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Abstract This paper considers testing for cross-sectional dependence in a panel fac-
tor model. Based on the model considered by Bai (Econometrica 71: 135–171, 2003),
we investigate the use of a simple F test for testing for cross-sectional dependence
when the factor may be known or unknown. The limiting distributions of these F test
statistics are derived when the cross-sectional dimension and the time-series dimension
are both large. The main contribution of this paper is to propose a wild bootstrap F test
which is shown to be consistent and which performs well in Monte Carlo simulations
especially when the factor is unknown.
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1068 B. H. Baltagi et al.

1 Introduction

Cross-sectional dependence caused by common shocks can seriously impact inference
as well as estimation. For example, Andrews (2005) demonstrates that common shocks
can result in inconsistent estimates in cross-sectional regressions and accordingly
serious consequences for statistical inference. 1 To deal with the problems of common
shocks, Bai (2003) considers a panel factor model, and proposes a principal compo-
nents (PC) method to consistently estimate the factor and loading. Assuming that the
common factor is the only source of cross-section dependence, testing for zero factor
loadings is also a test for no cross-sectional dependence in the panel factor model
considered by Bai (2003). 2 This is done using a simple F statistic that tests the null
hypothesis of zero factor loading. It is well known that the limiting distribution of this
F statistic can be approximated by a chi-squared distribution, when the cross-sectional
dimension n is fixed and the time-series dimension T is large. For the case of large
n and fixed T, one can use the results of Boos and Brownie (1995) and Akritas and
Arnold (2000) to infer that the asymptotic distribution of an appropriately normalized
F statistic is also normal. However, as far as we know, there is no result regarding the
asymptotic distribution of this F statistic when both n and T are large.3 The robust-
ness of the F test with respect to serial correlation in time-series has been studied
extensively in the literature, e.g., Krämer (1989) and Krämer (1997). The contribution
of this paper is to suggest the use of a bootstrap F test for testing the cross-sectional
dependence with large n and T when the common factor may be known or unknown.
We also allow for heteroskedasticity across the cross-sectional and time-series dimen-
sions. For this purpose, we use the wild bootstrap method which is well developed
in the statistics and econometrics literature. Section 2 introduces the factor model.
Section 3 shows that the limiting distribution of the proposed F statistic when the
unknown factor is replaced by its estimate. In Sect. 4, we propose a wild bootstrap F
test and prove its consistency. Section 5 presents the Monte Carlo results, while Sect.
6 concludes. All the proofs are relegated to the Appendix.

For the asymptotic results in this paper, we use the joint limit, (n, T ) → ∞.
Specifically, we assume that T

n → c as (n, T ) → ∞, where 0 < c < ∞. We use
p→ and

d→ to denote convergence in probability and in distribution, respectively. Ft is
used to denote the common factor, while Fλ is used to denote the F statistic testing
for zero factor loading. The bootstrap sample and the bootstrap test statistic will be
denoted with the superscript star. For example, F∗

λ and P∗ indicate the bootstrap F

statistic and the bootstrap probability measure. Let δnt = min
{√

n,
√

T
}

. Lastly,

1 These common shocks could be macroeconomic, political, environmental, health, and/or sociological
shocks in nature to mention a few, see Andrews (2005).
2 Bai (2009) and Bai et al. (2009) allow for weak cross-sectional dependence among the idiosyncratic error
terms. Under these assumptions, even when there is no common factor, there may still be cross-sectional
dependence due to the remainder disturbance term.
3 In a different context, Schott (2005) proposes a Lagrange multiplier type test to test the independence of
random variables when both the dimension and sample are large.
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Testing for cross-sectional dependence 1069

let K (·, ·) denote the Kolmogorov metric, i.e., K (P, Q) = supx |P (x) − Q (x)| for
distribution functions P and Q.

2 The model

Consider a panel data factor model4

yit = λi Ft + uit for i = 1, . . . , n and t = 1, . . . , T (1)

where yit is a scalar, λi is the loading, Ft is the common factor, and uit the independent
idiosyncratic error term across i and t . To test the null hypothesis of no cross-sectional
dependence, we set the null as

H0 : λi = 0 for all i (2)

against the alternative that

Ha : λi �= 0 for some i.

To construct the F statistic, let R RSS = ∑n
i=1
∑T

t=1 y2
i t denote the residual sum of

squares from the restricted model, while U RSS =∑n
i=1
∑T

t=1 ũ2
i t denote the residual

sum of squares from the unrestricted model

yit = λ̃i Ft + ũi t

when Ft is known, or U RSS =∑n
i=1
∑T

t=1 û2
i t , from the unrestricted model

yit = λ̂i F̂t + ûi t (3)

when Ft is unknown. The standard F statistic is defined as

Fλ = nT − n

n

R RSS − U RSS

U RSS
. (4)

Rewriting Eq. (1) in matrix notation, we have

y = F�
′ + u (5)

where y is a T ×n matrix of observed data, u is a T ×n matrix of idiosyncratic errors,
� is n × 1, and F is T × 1.

4 To keep things simple, the number of factors is assumed to be one. The information criteria approach of
Bai and Ng (2002) can be used as an alternative method for testing for cross-sectional dependence by testing
whether the number of factors is zero or larger than zero. This method is also useful when the number of
factors is unknown.

123



1070 B. H. Baltagi et al.

It is important to note that Ft (t = 1, 2, . . . , T ) may or may not be observable. If
Ft is observable, λi can be estimated using ordinary least squares (OLS). That is,

�̃ = y′F
(
F ′F

)−1
.

On the other hand, if Ft is not observable, one can estimate Ft using the method
of Principal Components subject to the constraint F

′
F/T = Ir . As illustrated in

Bai (2003), F̂ = (
F̂1, · · · , F̂T

)′
, the vector of estimated factor, is

√
T times the

eigenvectors corresponding to the largest eigenvalue of yy
′

nT . Given F̂ , one can obtain

�̂ = (̂λ1, · · · , λ̂n
)′ = y

′
F̂/T .

3 F test

In this section, we discuss the asymptotic distribution of the F statistic for three
cases: (i) fixed n and large T , (ii) large n and fixed T , and (iii) large n and large T .
Based on these asymptotic results, we argue that the F distribution may not be always
appropriate to use, and we suggest a bootstrap F test as a good alternative.

3.1 The asymptotics of the F statistic

When Ft is known, the F statistic to test the null hypothesis H0 : λi = 0 for all i , is
given by Fλ = n(T −1)

n
R RSS−U RSS

U RSS , where R RSS = ∑n
i=1
∑T

t=1 y2
i t , and U RSS =∑n

i=1
∑T

t=1

(
yit − λ̃i Ft

)2
.

(i) When n is fixed and T → ∞, Fλ can be approximated by a chi-squared
distribution,

nFλ
d→ χ2

n .

(ii) When n → ∞ and T is fixed, Fλ is asymptotically normal5:

√
n (Fλ − 1)

d→ N

(
0,

2T

T − 1

)
. (6)

5 In the statistics literature, Boos and Brownie (1995) and Akritas and Arnold (2000) consider the asymp-
totic distribution of the ANOVA F statistic for this case where n and T denote the number of treatments
and replications per treatment, respectively. Under their settings, it is shown that

√
n (Fn − 1)

d→ N

(
0,

2T

T − 1

)

where Fn is the F statistic under their setting as n → ∞ with fixed T . They also show that the asymptotics
above hold in a two-way fixed effects model as well. Extending these results to the interaction effects
model, Bathke (2004) shows that the limiting normal distribution can be still achievable with the F statistic
centered at 1. Interestingly, in the econometrics literature, Orme and Yamagata (2006) consider an F test
for individual effects in a panel data model and derive similar limiting distributions.
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Testing for cross-sectional dependence 1071

In this section, we provide the asymptotic properties of the F statistic with large n
and large T and with known and unknown Ft . Our analysis is based on the following
assumptions:

Assumption 1 The error term, uit , is assumed to be independent across both the
cross-section and time-series dimensions.

Assumption 2 1. The common factor satisfies 1
T

∑T
t=1 F2

t
p→ φF < ∞.

2. The factor loading λi is either deterministic or stochastic such that 1
n

∑n
i=1 λ2

i
p→

φλ < ∞.

Assumption 3 {λi } , {Ft }, and {uit } are independent of each other and among them-
selves.

Assumption 4 1. For each t , as n → ∞,

1√
n

n∑
i=1

λi uit
d→ N (0, �t )

where

�t = lim
n→∞

1

n

n∑
i=1

n∑
j=1

E
[
λiλ j uit u jt

] ;

2. For each i , as T → ∞,

1√
T

T∑
t=1

Ft uit
d→ N (0,�i )

where

�i = lim
n→∞

1

T

T∑
t=1

T∑
s=1

E [Ft Fsuisuit ] ;

3. Let αt = 1√
n

∑n
i=1 λi uit and βi = 1√

T

∑T
t=1 Ft uit . As (n, T ) → ∞

1√
T

∑T
t=1

(
α2

t − E
(
α2

t

))
√

1
T V ar

∑T
t=1 α2

t

d→ N (0, 1)

and

1√
n

∑n
i=1

(
β2

i − E
(
β2

i

))
√

1
n V ar

∑n
i=1 β2

i

d→ N (0, 1) .
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1072 B. H. Baltagi et al.

Assumption 3 is standard in the panel data factor literature. Assumption 4 requires
that 1√

n

∑n
i=1 λi uit and 1√

T

∑T
t=1 Ft uit satisfy the central limit theorem (CLT). For

Assumption 4 part (3), for each t , α2
t ∼ �tχ

2
1 , E

(
α2

t

) = �t , and V ar
(
α2

t

) = 2�2
t ,

such that

1

T

T∑
t=1

(
α2

t − �t

)
p→ 0

and

1

T
V ar

T∑
t=1

α2
t = 1

T

T∑
t=1

V ar
(
α2

t

)
p→ 2 lim

T →∞
1

T

T∑
t=1

�2
t .

This means that

1√
T

T∑
t=1

(
α2

t − �t

)
d→ N

(
0, 2 lim

T →∞
1

T

T∑
t=1

�2
t

)
.

In what follows, we distinguish between the case where the factor Ft is observable
versus the case when it is not. If Ft is observable, then one can easily obtain λ̃i using
OLS. If Ft is unknown, one can use Principal Components to estimate λi and Ft as in
Bai (2003). We first study the benchmark case where uit is i.i.d. in order to obtain the
essence of the results.

Assumption 5 uit
i.i.d.∼ (0, σ 2) for all i and t with finite fourth order cumulants.

Theorem 1 Suppose Assumptions 1–5 hold. If Ft is known and
√

n
T → 0, then

√
n (Fλ − 1)

d→ N (0, 2)

as (n, T ) → ∞.

Theorem 1 shows that the limiting distribution of the F statistic, Fλ, is normal if

Ft is known under the condition
√

n
T → 0. If Ft is not observable, however, one needs

to estimate λi and Ft . Next we investigate the limiting distributions of the F statistic
when Ft is unknown as (n, T ) → ∞.

Theorem 2 Suppose Assumptions 1–5 hold. Let 0 < c < ∞. If Ft is unknown and
T
n → c, then

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N (0, 4 (c + 1))

as (n, T ) → ∞.
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Testing for cross-sectional dependence 1073

Theorem 2 indicates that Fλ will converge to
√

c + 1 instead of 1 when the factor
is replaced by its principal components estimate. This indicates that there is a need to
account for asymptotic bias when the common factor is estimated. Note that T

n → c

with 0 < c < ∞ implies that
√

T
n → 0 and

√
n

T → 0. This means that when n is

relatively smaller than T (e.g.,
√

T
n → d, 0 < d < ∞), Fλ may suffer larger bias and

this is verified by our simulations in Sect. 5. Note that Theorem 2 can be written as

√
n

(
Fλ −

(√
T
n + 1

))

2
√

T
n + 1

d→ N (0, 1) .

3.2 Time and cross-section heteroskedasticity

In this section, we extend the results in Theorems 1 and 2 by allowing for heteroskedas-
ticity in uit along the time and cross-section dimensions.

Assumption 6 uit = σi t ei t , where eit
i.i.d.∼ (0, 1).

Theorem 3 Suppose Assumptions 1–4 and Assumption 6 hold. Assume T
n → c with

0 < c < ∞ as (n, T ) → ∞.

1. With uit = σi ei t . Assume limn→∞ 1
n

∑n
i=1 σ 2

i < ∞ and limn→∞ 1
n

∑n
i=1 σ 4

i <

∞.

(a) If Ft is known,

√
n (Fλ − 1)

d→ N

(
0, 2

limn→∞ 1
n

∑n
i=1 σ 4

i(
limn→∞ 1

n

∑n
i=1 σ 2

i

)2
)

;

(b) If Ft is unknown

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N

(
0, 4 (c + 1)

limn→∞ 1
n

∑n
i=1 σ 4

i(
limn→∞ 1

n

∑n
i=1 σ 2

i

)2
)

;

2. With uit = σt ei t ,

(a) If Ft is known,

√
n (Fλ − 1)

d→ N (0, 2) ;

(b) If Ft is unknown

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N (0, 4 (c + 1)) ;
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1074 B. H. Baltagi et al.

3. With uit = σi t ei t . Let ω2
i = limT →∞ 1

T

∑n
i=1 σ 2

i t . Assume limn→∞ 1
n

∑n
i=1 ω2

i

< ∞ and limn→∞ 1
n

∑n
i=1 ω4

i < ∞.

(a) If Ft is known,

√
n (Fλ − 1)

d→ N

(
0, 2

limn→∞ 1
n

∑n
i=1 ω4

i(
limn→∞ 1

n

∑n
i=1 ω2

i

)2
)

;

(b) If Ft is unknown

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N

(
0, 4 (c + 1)

limn→∞ 1
n

∑n
i=1 ω4

i(
limn→∞ 1

n

∑n
i=1 ω2

i

)2
)

.

4 Bootstrap F test

Before we go into the validity of bootstrap F test, we discuss the bootstrap data gen-
erating process (DGP). With independent but possibly heteroskedastic errors, one can
rely on the wild bootstrap. First of all, this method is quite simple to implement from
its construction. In addition, as shown in the simulations of Davidson and Flachaire
(2008), the wild bootstrap tests perform well in practice especially under heteroskedas-
ticity. In fact, a specific version (using Rademacher distribution) of the wild bootstrap
is shown to outperform another version of the wild bootstrap as well as the pairs
bootstraps even when the disturbances are homoskedastic.

We adopt the wild bootstrap using Rademacher distribution in our simulations
because it is robust to heteroskedasticity. Let

yit = λi Ft + uit

then the corresponding bootstrap DGP, for example under the null, is constructed as
follows:

y∗
i t = yitε

∗
i t (7)

where y∗
i t is the bootstrap data, and λi = 0 for all i under the null. ε∗

i t follows the
Rademacher distribution:

ε∗
i t =

{
1 with probability 0.5

−1 with probability 0.5
(8)

123



Testing for cross-sectional dependence 1075

which is introduced by Liu (1988) and developed by Davidson and Flachaire (2008). 6

Note that one has E
(
ε∗

i t

) = 0 and E
(
ε∗2

i t

) = 1 with this setting. 7

Next we describe in some details how to implement the wild bootstrap test for the
panel factor model.

Step 1: One estimates the common factor model. If Ft is known, we simply obtain
the LS residuals. If Ft is not observed, we use Principal Components method. Note
that the unrestricted residuals as well as the restricted residuals should be computed
in order to calculate the Fstatistic. Let this empirical statistic be Fλ.

Step 2: After we obtain the residuals from step 1, we re-generate the data using the
restricted residuals and an external random variable ε∗

i t . Note that we simply use uit

as the restricted residuals which are the same as yit under the null H0 : λi = 0 for all
i . Now one can compute the bootstrap counterpart of our F statistic which we denote
by F∗

λ .
Step 3: One repeats Step 2, say B times. Then we obtain the distribution of F∗

λ and
calculate the percentile of F∗

λ which are greater than or equal to Fλ. Finally setting
this proportion at α∗, one can test the null by rejecting α∗ < α, at the 100 × α%
significance level.

Next we discuss the asymptotic validity of the proposed bootstrap F test statistic.
The validity of the bootstrap F statistic can be verified using the results in Mammen
(1993a,b), the asymptotic normality of Fλ as in Theorem 3, the Berry-Esseen inequality
and the Polya’s theorem. That is, the bootstrapped F∗

λ is consistent which is presented
in the following theorem.

Theorem 4 Suppose Assumptions 1–4 and Assumption 6 hold and Ft could be known
or unknown, then

K
(L (Fλ) ,L∗ (F∗

λ

)) p→ 0

where L (Fλ) = P
(√

n (Fλ − a) ≤ x
)

and L∗ (F∗
λ

) = P∗ (√n
(
F∗

λ − a
) ≤ x

)
where P∗ is the bootstrap probability measure, a = 1 when Ft is known and

a =
√

T
n + 1 when Ft is unknown.

Theorem 4 provides the consistency of the bootstrap distribution of the F statistic
and justifies the use of a residual-based bootstrap method for testing for no cross-
sectional dependence.

6 Alternatively, one may want to use the following bootstrap DGP suggested by Mammen (1993b) espe-
cially when the distribution of the error terms is sufficiently asymmetric.

ε∗
i t =

⎧⎪⎪⎨
⎪⎪⎩

−
(√

5−1
)

2 with probability p =
(√

5+1
)

2
√

5(√
5+1

)

2 with probability 1 − p

.

However, in their simulations, Davidson and Flachaire (2008) show that the version we adopt here performs
at least as good as this version even when the disturbances are asymmetric.
7 E

(
ε∗3

i t

)
= 1 is often added for the bootstrap error literature.
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1076 B. H. Baltagi et al.

According to Theorem 4, the distribution of the bootstrap F statistic will uniformly
converge to the asymptotic distribution of the F statistic. One concludes that the
bootstrap F statistic can be used in testing for cross-sectional dependence whether Ft

is known or not. The following section presents various simulation results in support
of this conclusion.

5 Monte Carlo results

In this section, we report results from a simulation experiment that documents the
properties of the proposed wild bootstrap F statistic. We consider the following model:

yit = λi Ft + uit for i = 1, . . . , n and t = 1, . . . , T

where λi = 0 for all i under the null. For simplicity, we assume that λi is a scalar. uit

is generated by I I DN (0, 1). We study the finite sample properties of the F statistic
for H0 : λi = 0 for all i; based on various estimators discussed in Sect. 2. We denote
the empirical F statistic and the bootstrap F statistic as EF and BF, respectively. The
limiting distribution of the EF is based on the chi-squared distribution that is computed
by the Pulson’s approximation e.g., Johnson et al. (1995). This may be misspecified
when the factor is unknown and/or with heteroskedasticity. The sample sizes n and T
are varied over the range {10, 50, 100, 150} .

For each experiment, we perform 5,000 replications and 500 bootstrap iterations.
GAUSS 12.0 is used to perform the simulations. Random numbers for uit , Ft , and xit

are generated by the GAUSS procedure RNDNS. We generate n(T + 1000) random
numbers and then split them into n series so that each series has the same mean and
variance. The first 1,000 observations are discarded for each series.

Note that in this case we generate the bootstrap data from y∗
i t = yitε

∗
i t under the null.

Let us first consider the benchmark case under which both Ft and uit are generated
from I I DN (0, 1). The upper panel of Table 1 shows the empirical size of EF and BF
with true size 5 %. Given this setting, we find the following: (i) If Ft is known, both EF
and BF are quite close to their true size. (ii) In contrast, when Ft is unknown, EF gets
extremely shifted to the right so that its size becomes almost 100 %, which implies
rejection for almost all cases. BF, however, mimics the empirical F distribution quite
well so that its size stays very close to 5 %. For example, with (n, T ) = (50,50) the size
of EF is 99.98 % while that of BF is 5.06 % when Ft is unknown. Figures 1, 2, 3, 4
confirm the findings in Table 1.

Next, in order to examine the power of the F test under some alternative hypotheses,
we distinguish between strong and weak cross section dependence. Weak dependence
is set at λi ∼ I I DU (0.01, 0.2) while strong dependence at λi ∼ I I DU (0.2, 0.5).
All the results are reported in the lower panel of Table 1. Overall, the power of the F
test seems satisfactory: (i) The power increases as λi increases as expected. (ii) Also,
the power increases as n or T increases. (iii) With weak dependence, both EF and BF
have no power or very low power if any, when Ft is unknown. In fact, even for the
largest sample size of our experiments, (n, T ) = (100, 100), the power of EF and BF
is no more than 46.1 %.
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We also check robustness of our benchmark results to heteroskedasticity and serial
correlation in the error term. We first introduce heteroskedasticity into the error as
follows:

uit = σi ei t

where eit is generated from i.i.d. N (0, 1) and σi is set as either standard normal or
simply 10. That is,

σi

{∼ N (0, 1) for i = 1, . . . , 4n
5= 10 for i = 4n

5 + 1, . . . , n
.

Notice that we do not correct for heteroskedasticity to compute the residuals. All the
results are reported in the upper panel of Table 2. We find that BF stays robust despite
the presence of heteroskedasticity. More specifically: (i) With heteroskedasticity, EF
gets over-sized although Ft is known. In fact, the empirical size of EF varies from 13
to 21 %. This is different from our benchmark case where the size of EF stays close
to 5 % when Ft is known. (ii) When Ft is unknown, as expected, EF shows extreme
over-rejection like in the benchmark case. However, BF behaves well whether or not
Ft is known. In fact, the empirical size of BF consistently stays robust varying from
4–6 % for all experiments. Therefore, we conclude that bootstrap F test in the common
factor model can be used under heteroskedasticity.

For serial correlation, the error terms are set as follows:

uit = ρuit−1 + νi t

where ρ = (0.4, 0.8) and νi t ∼ N (0, 1). Again we do not correct for serial correlation.
In the lower panel of Table 2, one can observe the following: (i) Overall, it appears that
both EF and BF are not appropriate to use because of considerable over-rejections. In
fact, they get more over-sized as n increases. We also find that EF and BF get more
over-sized as ρ increases. For example, from Table 2 we note that both EF and BF
are severely oversized if we increase ρ from 0.4 to 0.8. (ii) More specifically, when
ρ = 0.4, the empirical size of EF and BF varies between 5 and 17 % even when Ft is
known. (iii) This is an expected result in the sense that the wild bootstrap method used
in this paper is not designed for the serially correlated case. Note that Gonçalves and
Perron (2010) also obtain some noticeable size distortions for the serially correlated
error terms. Hence, one needs to explore alternative bootstrap methods (such as the
block bootstrap) rather than the wild bootstrap for this case.

6 Conclusion

High-dimensional data analysis for large n and large T has become an integral part
of the macro panel data literature. This paper makes two main contributions. First,
we derive the limiting distributions of an F test statistic testing for cross-sectional
dependence when the factor is known and unknown. Second, we suggest using a wild
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bootstrap F test to test for no cross-sectional dependence. The simulation results show
that the proposed wild bootstrap F test performs well in testing for no cross-sectional
dependence and is recommended in practice. Extensive simulations show that the wild
bootstrap F test is robust to heteroskedasticity but sensitive to serial correlation.

Appendix

A Proof of Theorem 1

Proof Now we have

Fλ = Rλ

σ̂ 2

where Rλ = (R RSS−U RSS)
n and σ̂ 2 = U RSS

(nT −n)
using a set up which is similar to Orme

and Yamagata (2006). Rearranging the terms, we have

√
n (Fλ − 1) = 1

σ̂ 2

√
n
(

Rλ − σ̂ 2
)

.

Expanding the equations, we have

Rλ − σ̂ 2 = (R RSS − U RSS)

n
− U RSS

(nT − n)

= 1

n

n∑
i=1

T∑
t=1

[
− (̃λi − λi

)2
F2

t + 2
(̃
λi − λi

)
uit Ft

]

− 1

n (T − 1)

n∑
i=1

T∑
t=1

[
u2

i t + (̃λi − λi
)2

F2
t − 2

(̃
λi − λi

)
uit Ft

]

= − 1

nT

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}2
F2

t

+ 2

n
√

T

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}
uit Ft

− 1

n (T − 1)

n∑
i=1

T∑
t=1

u2
i t − 1

nT (T − 1)

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}2
F2

t

+ 2

n
√

T (T − 1)

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}
uit Ft

= I + I I + I I I + I V + V .
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Consider I .

I = −1

n

n∑
i=1

[√
T
(̃
λi − λi

)]2
[

1

T

T∑
t=1

F2
t

]

= −1

n

n∑
i=1

[
1√
T

T∑
t=1

uit Ft

]2 [
1

T

T∑
t=1

F2
t

]−1

.

For II ,

I I = 2

n
√

T

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}
uit Ft

= 2

n

n∑
i=1

[
1√
T

T∑
t=1

uit Ft

]2 [
1

T

T∑
t=1

F2
t

]−1

.

Then

I + I I = 1

n

n∑
i=1

[
1√
T

T∑
t=1

uit Ft

]2 [
1

T

T∑
t=1

F2
t

]−1

= Op (1) .

For I I I ,

I I I = −1

n

n∑
i=1

1

T − 1

T∑
t=1

u2
i t = Op (1) .

For I V and V , as already shown above,

I V = − 1

T − 1

1

n

n∑
i=1

{√
T
(̃
λi − λi

)}2
(

1

T

T∑
t=1

F2
t

)
= Op

(
1

T

)

and

V = 2

n
√

T (T − 1)

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}
uit Ft

= 1

T − 1

2

n

n∑
i=1

[
1√
T
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t=1

uit Ft

]2 [
1

T
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t=1

F2
t

]−1

= Op

(
1

T

)
.
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After rearranging all the terms, one obtains

Rλ − σ̂ 2 = 1

n

n∑
i=1

[
1√
T

T∑
t=1

uit Ft

]2 [
1

T

T∑
t=1

F2
t

]−1

−1

n

n∑
i=1

1

T

T∑
t=1

u2
i t + Op

(
1

T

)
.

It is easy to see that

√
n
(

Rλ − σ̂ 2
)

= 1√
n

n∑
i=1

⎛
⎝
(

1√
T

T∑
t=1

uit Ft

)2

φ−1
F − σ 2

⎞
⎠+ Op

(√
n

T

)
.

Now we obtain

1√
n

n∑
i=1

⎛
⎝
(

1√
T

T∑
t=1

uit Ft

)2

φ−1
F − σ 2

⎞
⎠ d→ N

(
0, 2σ 4

)

by Assumption 4.
Finally,

√
n (Fλ − 1) = 1

σ̂ 2

√
n
(

Rλ − σ̂ 2
)

d→ N (0, 2)

as (n, T ) → ∞ if
√

n
T → 0. Note that T

n → c with 0 < c < ∞ implies that√
n

T = n
T

1√
n

→ 0.

B Proof of Theorem 2

Proof First we consider

U RSS

(nT − n)
= 1

n (T − 1)

n∑
i=1

T∑
t=1

(
yit − λ̂i F̂t

)2

= 1

n (T − 1)

n∑
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)]2
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= I + I I + I I I.

Consider I . One can easily verify that

I = 1

n (T − 1)

n∑
i=1

T∑
t=1

u2
i t = σ 2 + op (1)

as (n, T ) → ∞. Note from Bai (2003, p. 166), that λ̂i F̂t − λi Ft can be expanded as
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= 1
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λ φλσ
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Similarly,
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.
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− 1√
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as shown above. Now we assume that
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δ2

nt
→ 0 when

√
T

n → 0. Also T
n → c implies that

√
T

n = T
n

1√
T

→ 0.

Clearly,

√
n

(
Rλ − σ̂ 2

(√
T

n
+ 1

))
= − 1√

n

n∑
i=1

T∑
t=1

{(̂
λi F̂t − λi Ft

)}2

+ 1√
n

n∑
i=1

T∑
t=1

{(̂
λi F̂t − λi Ft

)
uit
}−

(√
T

n
+ 1

)
1√
nT

n∑
i=1

T∑
t=1

u2
i t + op (1) .

Consider the first term.

− 1√
n

n∑
i=1

T∑
t=1

{(̂
λi F̂t − λi Ft

)}2

= − 1√
n

n∑
i=1

T∑
t=1

(
φ−1

λ

1√
n

λi
1√
n

n∑
k=1

λkukt + φ−1
F

1√
T

Ft
1√
T

T∑
s=1

Fsuis

)2

+ op (1)

=−φ−2
λ

1√
n

n∑
i=1

T∑
t=1

1

n
λ2

i

(
1√
n

n∑
k=1

λkukt

)2

−φ−2
F

1

n

n∑
i=1

T∑
t=1

1

T
F2

t

(
1√
T

T∑
s=1

Fsuis

)2
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−2 φ−1
λ φ−1

F
1

n

n∑
i=1

T∑
t=1

1√
nT

λi Ft

(
1√
n

n∑
k=1

λkukt

)(
1√
T

T∑
s=1

Fsuis

)
+ op (1)

= I + I I + I I I.

Consider I + I I .

I + I I = −φ−2
λ

1√
n

(
1

n

n∑
i=1

λ2
i

)
T∑

t=1

(
1√
n

n∑
k=1

λkukt

)2

−φ−2
F

1√
n

n∑
i=1

(
1

T

T∑
t=1

F2
t

)(
1√
T

T∑
s=1

Fsuis

)2

= − 1√
n

T∑
t=1

φ−1
λ

(
1√
n

n∑
k=1

λkukt

)2

− 1√
n

n∑
i=1

φ−1
F

(
1√
T

T∑
s=1

Fsuis

)2

+ op (1) .

Consider I I I .

φ−1
λ φ−1

F
1√
n

n∑
i=1

T∑
t=1

1√
nT

λi Ft

(
1√
n

n∑
k=1

λkukt

)(
1√
T

T∑
s=1

Fsuis

)

= φ−1
λ φ−1

F
1√
n

(
1√
n

n∑
i=1

λi

(
1√
T

T∑
s=1

Fsuis

))(
1√
T

T∑
t=1

Ft

(
1√
n

n∑
k=1

λkukt

))

= Op

(
1√
n

)
.

Consider the second term.

2
1

n

n∑
i=1

T∑
t=1

{(̂
λi F̂t − λi Ft

)
uit
} = 2

1

n

T∑
t=1

φ−1
λ

(
1√
n

n∑
i=1

λi uit

)2

+2
1

n

n∑
i=1

φ−1
F

(
1√
T

T∑
t=1

Ft uit

)2

+ op (1) .

Therefore

−1

n

n∑
i=1

T∑
t=1

{(̂
λi F̂t − λi Ft

)}2 + 1

n

n∑
i=1

T∑
t=1

{(̂
λi F̂t − λi Ft

)
uit
}

= 1

n

T∑
t=1

φ−1
λ

(
1√
n

n∑
k=1

λkukt

)2

+ 1

n

n∑
i=1

φ−1
F

(
1√
T

T∑
s=1

Fsuis

)2

+ op (1) .
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We know that

1√
n

T∑
t=1

φ−1
λ

(
1√
n

n∑
k=1

λkukt

)2

+ 1√
n

n∑
i=1

φ−1
F

(
1√
T

T∑
s=1

Fsuis

)2

= 1√
T

T∑
t=1

φ−1
λ

(
1√
n

n∑
k=1

λkukt

)2 (√
T

n

)
+ 1√

n

n∑
i=1

φ−1
F

(
1√
T

T∑
s=1

Fsuis

)2

.

Hence

1√
n

T∑
t=1

⎡
⎣φ−1

λ

(
1√
n

n∑
k=1

λkukt

)2

−
√

T

n
σ 2

⎤
⎦

+ 1√
n

n∑
i=1

⎡
⎣φ−1

F

(
1√
T

T∑
s=1

Fsuis

)2

− σ 2

⎤
⎦ d→ N

(
0, 4 (c + 1) σ 4

)

by Assumption 4 and because 1√
n

∑n
k=1 λkukt and 1√

T

∑T
s=1 Fsuis are asymptotically

independent. Therefore

√
n

(
Rλ − σ̂ 2

(√
T

n
+ 1

))
d→ N

(
0, 4 (c + 1) σ 4

)

as (n, T ) → ∞ and T
n → c. Finally

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N (0, 4 (c + 1))

as required. 
�

C Proof of Theorem 3

Proof First we revisit Theorems 1 and 2 with

uit = σi ei t .

Now suppose Ft is known.

√
n
(

Rλ − σ̂ 2
)

= (R RSS − U RSS)√
n

− U RSS√
n (T − 1)

= − 1√
nT

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}2
F2

t
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+ 2√
n
√

T

n∑
i=1

T∑
t=1

{√
T
(̃
λi −λi

)}
uit Ft − 1√

n (T −1)

n∑
i=1

T∑
t=1

u2
i t

− 1√
nT (T − 1)

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}2
F2

t

+ 2√
n
√

T (T − 1)

n∑
i=1

T∑
t=1

{√
T
(̃
λi − λi

)}
uit Ft

= I + I I + I I I + I V + V .

Recall that

I + I I = 1√
n

n∑
i=1

[
1√
T

T∑
t=1

uit Ft

]2 [
1

T

T∑
t=1

F2
t

]−1

= 1√
n

n∑
i=1

φ−1
F

[
1√
T

T∑
t=1

uit Ft

]2

+ op (1) .

We know Assumption 4 that

1√
T

T∑
t=1

uit Ft
d→ N (0,�i )

where

�i = p lim
T →∞

1

T

T∑
s=1

T∑
t=1

E [Ft Fsuisuit ]

= p lim
T →∞

1

T

T∑
s=1

T∑
t=1

σ 2
i E [Ft Fseiseit ]

= σ 2
i φF .

Consider III.

1√
n (T − 1)

n∑
i=1

T∑
t=1

u2
i t = 1√

n (T − 1)

n∑
i=1

T∑
t=1

u2
i t

= 1√
n (T − 1)

n∑
i=1

σ 2
i

T∑
t=1

e2
i t

= 1√
n

n∑
i=1

σ 2
i + o (1) .
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It is easy to see that I V and V are Op

(√
n

T

)
. Then

1√
n

n∑
i=1

φ−1
F

[
1√
T

T∑
t=1

uit Ft

]2

− 1√
n

n∑
i=1

σ 2
i

= 1√
n

⎛
⎝

n∑
i=1

φ−1
F

[
1√
T

T∑
t=1

uit Ft

]2

− σ 2
i

⎞
⎠ .

It follows that

∑n
i=1

([ 1√
T

∑T
t=1 uit Ft√
φF

]2

− σ 2
i

)

√
2
∑n

i=1 σ 4
i

d→ N (0, 1)

or

1√
n

∑n
i=1

(
φ−1

F

[
1√
T

∑T
t=1 uit Ft

]2 − σ 2
i

)

√
2 1

n

∑n
i=1 σ 4

i

d→ N (0, 1) .

Hence

1√
n

n∑
i=1

⎛
⎝φ−1

F

[
1√
T

T∑
t=1

uit Ft

]2

− σ 2
i

⎞
⎠ d→ N

(
0, 2 lim

n→∞
1

n

n∑
i=1

σ 4
i

)
.

Finally

√
n (Fλ − 1)

d→ N

(
0, 2

limn→∞ 1
n

∑n
i=1 σ 4

i(
limn→∞ 1

n

∑n
i=1 σ 2

i

)2
)

if

√
n

T
→ 0,

lim
n→∞

1

n

n∑
i=1

σ 4
i < ∞

and

lim
n→∞

1

n

n∑
i=1

σ 2
i < ∞.
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Next we assume Ft is unknown. Recall

U RSS

(nT − n)
= 1

n (T − 1)

n∑
i=1

T∑
t=1

u2
i t + 1

n (T − 1)

n∑
i=1

T∑
t=1

(̂
λi F̂t − λi Ft

)2

− 2

n (T − 1)

n∑
i=1

T∑
t=1

(̂
λi F̂t − λi Ft

)
uit

= I + I I + I I I.

We know that I I+ I I I = Op

(
1

δ2
nT

)
. Following similar steps as in the proof of

Theorem 2 we obtain

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N

(
0, 4 (c + 1)

limn→∞ 1
n

∑n
i=1 σ 4

i(
limn→∞ 1

n

∑n
i=1 σ 2

i

)2
)

.

Next we allow

uit = σt ei t

and we examine

1√
n (T − 1)

n∑
i=1

T∑
t=1

u2
i t = 1√

n

n∑
i=1

(
lim

n→∞
1

T

T∑
t=1

σ 2
t

)
+ op (1)

which lead to

√
n (Fλ − 1)

d→ N (0, 2)

if Ft is known and

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N (0, 4 (c + 1))

if Ft is unknown.
Finally we set uit = σi t ei t . Notice that

1√
n (T − 1)

n∑
i=1

T∑
t=1

u2
i t = 1√

n (T − 1)

n∑
i=1

T∑
t=1

σ 2
i t e

2
i t

= 1√
nT

n∑
i=1

T∑
t=1

σ 2
i t + op (1) .
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Recall that

1√
T

T∑
t=1

uit Ft
d→ N (0,�i )

where

�i = φFωi

with

ω2
i = lim

T →∞
1

T

T∑
t=1

σ 2
i t .

Recall

⎡
⎣

1√
T

∑T
t=1 uit Ft√
φFω2

i

⎤
⎦

2

d→ χ2
1

and

∑n
i=1

([ 1√
T

∑T
t=1 uit Ft√
φF

]2

− ω2
i

)

√
2
∑n

i=1 ω4
i

d→ N (0, 1)

or

1√
n

∑n
i=1

(
φ−1

F

[
1√
T

∑T
t=1 uit Ft

]2 − ω2
i

)

√
2 1

n

∑n
i=1 ω4

i

d→ N (0, 1) .

Hence

1√
n

n∑
i=1

⎛
⎝φ−1

F

[
1√
T

T∑
t=1

uit Ft

]2

− ω2
i

⎞
⎠ d→ N

(
0, 2 lim

n→∞
1

n

n∑
i=1

ω4
i

)
.

Finally

√
n (Fλ − 1)

d→ N

(
0, 2

limn→∞ 1
n

∑n
i=1 ω4

i(
limn→∞ 1

n

∑n
i=1 ω2

i

)2
)
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if Ft is known and

√
n

(
Fλ −

(√
T

n
+ 1

))
d→ N

(
0, 4 (c + 1)

limn→∞ 1
n

∑n
i=1 ω4

i(
limn→∞ 1

n

∑n
i=1 ω2

i

)2
)

if Ft is unknown. 
�
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