized logistic regression model with the LLA majorant (surrogate) of the
SCAD penalty function is presented by Breheny and Huang (2011). Computational
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190 N. M. Neykov et al.

algorithms within high-dimensional settings are discussed also in Bühlmann and van
der Geer (2011), and also in the review paper of Fan and Lv (2010).

It is well known that the least squares estimator, the MLE and quasi-likelihood
estimators can be highly sensitive to a small proportion of observations that departs
from the model (Huber 1981; Hampel et al. 1986; Maronna et al. 2006). Therefore the
penalized least squares estimator and MLE are non-robust against outliers in the data
too. To overcome this problem, the penalized M-estimator has been employed (Fan
and Li 2001; Fan and Lv 2010). However, within regression models, M-estimators
are not robust against outlying observations in the covariates, the so called leverage
points, and therefore penalized M-estimators are not robust in such settings as well.
We remind that only some redescending M-estimators are robust in linear regression
settings with fixed designs (Mizera and Müller 1999).

Several robust alternatives of the MLE that are robust simultaneously against out-
liers in the response and covariates have been developed, e.g., the weighted MLE
of Markatou et al. (1997) and the maximum trimmed likelihood estimator (TLE) of
Neykov and Neytchev (1990). To our knowledge, none of these estimators have been
used in high dimensional data modeling. Thus, the goal of this paper is to develop
an alternative of the penalized MLE for variable selection based on the penalized
maximum TLE (PMTLE) in order to reduce the influence of the outliers in the covari-
ates. The TLE is looking for that subsample of k > n/2 observations out of n with
the optimal likelihood. The trimming number of observations can be chosen by the
user in appropriate bounds to get a high breakdown point (BDP) and optimal effi-
ciency. Because the TLE accommodates the classical MLE, the variable selection
methodology, which is based mainly on the penalized MLE, can be adapted and fur-
ther developed. In this paper the superiority of this approach in comparison with the
penalized MLE is illustrated.

The paper is organized as follows. In Sect. 2 we define the generalized trimmed
estimator (GTE), consider its penalized version and characterize its finite sample
BDP. The applicability of the PMTLE is considered for the iterative sure independence
screening (ISIS) framework of Fan et al. (2009) in Sect. 3. In Sect. 4 a simulation study
is performed to illustrate the effectiveness of the proposed estimator in comparison
with the ISIS procedure for the classical multiple and Poisson linear regression models.
Finally, conclusions are given in Sect. 5.

2 Penalized maximum trimmed likelihood estimator

For introducing the penalized maximum trimmed likelihood estimator (PMTLE), we
first need to review the definition and some properties of the GTE introduced by
Vandev and Neykov (1998). Let fi : �p → R

+, where �p ⊆ R
p is an open set.

Definition 1 The GTE θ̂k
n,GT E of θ is defined as the solution of the optimization

problem

θ̂k
n , GTE := arg min

θ∈�p

{
Sn,k(θ) = min

I∈Ik

∑
i∈I

fi (θ)

}
, (7)
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Ultrahigh dimensional variable selection through the PMTLE 191

where Ik is the set of all k-subsets of the index set {1, . . . , n} and k is the trimming
constant.

The trimming parameter k determines the robustness properties of the GTE as n−k
functions with the largest values of fi (θ) are excluded from the loss function. The BDP
of the GTE is not less than 1

n min{n −k, k −d} if the set F = { fi (θ) : i = 1, . . . , n} is
d-full. F is called d–full if for any subset of cardinality d of F , the supremum of this
subset is a subcompact function. A real valued function ϕ (θ) is called subcompact
if the sets Lϕ(θ) (C) = {θ : ϕ (θ) ≤ C} are contained in a compact set for every real
constant C . Details can be found in Vandev and Neykov (1998), Müller and Neykov
(2003), and Dimova and Neykov (2004). Thus, if one wants to study the BDP of the
GTE, one has to find the fullness parameter d of F and then the BDP can be exemplified
by the range of values of k. The BDP is maximized for k = 	(n + d + 1)/2
, when it
approximately equals 1/2 for large n. Therefore, by selecting the value of k properly
one can control the level of robustness of the GTE. Further, the asymptotic properties of
the GTE estimator (7) were studied by Čížek (2008) for the case of twice differentiable
functions fi (θ).

The optimization problem (7) defining the GTE is of combinatorial nature,

min
θ∈�p

Sn,k(θ) = min
θ∈�p

min
I∈Ik

∑
i∈I

fi (θ) = min
I∈Ik

min
θ∈�p

∑
i∈I

fi (θ). (8)

Therefore, it follows that all possible (n
k ) partitions of the set { f1, . . . , fn} have to be

considered and θ̂k
n,GTE is defined by the partition with the minimal value of Sn,k(θ).

Hence, an exact computation of the GTE is not feasible for large samples. To get an
approximative GTE solution, an algorithm was developed by Neykov et al. (2012). It
repeatedly (i) sets s = 0, selects a small subset

{
fi1 , . . . , fik∗

}
of k∗ functions from

F and forms Is = {i1, . . . , ik∗}, (ii) minimizes the objective function
∑

i∈Is
fi (θ)

with respect to θ , and uses the obtained estimate θ̂s , (iii) sets s = s + 1, orders
the functions of F in ascending order, fν(1)(θ̂s) ≤ fν(2)(θ̂s) ≤ . . . ≤ fν(k)(θ̂s) ≤
. . . ≤ fν(n)(θ̂s), where ν(.) is the permutation of the indices {1, 2, . . . , n}, and forms
Is = {ν(1), . . . , ν(k)}; the steps (ii) and (iii) are repeated as long as the newly obtained
estimates θ̂s produce smaller values of the objective function

∑
i∈Is

fi (θ).
The trial subsample size k∗ should be greater than or equal to d, which is necessary

for the existence of (7). However, the chance to get at least one good subsample of data
points is larger if k∗ = d. Obviously, only for very small samples all possible subsets
of size k∗ = k can be considered to obtain the precise instead of an approximative
solution. The algorithm could be further accelerated for large data sets by applying
the partitioning and nesting techniques as discussed by Neykov et al. (2012).

Particular cases of the GTE are the least trimmed squares (LTS) estimator
(Rousseeuw 1984) if f (θ) in (7) is replaced by the squared regression residuals, the
least median of squares (Rousseeuw 1984), the maximum trimmed likelihood estima-
tor (TLE) (Neykov and Neytchev 1990) if f (θ) = −L(ηi (θ); yi ), the least trimmed
quantile regression (Neykov et al. 2012), the extended trimmed quasi-likelihood esti-
mator (Neykov et al. 2012), to name a few.
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192 N. M. Neykov et al.

For high dimensional statistical optimization problems, where p is large in com-
parison with the sample size n, we need to consider a penalized version of the GTE.

Definition 2 The penalized GTE is defined as

min
θ∈�p

S P
n,k(θ) = min

θ∈�p

⎧⎨
⎩min

I∈Ik

∑
i∈I

fi (θ) + k
p∑

j=1

pλ

(∣∣θ j
∣∣)
⎫⎬
⎭ (9)

= min
I∈Ik

⎧⎨
⎩min

θ∈�p

⎡
⎣∑

i∈I

fi (θ) + k
p∑

j=1

pλ

(∣∣θ j
∣∣)
⎤
⎦
⎫⎬
⎭ (10)

= min
I∈Ik

⎧⎨
⎩min

θ∈�p

∑
i∈I

⎡
⎣ fi (θ) +

p∑
j=1

pλ

(∣∣θ j
∣∣)
⎤
⎦
⎫⎬
⎭ . (11)

One can see that the penalized GTE refers to a penalized optimization prob-
lem, however, defined over all k-subsets. Thus the aforementioned algorithm can
be used to obtain an approximate solution. For fixed λ, the BDP of the penal-
ized GTE can be characterized via the d-fullness index of the set of functions
Fλ = { fi (θ) + ∑p

j=1 pλ(
∣∣θ j
∣∣), i = 1, . . . , n}. Let F be d-full. Due to the inclu-

sion

{
θ ∈ R p : max

j∈J

(
f j (θ) +

p∑
l=1

pλ(|θl |)
)

≤ C

}
⊆
{
θ ∈ R p : max

j∈J
f j (θ) ≤ C

}

it follows that Fλ is d-full because F is d-full. We see that the set Fλ is even 1-full
provided the set {θ ∈ R p : ∑p

l=1 pλ(|θl |) ≤ C} is contained in a compact set. For
the convex penalty functions such as L1 this is obvious whereas for the non-convex
function such as SCAD the generalized d-fullness technique (Dimova and Neykov
2004) can be employed. From a computational point of view, the LLA defined by
(4) can be used to get an approximate solution of the penalized GTE with SCAD
penalty function. As the LLA is a convex majorant of the SCAD function, this ensures
d-fullness of the corresponding set of functions Fλ. Therefore we conclude that a
solution of the penalized GTE always exists if the set of functions Fλ is d-full. We
note that this solution may not be unique, and thus additional conditions are required
to achieve this.

From the penalized GTE definition it follows that when k = n, and for suitable
choices of fi (θ) and pλ(.), we can derive different penalized estimators such as the
LASSO of Tibshirani (1996), the penalized L1-likelihood of Tibshirani (1997), the
penalized likelihood with the SCAD function of Fan and Li (2001), the LAD-LASSO
of Wang et al. (2007), or the penalized M-estimator (Fan and Li 2001). The lack of
robustness with respect to outlying leverage points in the regression framework is
the main weakness of these estimators. Exceptions are the high BDP penalized MCD
estimator (Croux and Haesbroeck 2010) and the penalized LTS estimator (Alfons et
al. 2013) which are defined over subsamples. The last two estimators can also be
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Ultrahigh dimensional variable selection through the PMTLE 193

derived from the penalized GTE by substituting fi (.) with the Mahalanobis distances
and squared regression residuals, respectively.

Definition 3 The PMTLE is defined as a particular case of the penalized GTE
when the function fi (θ) in (9) is replaced by the negative log-likelihood of the ith
observation.

The PMTLE can attain the highest BDP provided the set Fλ of penalized neg-
ative log-likelihoods is d–full. As the set Fλ inherits the index of fullness of F , it
is sufficient to derive the index of fullness of the set F comprised by the negative
log-likelihoods.

We remind that in the classical settings, when p < n, the d–fullness indices of vari-
ous sets of functions have been characterized. For instance, Vandev and Neykov (1993)
determined the index of fullness d = p for the set of p-variate normal distributions.
Müller and Neykov (2003) related the index of fullness of the negative log-likelihoods
sets of the linear logistic, Poisson and r -th power exponential distribution regression
models with the quantity N (X)+1, where N (X) = max0 �=θ∈Rp card{i ∈ {1, . . . , n};
xT

i θ = 0} provides the maximum number of covariates xi ∈ R p lying in a subspace,
Müller (1995). If the observations xT

i are linearly independent then N (X) = p − 1,
and this is the minimal value for N (X). If the covariates are qualitative variables
such as factors with several levels, then N (X) is much larger. Neykov et al. (2012)
derived the index of fullness d = max(N (X),N (Z)) + 1 of the set of extended
quasi-log-likelihoods where X and Z are the mean and dispersion models covariates
data matrices. Neykov et al. (2012) characterized the index of fullness d = N (X)+ 1
of the quantile linear regression residuals set. Hence the indices of fullness of the
corresponding Fλ sets with convex penalty functions are available for direct use. As
consequence of this, the BDP of the PMTLE for the above probabilistic models equals
1
n min {n − k, k − N (X) − 1}. If the parameter of trimming k satisfies the inequali-
ties 	{n + N (X) + 1} /2
 ≤ k ≤ 	{n + N (X) + 2} /2
 the BDP is maximized and
equals 1

n 	{n − N (X) − 1} /2
. Obviously, the BDP of the PMTLE can be small in
modeling experimental data with qualitative (categorical) covariates. Thus the PMTLE
is more suitable for data with continuous covariates.

Now the question is how to proceed with the characterization of the BDP in high-
dimensional data when p >> n. As Bühlmann and van der Geer (2011) pointed out:
“The philosophy that will generally rescue us, is to ‘believe’ that in fact only a few
coordinates of the θ are non-zero”. Armed with this ‘belief’ we postpone the BDP
discussion of the PMTLE to the next section.

In order to reduce the outlier’s influence on the selection of the penalization para-
meter λ we recommend the usage of the penalized BIC based on trimming, defined by
PTBIC(λ) = −2 log(S P

n,k(θ̂))+d f (λ) log(k) where S P
n,k(θ̂) is the PMTLE and d f (λ)

are the model degrees of freedom given by the non-zero estimated components of θ̂ .
Obviously, PTBIC reduces to BIC if k = n and λ = 0.

In the next section, the applicability of the PMTLE is investigated, and its BDP
properties for the ultrahigh dimensional multiple linear regression and Poisson regres-
sion model are considered.
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194 N. M. Neykov et al.

3 Robust SIS and ISIS based on trimming

The usage of penalization is limited in ultrahigh dimensional settings. According to
Fan and Lv (2008), the ultrahigh dimensionality concerns with variable selection in the
cases when p is much larger than n, i.e., log(p) = O(nα) for some 0 < α < 1. In this
section we focus on the so called sure independence screening (SIS) technique and its
variations for variable selection developed by Fan et al. (2009). SIS is a preprocessing
technique which aims at a drastic reduction of the number of covariates to a dimension
less than the sample size by conventional marginal utility methods, with the hope to
catch the most informative covariates, and then to use a penalization technique to
select the carriers, see Fan and Lv (2010). Such a two-stage procedure is acceptable
because the penalty based variable selection techniques work reasonably well with
a moderate number of covariates. Fan and Lv (2008), Fan et al. (2009), and Fan
and Lv (2010) have provided theoretical results that all important covariates can be
selected by such a procedure with high probability. Unfortunately, the SIS techniques
that rely on MLE, quasi-likelihood and robust M-estimators of Huber (1981), are not
resistant against outliers in the covariates, and so their applicability is of limited use.
This can be overcome by replacing these estimators by their high BDP counterparts
based on trimming. The usage of the PMTLE for the classical multiple linear and
Poisson regression models will be demonstrated in the following. In order to aid the
presentation, we briefly review the SIS formulation, following closely (Fan et al. 2009).

3.1 Variable ranking by marginal utility

Without loss of generality, we shall assume that L(.) is the negative log-likelihood,
although other functions such as the quasi-likelihood, the least squares estimator can
be used. Let us define the marginal utility of the j th covariate X j , for j = 1, . . . , p,
by

L0 = min
θ0

1

n

n∑
i=1

L(yi , θ0), (12)

L j = min
θ0,θ j

1

n

n∑
i=1

L(yi , θ0 + xi jθ j ), (13)

where L j is the loss function of using θ0 + xi jθ j to predict yi .
The idea behind SIS is to compute the marginal utilities L1, . . . , L p, rank them

in ascending order, Lν(1) ≤ . . . ≤ Lν(q) ≤ . . . ≤ Lν(p), where (ν(1), . . . , ν(p))

is the permutation of the indices (1, . . . , p), and select the q-vector of covariates
(Xν(1), Xν(2), . . . , Xν(q)) for further consideration. In this way the covariate X j is
selected by SIS according to the magnitude of its marginal utility. Computing the
L j is fast as the fitting model has two parameters only, and so even for ultrahigh
dimensional data this is not an intensive computational problem. Fan and Lv (2008)
recommend to take q = 	n/ log n
 for multiple regression and q = 	n/(2 log n)

for Poisson regression. The parameter q is usually chosen large enough but q < n to
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Ultrahigh dimensional variable selection through the PMTLE 195

ensure the sure screening property. As q is specified in advance, only the q smallest
marginal utilities have to be ordered, and an ordering of the remaining values is not
required, hereby saving computation time. We note that the influence of θ0 can be
excluded by the marginal utility via the marginal likelihood ratio L R j = L0 − L j that
assesses the increments of the log-likelihood and equals the deviance differences for
GLMs. Obviously this will not change the ordering of L j . For the multiple regression
model this is equivalent to centering the dependent variable by its mean. On the other
hand, the covariates have to be standardized to reduce the influence of their magnitude.

3.2 Penalized pseudo-likelihood

The subset of variables selected by SIS may still include many unimportant covariates.
To improve performance, Fan et al. (2009), and Fan and Song (2010) recommend the
usage of the penalized likelihood to further delete unimportant variables. By reordering
the covariates if necessary, we may assume without loss of generality that X1, . . . , Xq

are the covariates recruited by SIS. Let xi,q = (xi1, . . . , xiq)T and redefine θ =
(θ1, . . . , θq)T . Minimization of the penalized log-likelihood

1

n

n∑
i=1

L(yi , θ0 + xT
i,qθ) +

q∑
j=1

pλ(
∣∣θ j
∣∣), (14)

will yield a sparse regression parameter estimate θ , where the regularization parameter
may be chosen by cross-validation. Let us denote the nonzero components of θ by M̂.

Fan et al. (2009) refer to this two-stage procedure as SIS-Lasso or SIS-SCAD,
depending on the choice of the penalty function. The screening stage solves only
bivariate optimization, see (13), whereas the fitting part solves only the optimization
problem (14) with moderate size q. This is an attractive feature in ultrahigh dimensional
statistical learning.

3.3 Robust SIS-SCAD based on trimming

The two-stage SIS-SCAD estimation procedure are based on the MLE and penalized
MLE which are not robust against outlying observations in the covariates in prob-
abilistic regression models. A naive approach would be to replace the optimization
problems (12), (13) and (14) by their counterparts based on trimming and to solve
them separately to get the corresponding extremes keeping the trimming parameter
k at the lowest possible levels to guarantee maximal BDP. This means that the GTE
algorithm needs to be used in p + 2 separate optimization problems.

However, the GTE combinatorial optimization principle dictates that the two-stage
SIS-SCAD estimation procedure has to be applied to all k-subsets in order to get that
k-subset with the optimal value of the objective function (14). In this way we for-
mally define the two-stage Trimmed SIS-SCAD (TSIS-SCAD) estimation procedure
as follows:
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min
I∈Ik

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ISIS procedure⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ltrim
0,M̂1

= min
θ0,θM̂1

k−1 ∑
i∈I

L(yi , θ0 + xT
i,M̂1

θM̂1
)

L(2,tr im)
j = min

θ0,θM̂1
,θ j

k−1 ∑
i∈I

L(yi , θ0 + xT
i,M̂1

θM̂1
+ xi jθ j )

ISIS − SCAD procedure

S̃ P,tr im
k,n = min

θ0,θM̂1
,θÂ2

(
k−1 ∑

i∈I
L(yi , θ0 + xT

i,M̂1
θM̂1

+ xT
i,Â2

θÂ2
)

+ ∑
j∈M̂1∪Â2

pλ(
∣∣θ j
∣∣)
)

(15)

Therefore, for all k-subsets the linked optimization problems (19) have to be solved
subsequently and the penalized TSIS-SCAD estimate is defined by that k-subset with
the minimal value of S P,tr im

k,n . Because this is not feasible for large data sets, an approx-
imate estimate can be obtained by the use of the GTE algorithm. Obviously, the covari-
ates have to be standardized using the means and standard deviations computed from
each subset in order to reduce the influence of their magnitude as the GTE algorithm
consists of optimization problems over data subsets.

An important choice for the algorithm is the trimming parameter k which
controls the identifiability of the model parameters and determines the finite
sample BDP of the estimator. Since here we will only consider simple lin-
ear and Poisson regression models, the d-fullness index of Fj = {L(yi , θ0 +
xi jθ j ) for i = 1, . . . , n} is N (X j ) + 1 for j = 1, . . . , p, according to
Müller and Neykov (2003). Thus, the finite sample BDP of the TLE utility
estimator equals 1

n min
{
n − k, k − N (X j ) − 1

}
, whereas for the penalized TSIS-

SCAD estimator the finite sample BDP is 1
n min

{
n − k, k − N (Xn×q) − 1

}
, see

Müller and Neykov (2003). Therefore, the finite sample BDP of the two-stage
TSIS-SCAD estimation procedure equals 1

n min {n − k, k − D − 1} where D =
max[max j N (X j ),N (Xn×q)]. This BDP is maximized for 	{n + D + 1} /2
 ≤ k ≤
	{n + D + 2} /2
 and equals 1

n 	{n − D − 1} /2
.
Instead of assigning a minimal value of the trimming parameter k to gain maximal

BDP we prefer to take a subset of data of size k = 	αn
 for α ∈ (0.5, 1], provided all
covariates are continuous. For instance, the choice α = 0.80 ensures simultaneously
a resistance against 20 % outliers in the data and leads to a higher efficiency of the
estimator.

3.4 Iterative feature selection

Independent variable screening as it is done in the SIS procedure may have poor
performance if variables are marginally weakly correlated with the response variable
but jointly related with the response, or if a variable is jointly uncorrelated with the
response but its marginal correlation with the response is higher than for some other
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important variable. These problems are addressed by iterative SIS (ISIS) proposed by
Fan and Lv (2008), Fan et al. (2009), and Fan and Song (2010) which incorporates
the joint covariance information.

In the first step of ISIS, the two stage SIS-SCAD procedure is performed to select
the subset M̂1 of covariates. Then Fan et al. (2009) propose to compute the following
loss function in order to assess the importance of the covariate X j which has not been
included by the SIS-SCAD procedure:

L(2)
j = min

θ0,θM̂1
,θ j

n−1
n∑

i=1

L
(

yi , θ0 + xT
i,M̂1

θM̂1
+ xi jθ j

)
, (16)

for j ∈ M̂c
1 = {1, . . . , p} \ M̂1, where xi,M̂1

is the sub-vector of xi consisting of

those elements in M̂1.
The optimization problem (16) is low-dimensional and thus easy to solve. The

additional contribution of variable X j given the existence of variables in M̂1 can be
assessed by the marginal likelihood ratio test (difference by the two deviance functions
for the GLM setting):

L L R
j = min

θ0,θM̂1

n−1
n∑

i=1

L(yi , θ0 + xT
i,M̂1

θM̂1
) − L(2)

j . (17)

After ordering of L L R
j in ascending order for j ∈ M̂c

1 we take the indices correspond-

ing to the smallest m2 elements and form the set Â2.
The above pre-screening step is followed by the penalized likelihood for obtaining

a sparse estimate

θ2 = arg min
θ0,θM̂1

,θÂ2

⎛
⎝n−1

n∑
i=1

L(yi , θ0+xT
i,M̂1

θM̂1
+xT

i,Â2
θÂ2

) +
∑

j∈M̂1∪Â2

pλ(
∣∣θ j
∣∣)
⎞
⎠ .

(18)

As a result we obtain a new estimated set M̂2 of active indices consisting of those
indices of θ2 that are non-zero. Thus, this procedure allows to delete variables from
the previously selected features with indices in M̂1. The process, which iteratively
recruits and deletes features, can then be repeated until we obtain a set of indices M̂l

which either has reached the prescribed size q, or satisfies M̂l = M̂l−1. In this way
a final estimated parameter vector θl is obtained.

In their R package SIS, Fan et al. (2009) chose k1 = 	2q/3
, and thereafter at the
r th iteration, they take mr = q − |M̂r−1|. This ensures that the iterated versions of
SIS take at least two iterations to terminate.

3.5 Robust iterated variable selection based on trimming

Similar to robustifying the two-stage SIS-SCAD estimation procedure, we could
replace the optimization problems (16) and (18) by their counterparts based on trim-
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ming and solve them for all k-subsets out of n cases in order to get that k-subset
with the optimal objective value of (18). This way we formally define the two-stage
Trimmed ISIS-SCAD (TISIS-SCAD) estimation procedure as

min
I∈Ik

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ISIS procedure⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ltrim
0,M̂1

= min
θ0,θM̂1

k−1 ∑
i∈I

L(yi , θ0 + xT
i,M̂1

θM̂1
)

L(2,tr im)
j = min

θ0,θM̂1
,θ j

k−1 ∑
i∈I

L(yi , θ0 + xT
i,M̂1

θM̂1
+ xi jθ j )

ISIS − SCAD procedure

S̃ P,tr im
k,n = min

θ0,θM̂1
,θÂ2

(
k−1 ∑

i∈I
L(yi , θ0 + xT

i,M̂1
θM̂1

+ xT
i,Â2

θÂ2
)

+ ∑
j∈M̂1∪Â2

pλ(
∣∣θ j
∣∣)
)

(19)

Therefore for all k-subsets the linked optimization problems (19) have to be solved
subsequently and the penalized TISIS-SCAD estimate is defined by that k-subset with
the minimal value of S̃ P,tr im

k,n . This procedure would not be computationally feasible
for larger data sets, and therefore an approximate estimate can be obtained by the use
of the GTE algorithm. Again the variable standardization has to be done within the
subsets.

Let r = |M̂1 ∪ Â2| be the cardinality of M̂1 ∪ Â2 and M̂∗
1 = M̂1 + 1. Sim-

ilar to the previous section we can conclude that the corresponding utility sets
are (N (Xn×r ) + 1) and (N (Xn×M̂∗

1
) + 1) full, and these are the minimal num-

bers of observations that guarantee identifiability of θ (Müller and Neykov 2003).
Hence, the finite sample BDP of the TLE utility estimator defined by (19) equals
1
n min

{
n − k, k − N (Xn×M̂∗

1
) − 1

}
whereas for the penalized maximum trimmed

ISIS-SCAD estimator it is 1
n min {n − k, k − N (Xn×r ) − 1}. Using the notation

D̃ = max[N (Xn×M̂∗
1
),N (Xn×r )], the BDP of the two-stage TISIS-SCAD estima-

tion procedure (19) equals 1
n min

{
n − k, k − D̃ − 1

}
. This BDP is maximized for⌊{

n + D̃ + 1
}

/2
⌋

≤ k ≤
⌊{

n + D̃ + 2
}

/2
⌋

and equals 1
n

⌊{
n − D̃ − 1

}
/2
⌋

.

As mentioned above, one can select k = 	αn
 with α = 0.80, for instance.

4 Simulation study

In this section, we study the performance of SIS-SCAD, ISIS-SCAD and their trimmed
counterparts on simulated data for the multiple and Poisson linear regression frame-
work. Two different data configurations are presented and discussed.
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4.1 Performance measures

According to the simulation designs described in the next sections we generate training
data without and with contamination, and estimate the regression parameters θ with
the different methods. In addition, n test set observations are generated according to
the same scheme but without outliers. We denote the test set covariates by x̃i and the
response by ỹi , for i = 1, . . . , n. The predictions η̃i = x̃ T

i θ̂ for the linear regression
model, and log(η̃i ) = x̃ T

i θ̂ for Poisson regression are evaluated by the root mean
squared error of prediction (RMSEP),

RMSEP(θ̂) =
√√√√1

n

n∑
i=1

(ỹi − η̃i )2.

The RMSEP is computed for each estimator and simulated test data set, and we report
averages and medians over all simulations. Further, we compare also with the so called
oracle estimator, where the true regression coefficients θ are used for the evaluation.

We evaluate the methods also according to their ability to select the correct vari-
ables, using the false positive rate (FPR) and the false negative rate (FNR). False
positives refer to variables that are selected by the method, while their coefficients in
the simulation design are zero. In contrast, a false negative is a coefficient estimated
as zero, while it was generated as non-zero. Formally, FPR and FNR can be defined
as

F P R(θ̂) = |{ j ∈ {1, . . . , p} : θ̂ j �= 0 ∧ θ j = 0}|
{ j ∈ {1, . . . , p} : θ j = 0} (20)

F N R(θ̂) = |{ j ∈ {1, . . . , p} : θ̂ j = 0 ∧ θ j �= 0}|
{ j ∈ {1, . . . , p} : θ j �= 0} (21)

These rates are computed for each simulated data set, and we will report average
numbers over all simulations. The better the sparseness structure is identified by the
method, the smaller these rates should be.

In order to compare the simulation results with those of Fan et al. (2009) for the
Poisson regression model, we also report the median values of the evaluation measures
||θ − θ̂ ||1 =∑p

i=0 |θ j − θ̂ j | and ||θ − θ̂ ||2 = (
∑p

i=0(θ j − θ̂ j )
2)1/2, the AI C - Akaike’s

information criterion, and the BIC—Bayesian information criterion.

4.2 Simulation design: multiple linear regression

We use the third simulation design considered in Alfons et al. (2013) where the
sparse LTS regression estimator with L1 penalty (L1-penalized trimmed LTS, trimmed
LASSO) was introduced. We compare their estimator with the SIS-SCAD and its
trimmed version TSIS-SCAD, because SIS-SCAD exhibits better performance than
SIS-LASSO according to the simulation study (without contamination) of Fan et al.
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(2009). We note that Fan et al. (2009) denote SIS-SCAD and ISIS-SCAD as Van-SIS
and Van-ISIS.

In this setting, we generate n = 100 observations from a p-dimensional normal
distribution Np(0, �), with p = 1, 000. The covariance matrix � = (�i j )1≤i, j≤p is
given by �i j = 0.5|i− j |, creating correlated predictor variables. The coefficient vector
θ = (θ1, . . . , θp)

T has components θ1 = θ7 = 1.5, θ2 = 0.5, θ4 = θ11 = 1, and
θ j = 0 for j ∈ {1, . . . , p}\{1, 2, 4, 7, 11}.

The response variable is generated according to the multiple linear regression model
yi = xT

i θ + εi , where the error terms εi follow a normal distribution with μ = 0 and
σ = 0.5. We apply the same contamination scheme as Alfons et al. (2013), see also
Khan et al. (2007), who proposed:

1. No contamination
2. Vertical outliers: 10 % of the errors terms in the regression model follow a normal

N (20, σ 2), instead of a N (0, σ 2).
3. Leverage points: Same as in 2., but the 10 % contaminated observations con-

tain high-leverage values, by drawing the predictor variables from independent
N (50, 1) distributions.

The results of the simulation experiment are given in Table 1. The first and second
row of this table are taken from Tables 3 of Alfons et al. (2013) in order to make
a comparison. L1-LTSraw is the result of the L1-penalized trimmed LTS procedure,
and L1-LTS is a reweighted version of the estimator (see Alfons et al. 2013). The
means (mean) and medians (med), respectively, of the RMSEP, FPR and FNR over
500 simulation runs are reported for every method; ISIS-SCAD is denoted by ISIS,
and its trimmed version by TISIS-XX, where XX shows the percentage of trimming -
10, 20, 25.

The results based on the means and medians are almost the same in our simulation
experiments. Larger differences could refer to possible problems with the algorithm.
We see that the performance of the ISIS-SCAD estimator is excellent for the scenario
without contamination, and the RMSEP is close to the oracle estimator. However, ISIS-
SCAD breaks down in the presence of vertical outliers or leverage points, whereas the
robust methods L1-LTS and TISIS are stable. TISIS shows excellent performance: the
RMSEP is close to the oracle estimator, and the false positive and false negative rates
are very small. Moreover, the different trimming percentages result in about the same
performance.

4.3 Simulation design: Poisson regression

The simulation configurations of this section are the same as in Fan et al. (2009).
The following three settings of covariates X1, . . . , X p and regression coefficients
θ0, θ1, . . . , θp, for p = 1, 000 and sample size n = 200 are generated:

1. X1, . . . , X p are independent and identically distributed N (0, 1) random variables;
θ0 = 5, θ1 = −0.5423, θ2 = −0.5314, θ3 = −0.5012, θ4 = −0.4850, θ5 =
−0.4133, θ6 = −0.5234, and θ j = 0 for j > 6;
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Table 1 Results for the simulation scheme in the multiple linear regression case, where n = 100 and
p = 1,000

Method No contamination Vertical outliers Leverage points

RMSEP FPR FNR RMSEP FPR FNR RMSEP FPR FNR

L1-LTSraw 0.79 0.02 0.00 0.74 0.02 0.00 0.72 0.02 0.00

L1-LTS 0.74 0.01 0.00 0.70 0.01 0.00 0.70 0.02 0.00

ISIS (mean) 0.53 0.00 0.00 4.89 0.01 0.75 2.17 0.01 0.33

ISIS (med) 0.52 0.00 0.00 4.88 0.01 0.79 2.13 0.01 0.40

TISIS-10 (mean) 0.53 0.00 0.00 0.55 0.00 0.00 0.55 0.00 0.00

TISIS-20 (mean) 0.53 0.00 0.00 0.56 0.00 0.01 0.57 0.00 0.03

TISIS-25 (mean) 0.53 0.00 0.00 0.59 0.00 0.02 0.58 0.00 0.04

TISIS-10 (med) 0.52 0.00 0.00 0.53 0.00 0.00 0.53 0.00 0.00

TISIS-20 (med) 0.52 0.00 0.00 0.54 0.00 0.00 0.54 0.00 0.00

TISIS-25 (med) 0.52 0.00 0.00 0.55 0.00 0.00 0.56 0.00 0.00

Oracle 0.50

The means and medians of RMSEP, FPR and FNR over 500 simulation runs are reported for every method:
L1-LTSraw and L1-LTS refer to the raw and weighted penalized LTS regression estimator of Alfons et
al. (2013), respectively, ISIS and TISIS (with the percentage of trimming) corresponds to the original and
trimmed version of ISIS-SCAD, respectively, and Oracle uses the true regression parameters

Table 2 Poisson regression, Case 1 of the simulation scheme with 0, 10 and 20 % of contamination by
vertical outliers (VO), n = 200 and p = 1,000

0 % Cont. VO-10 % contamination VO-20 % contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂ ||1 0.12 3.58 0.13 0.17 4.83 0.14 0.18

||θ − θ̂ ||2 0.03 0.99 0.03 0.05 1.36 0.04 0.05

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0 0 0 0.17 0 0

AIC 1544.82 * 1393.09 1175.19 * 1232.82 1022.87

AICt 1666.58 26502.49 1675.22 1749.27 * 1685.46 1786.56

BIC 1607.49 * 1453.76 1233.61 * 1291.25 1078.26

BICt 1729.24 26563.51 1737.89 1811.93 * 1748.13 1849.23

RMSPE.t 24.84 385.37 26.22 32.28 493.55 28.4 36.74

RMSEP.o 17.38

2. X1, . . . , X p are jointly Gaussian, marginally N (0, 1), and with corr(Xi , X4) =
1/

√
2 for all i �= 4 and corr(Xi , X j ) = 1/2 if i and j are distinct elements of

{1, . . . , p}\{4};
θ0 = 5, θ1 = θ2 = θ2 = 0.6, θ4 = −0.9

√
2; and θ j = 0 for j > 4;

3. X1, . . . , X p are jointly Gaussian, marginally N (0, 1), and with corr(Xi , X5) = 0
for all i �= 5, corr(Xi , X4) = 1/

√
2 for all i /∈ {4, 5}, and corr(Xi , X j ) = 1/2 if
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Table 3 Poisson regression, Case 1 of the simulation scheme with 0, 10 and 20 % of contamination by
leverage points (LP), n = 200 and p = 1,000

0 % Cont. LP-10 % contamination LP-20 % contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂ ||1 0.12 3.84 0.14 0.17 3.92 0.15 0.21

||θ − θ̂ ||2 0.03 1.41 0.04 0.05 1.42 0.04 0.06

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0.83 0 0 1 0 0

AIC 1544.82 * 1381.66 1179.74 * 1228.92 1033.77

AICt 1666.58 * 1691.73 1727.89 * 1693.31 1770

BIC 1607.49 * 1442.22 1237.93 * 1286.54 1089.67

BICt 1729.24 * 1754.4 1790.56 * 1754.99 1832.67

RMSPE.t 24.84 493.32 27.61 31.63 511.07 29.26 43.89

RMSEP.o 17.38

i and j are distinct elements of {1, . . . , p}\{4, 5};
θ0 = 5, θ1 = θ2 = θ2 = 0.6, θ4 = −0.9

√
2, θ5 = 0.15, and θ j = 0 for j > 5.

The first case with independent predictors is the simplest situation for variable selec-

tion. Here, the coefficients θ1, . . . , θ6 were generated as
(

log n√
n

+ |Z |/8
)

U with

Z ∼ N (0, 1) and U = 1 with probability 0.5 and U = −1 with probability 0.5,
independently of Z . The last two cases are more complicated because of serial corre-
lations. Even more, although θ4 �= 0, the choices of the other regression coefficients
in Cases 2 and 3 ensure that corr(X4, Y ) = 0, which makes variable selection more
difficult. The coefficient θ0 = 5 is used to control an appropriate signal-to-noise ratio.

The data (xT
i , yi ) for i = 1, . . . , 200 are independent copies of a pair where yi is

conditionally on xi distributed as Poisson(μ(x)), where log(μ(x)) = θ0 + xT
i θ .

We apply the following contamination scheme:

1. No contamination
2. Vertical outliers: 10 and 20 % data contamination is introduced by changing respec-

tively the first 20 and 40 observations to yi := yi + exp(7), for i = 1, . . . , 20,
respectively 40.

3. Leverage points: 10 and 20 % data contamination is introduced by modifying
respectively the first 20 and 40 rows of the covariates matrix according to xi j :=
−3B j sign(xi j ) for i = 1, . . . , 20, where B j = max

1≤i≤n
(|xi j |) for j = 1, . . . , p.

Following the suggestion of Fan et al. (2009), we perform the computation for

ISIS-SCAD and TISIS-SCAD with q =
⌊

n
2 log n

⌋
= 18 as a sensible choice based

on asymptotic results. The final regularization parameter for the SCAD penalty was
chosen via 10-fold cross-validation as recommended by Fan et al. (2009). However,
the BIC is used to choose the SCAD regularization parameter at each intermediate
stage of the ISIS procedures in the three cases.
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Table 4 Poisson regression, Case 2 of the simulation scheme with 0, 10 and 20 % of contamination by
vertical outliers (VO), n = 200 and p = 1,000

0 % Cont. VO-10 % contamination VO-20 % contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂ ||1 0.26 5.54 0.28 0.32 6.54 0.29 0.33

||θ − θ̂ ||2 0.07 1.66 0.08 0.09 1.88 0.08 0.1

FPR 0.01 0.02 0.01 0.01 0.02 0.01 0.01

FNR 0 0.25 0 0 0.5 0 0

AIC 1535.93 * 1381.11 1174.58 * 1226.36 1024.64

AICt 1674.54 26274.8 1683.06 1703.42 38396.37 1686.06 1732.16

BIC 1598.6 * 1441.77 1233 * 1284.79 1080.53

BICt 1737.21 26334.17 1745.73 1766.09 38459.04 1748.73 1792.69

RMSPE.t 17.52 212.38 17.59 18.9 291.46 18.29 19.83

RMSPE.o 13.79

The estimators were applied to the training data and evaluated on the test data
with n = 200 observations, which were generated according to the same schemes
without contamination. For the TISIS-SCAD procedure we report the result for dif-
ferent trimming percentages. In the tables 2–7, we report several performance mea-
sures, all of which are based on 100 Monte Carlo repetitions. The tables contain the
medians of these measures. The first two rows give the estimation errors ||θ − θ̂ ||1
and ||θ − θ̂ ||2, respectively, evaluated for the training data. In the 3rd and 4th row
we report the FPR and FNR, respectively, for the training data. The fifth, sixth,
seventh and eighth rows give Akaike’s information criterion (Akaike 1974), AI C ,
and the Bayesian information criterion (Schwartz 1978), B I C , computed over the
training and test (indicated by the additional “t”) data. The last two rows give the
RMSEP for the test data (RMSEP.t) and the true regression parameter (RMSEP.o).
The symbols “*” in the tables refer to very big values greater than 250,000. Two
consecutive tables are used for one simulation setting, where the first table con-
tains the results for the vertical outliers, and the second table is for the leverage
points.

For the simulation experiments without contamination, our results for ISIS-SCAD
closely follow those based on Van-ISIS presented at Tables 5, 6 and 7 of Fan et al.
(2009). In case of contamination (vertical outliers or leverage points) we see that
the ISIS-SCAD estimator fails; all error measures are (much) worse, independent
of the simulation scheme. An exception is the FPR, which means that in case of
contamination the correct zero-coefficients are indeed set to zero. However, since
FNR increases considerably, many non-zero coefficients are also set to zero. The
robust version TISIS-SCAD shows excellent behavior for all simulation schemes,
and for uncontaminated and contaminated data. Generally, the results are close to the
ISIS-SCAD estimator when no contamination is present. Remarkable are the results
for FPR and FNR of TISIS-SCAD, which are not higher than 1 % in all scenarios.
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Table 5 Poisson regression, Case 2 of the simulation scheme with 0, 10 and 20 % of contamination by
leverage points (LP), n = 200 and p = 1,000

0 % Cont. LP-10 % contamination LP-20 % contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂ ||1 0.26 3.41 0.28 0.32 3.46 0.3 0.32

||θ − θ̂ ||2 0.07 1.66 0.08 0.09 1.66 0.09 0.09

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0.75 0 0 0.75 0 0

AIC 1535.93 17359.63 1379.97 1174.5 16466.75 1226.01 1027.9

AICt 1674.54 18796.81 1680.45 1704.82 19419.59 1697.08 1716.28

BIC 1598.6 17389.32 1440.63 1232.54 16521.18 1284.44 1083.79

BICt 1737.21 18834.75 1743.11 1767.49 19468.78 1759.75 1778.95

RMSPE.t 17.52 157.28 17.66 18.41 159.36 18.22 19.34

RMSEP.o 13.79

Table 6 Poisson regression, Case 3 of the simulation scheme with 0, 10 and 20 % of contamination by
vertical outliers (VO), n = 200 and p = 1,000

0 % Cont. VO-10 % contamination VO-20 % contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂ ||1 0.26 5.63 0.27 0.31 6.6 0.29 0.33

||θ − θ̂ ||2 0.07 1.65 0.08 0.09 1.9 0.09 0.1

FPR 0.01 0.02 0.01 0.01 0.02 0.01 0.01

FNR 0 0.4 0 0 0.6 0 0

AIC 1539.62 * 1384.54 1177.33 * 1231.26 1031.1

AICt 1674.91 26836.25 1683.5 1705.71 47284.46 1689.55 1729.97

BIC 1602.29 * 1445.2 1235.75 * 1289.36 1086.99

BICt 1737.57 26898.92 1746.17 1768.38 47345.48 1752.22 1792.64

RMSPE.t 17.58 214.84 17.95 18.94 288.5 18.47 19.8

RMSEP.o 13.91

5 Summary and conclusions

We introduced a robust version of the penalized MLE based on the idea of trimming
and characterized its BDP based on the notion of d-fullness. The finite sample prop-
erties of the proposed estimator were studied via an extended simulation study within
high-dimensional multiple and Poisson linear regression settings. The new estimator
generally performs very well, which is confirmed by the simulation experiments and
by a comparison to other proposals. To handle the computations, the SIS/ISIS pro-
cedure of Fan et al. (2009) was used. However, any other procedure that implements
penalization/regularization techniques can be employed instead. The computation of
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Table 7 Poisson regression, Case 3 of the simulation scheme with 0, 10 and 20 % of contamination by
leverage points (LP), n = 200 and p = 1,000

0 % Cont. LP-10 % contamination LP-20 % contamination

ISIS ISIS TISIS-10 TISIS-20 ISIS TISIS-20 TISIS-30

||θ − θ̂ ||1 0.26 3.58 0.27 0.31 3.65 0.31 0.31

||θ − θ̂ ||2 0.07 1.67 0.07 0.09 1.67 0.09 0.09

FPR 0.01 0.01 0.01 0.01 0.01 0.01 0.01

FNR 0 0.8 0 0 1 0 0

AIC 1539.62 17816.74 1385.37 1181.93 16620.12 1229.87 1031

AICt 1674.91 19809.14 1677.79 1704.42 20470.47 1697.85 1724.25

BIC 1602.29 17849.23 1446.04 1240.27 16672.89 1288.3 1086.89

BICt 1737.57 19835.52 1740.46 1767.09 20526.54 1760.52 1786.92

RMSPE.t 17.58 164.91 17.86 18.84 166.76 19.06 19.96

RMSEP.o 13.91

the estimator is taking advantage of the same technology as used for its classical
counterpart, but here the estimation is based on subsamples only. The used algorithm
consisting of a trial and a refinement step (Neykov et al. 2012) follows the ideas of the
FAST-LTS algorithm of Rousseeuw (1999), Müller and Neykov (2003). An important
choice for estimators based on trimming is the trimming percentage. In the numerical
experiments, it has been shown that a trimming percentage lower than the contamina-
tion level can lead to very poor estimates, but any higher trimming percentage gives
very reasonable results. Therefore, a general rule is to work with a conservative choice
of the trimming percentage or to estimate the amount of trimming similarly to Čížek
(2010), and Gervini and Yohai (2002).
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