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Abstract We consider a replicated ultrastructural measurement error regression
model where predictor variables are observed with error. It is assumed that some
prior information regarding the regression coefficients is available in the form of exact
linear restrictions. Three classes of estimators of regression coefficients are proposed.
These estimators are shown to be consistent as well as satisfying the given restric-
tions. The asymptotic properties of unrestricted as well as restricted estimators are
studied without imposing any distributional assumption on any random component
of the model. A Monte Carlo simulations study is performed to assess the effect of
sample size, replicates and non-normality on the estimators.
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1 Introduction

The basic assumption of obtaining the correct value of the observations is often violated
in real life data collection and the measurement error (ME) creeps in. For example,
the variables like air pollutant levels and rainfall etc. cannot be measured accurately.
This ME invalidates the results derived through the statistical techniques meant for
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error-free data. For example, in absence of the ME, the ordinary least square estimator
(LSE) of regression coefficients is the best linear unbiased estimator. This estimator
becomes inconsistent and biased when derived for error-ridden data. The literature
presents several approaches for finding consistent estimators of the regression coef-
ficients in presence of the ME. One of such approaches suggests the use of some
additional information which is obtained independently from the sample informa-
tion, for example, availability of reliability matrix of predictors, variance–covariance
matrix of ME and instrumental variables etc. (Schneeweiss 1976; Fuller 1987; Hsiao
et al. 1997; Shalabh 1998; Cheng and Van Ness 1999; Gleser 1992, 1993; Jain et al.
2011). But such external information is subjected to some uncertainties or sometimes,
it is even unavailable (Kleeper and Leamer 1984). Another approach is to study the
replicated measurement error (RME) model where replicated observations are taken
on the variables. For example, Chan and Mak (1979) and Isogawa (1985) studied
the structural form of the RME model under the assumption of normally distributed
measurement errors. Yam (1985) studied the functional form of this model and Ullah
et al. (2001) studied the ultrastructural form of the RME model. For more details, one
can refer to Wang et al. (1996), Schafer and Purdy (1996), Devanarayan and Stefanski
(2002), Shalabh (2003), Thoresen and Laake (2003), Shalabh et al. (2009a,b), You
et al. (2011) and references cited therein.

In real life, there are situations where prior information about the regression coef-
ficients is available in the form of exact linear restrictions. In the error free case, use
of such prior information leads to more efficient estimators (Chipman and Rao 1964;
Rao et al. 2008). In the ME regression model, Shalabh et al. (2007, 2009a,b) provided
consistent estimators using such prior information. In case, this prior information is not
precise, consistent estimators in the ME regression have been provided by Shalabh
et al. (2010). They assumed a known variance covariance matrix of the ME and
the reliability matrix associated with predictors. However, in case of the replicated
ultrastructural measurement error (RUME) regression model, the problem of finding
consistent estimators satisfying the exact linear restrictions, has not been explored so
far.

In the present work, we consider a RUME multiple regression model. It is assumed
that prior information regarding the regression coefficients is available in the form
of exact linear restrictions. The problem of finding estimators that are consistent as
well as make use of exact linear restrictions is dealt with. Most of the research expo-
sitions assume the normality of the ME, but in practice, this assumption often gets
violated. Sometimes, the distributional form of the ME is also unknown. In the present
work, the only assumption made is about the finiteness of first four moments of the
ME.

In this paper, Section 2 specifies the RUME multiple regression model and lists
various assumptions. In Section 3, we propose consistent estimators satisfying the
exact linear restrictions. Section 4 discusses the asymptotic properties of the proposed
estimators. Section 5 consists of the results from a Monte Carlo simulations study
performed to explore the finite sample properties of these estimators and the effect
of departure from normality. The appendix states a few lemmas and provides the
derivations of some results.
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2 Model specifications

Consider the following multiple regression model with predictor variables

ηi = α +
p∑

k=1

βkξik + εi , (1)

where ηi and ξik are the i th observations on dependent and kth predictor respectively,
for i = 1, . . . , n. βk are the regression coefficients and εi represents the equation error
term. Assume that ηi and ξik are unobservable and can be observed through some other
variables yi and xik with additive measurement error. Further, consider that r replicates
of yi and xik are available for each ηi and ξik . Thus for j = 1, . . . , r , we write

yi : j = ηi + ui : j , (2)

xik: j = ξik + vik: j (3)

where yi : j and xik: j are the j th replicated observations on yi and xik with additive
measurement errors ui : j and vik: j respectively.

We consider ξik as a random variable that can be written as

ξik = mik + wik, (4)

where mik and wik are respectively, non-stochastic and stochastic. Using Eqs. (1)–(4),
the model can be written in the matrix form as

Ynr×1 = αenr + Xnr×pβ p×1 + (εn×1 ⊗ er) + Unr×1 − Vnr×pβ p×1; (5)

ξn×p = Mn×p + Wn×p; (6)

X = (M ⊗ er) + (W ⊗ er) + V, (7)

where ‘⊗’ denotes the Kronecker product of matrices, er is a (r × 1) column vector
of elements unity and

X = [X1:1…Xn:r]′; X′
i:j = [xi1: j . . . xip: j ];

V = [V1:1…Vn:r]′; V ′
i:j = [vi1: j . . . vi p: j ];

ξ = [ξ1 . . . ξn]′ ; ξ ′
i = [ξi1 . . . ξi p] ;

M = [M1…Mn]′ ; M′
i = [mi1 . . . mip] ;

W = [W1…Wn]′ ; W ′
i = [wi1 . . . wi p] ;

Y = [y1:1 . . . yn:r ]′; U = [u1:1 . . . un:r ]′,
ε = [ε1 . . . εn]′ and β = [β1 . . . βp]′.
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The subscript i : j indicates the row corresponding to j th replicated observation on
i th subject in the study.

Equations (5)–(7) complete the specification of RUME multiple regression model.
When all rows of the matrix M are identical, then the rows of X will be independently
and identically distributed (iid) with some multivariate distribution. This gives the
structural form of measurement error model. When W is a null matrix, X is fixed but
measured with error. This condition specifies a functional measurement error model.
In case, both W and V are null matrices, we get the specifications of a classical regres-
sion model. Thus, the ultrastructural model combines the three popular regression
models in one setup (Dolby 1976).

For a random vector S = (S1, . . . , Sp)
′, we denote the third and fourth moments

by μs
k1k2k3

= E(Sk1 Sk2 Sk3) and μs
k1k2k3k4

= E(Sk1 Sk2 Sk3 Sk4) respectively, where
k1, k2, k3, k4 = 1, · · · , p. For i = 1, . . . , n and j = 1, . . . , r , the following assump-
tions are made:

1. ui : j are iid random variables with mean 0 and variance σ 2
u ;

2. εi are iid random variables with mean 0 and variance σ 2
ε ;

3. The rows of W are iid random vectors with mean 0 and variance–covariance matrix
�w.

4. The rows of V are iid random vectors with mean 0 and variance–covariance matrix
�v. The third and fourth moments μV

k1k2k3
and μV

k1k2k3k4
are finite;

5. Elements of V, W, U and ε are mutually independent;
6. lim

n→∞
1
n M′CM = �M (finite) where C = In − 1

n ene′
n;

7. The elements of M′C are bounded for fixed r .

Assumptions 6 and 7 are useful for obtaining the asymptotic properties of the estima-
tors.

The prior information regarding the regression coefficients is assumed to be avail-
able in the form of exact linear restrictions given as

Rq×pβ p×1 = θq×1, (8)

where rank(R) = q < p.

3 Estimation of parameters

For the RUME multiple regression model with r replicates, the least squares method
provides an estimator of the regression coefficient vector β as

bA = (X′AX)−1X′AY. (9)

Similarly, using the averages of r replicates, the LSE of β is given as

bD = (X′DX)−1X′DY, (10)

where A = Inr − 1
nr enre′

nr and D = 1
r (In ⊗ ere′

r) − 1
nr enre′

nr (Richardson and Wu
1970; Shalabh 2003).
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Replicated measurement error model 257

Using the Eqs. (5)–(7) and the Assumptions 1–6, it can be easily verified that

p lim
n→∞

bA = (�M + �W + �V)−1(�M + �W)β and (11)

p lim
n→∞

bD = (�M + �W + 1

r
�V)−1(�M + �W)β. (12)

Equations (11) and (12) indicate that the estimators bA and bD are not consistent
estimators of β when applied to the measurement error ridden data.

Under the assumption of normality of random components in the RUME multiple
regression model, Shalabh (2003) provided three consistent estimators ofβ as follows

b01 = (r − 1)
[
X′(rD − A)X

]−1 X′AY, (13)

b02 = (r − 1)
[
X′(rD − A)X

]−1 X′DY and (14)

b03 = [
X′(rD − A)X

]−1 X′(rD − A)Y. (15)

The estimators b01 and b02 are obtained by correcting for the inconsistency in bA and
bD. This is done using a consistent estimator of �V, given as

∑̂
V

= 1

n(r − 1)
X′(A − D)X. (16)

The estimator b03 is obtained by using the linear combination of bA and bD. Using
(5)–(7) and assumptions 1-6, we get

p lim
n→∞

b0s = β; s = 1, 2, 3. (17)

It can be easily verified from (13)–(15) that Rb0s �= θ; s = 1, 2, 3. Thus the estimators
b0s; s = 1, 2, 3 are consistent but do not satisfy the prior restrictions.

Remark 3.1 The estimators bA and bD can be obtained by minimizing
QA = (Y − Xβ)′A(Y − Xβ) and
QD = (Y − Xβ)′D(Y − Xβ), respectively. ��

Using the above remark, the restricted estimators can be obtained by incorporating the
prior information in the estimation procedure by minimizing QA and QD under (8).
Use of the Lagrangian multipliers method yields the following restricted estimators

bAr = bA + (X′AX)−1R′ [R(X′AX)−1R′]−1
(θ − RbA) and (18)

bDr = bD + (X′DX)−1R′ [R(X′DX)−1R′]−1
(θ − RbD) (19)
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respectively. Both the estimators bAr and bDr satisfy (8) since RbAr = θ and RbDr = θ .
But (11) and (12) lead to their inconsistency since

p lim
n→∞

bAr = β − (Ip + �)−1
{

Ip − �−1
v R′ [R(Ip + �)−1�−1

v R′]−1
R

× (Ip + �)−1
}

β (20)

and

p lim
n→∞

bDr = β − (Ip + r�)−1
{

Ip − �−1
v R′ [R(Ip + r�)−1�−1

v R′]−1
R

× (Ip + r�)−1
}

β (21)

where � = �−1
v (�M + �w).

Hence, the estimators b01, b02 and b03 are consistent, but they do not satisfy (8).
The estimators bAr and bDr satisfy the restrictions but are not consistent.

In the following sub-section, we propose consistent estimators of β satisfying the
exact linear restrictions.

3.1 Three different consistent restricted estimators

When there is no measurement error in the data i.e. �v = 0, it can be verified from
(11) that bA is consistent. The presence of measurement error in the data results in the
inconsistency of this estimator. Shalabh (2003) proposed the estimator b01 by adjust-
ing for the inconsistency in bA using (16). We observe that the consistent estimator
b01 can also be obtained by minimizing

QA; corrected = QA −
(

r

r − 1

)
β ′X′(A − D)Xβ.

In order to obtain the restricted estimator, we minimize QA;corrected under the exact
linear restrictions (8) using the Lagrangian multiplier method. We consider

QA;corrected − 2λ′(Rβ − θ), (22)

where λ is the vector of the Lagrangian multipliers. Minimization of (22) results in
the following restricted estimator

b11 = b01 + [X′(rD − A)X
]−1 R′(R

[
X′(rD − A)X

]−1 R′)−1 (θ − Rb01). (23)

Using (8), (17) and (23), it is observed that p limn→∞ b11 = β and Rb11 = θ . Thus
b11 is consistent as well as satisfies the exact linear restrictions.
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Proceeding on similar lines, it is observed that minimization of the following func-
tion

QD;corrected = QD − (
1

r − 1
)β ′X′ (A − D) Xβ,

leads to the consistent estimator b02 . Use of the Lagrangian multipliers method for
minimizing QD;corrected under the exact linear restrictions gives the following restricted
estimator

b12 = b02 + [X′(rD − A)X
]−1 R′ (R

[
X′(rD − A)X

]−1 R′)−1
(θ − Rb02). (24)

Equations (8), (17) and (24) show that this estimator is consistent and satisfies (8)
since p limn→∞ b12 = β and Rb12 = θ .

Further, it is observed that the consistent estimator b03 can also be obtained by
minimizing

QA,D = (Y − Xβ)′(rD − A)(Y − Xβ).

Minimization of QA,D − 2λ′(Rβ − θ) results in a restricted estimator of β given by

b13 = b03 + [X′(rD − A)X
]−1 R′(R

[
X′(rD − A)X

]−1 R′)−1(θ − Rb03). (25)

Using (8), (17) and (25), p limn→∞ b13 = β, and Rb13 = θ . Hence b13 is a consistent
estimator satisfying the exact linear restrictions.

Although bAr is inconsistent, it satisfies the exact linear restrictions. The inconsis-
tency of bAr is caused by the inconsistency of bA. We use one of the popular meth-
odologies for eliminating the inconsistency by replacing any inconsistent component
with some consistent component. For this, bA in (18) is replaced by its consistent
counterparts b0s for s = 1, 2, 3. This leads to the estimator

b2s = b0s + (X′AX)−1R′ [R(X′AX)−1R′]−1
(θ − Rb0s). (26)

Similarly, another restricted consistent estimator can be obtained by replacing the
inconsistent bD in (19) by b0s. This estimator is

b3s = b0s + (X′DX)−1R′ [R(X′DX)−1R′]−1
(θ − Rb0s). (27)

Equations (8), (17), (26) and (27) indicate that b2s and b3s are consistent and satisfy
(8).

Remark 3.1.1 Consider the weighted function

QW = (b0s − β)′W(b0s − β),
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where W is a weight matrix. Minimization of QW with respect to β under (8) gives
a restricted estimator of β. This estimator is the same as b1s, b2s and b3s when the
corresponding weight matrix is X′(rD − A)X, X′AX and X′DX, respectively. ��

This observation motivates us to propose one more restricted consistent estimator
of β. On minimizing the unweighted function

(b0s − β)′(b0s − β) − 2λ′(Rβ − θ),

we get the estimator

b4s = b0s + R′ [RR′]−1
(θ − Rb0s). (28)

Using (8) and (17), we get p limn→∞ b4s = β and Rb4s = θ .

Hence by using b0s; s = 1, 2, 3, we propose three classes of four estimators each
(bf s; f = 1, 2, 3, 4), all of which are consistent as well as satisfy the exact linear
restrictions.

4 Large sample properties of estimators

In this section, we derive the large sample distribution of the proposed estimators
as well as of the unrestricted estimators proposed by Shalabh (2003). This is done
because the derivation of the exact distribution of these estimators is difficult. Even
if derived, the complexity of expressions does not serve any analytical purpose. The
following Theorem provides the asymptotic distribution of the estimators.

Theorem 1 n
1
2 (bfs − β); f = 0, 1, 2, 3, 4; s = 1, 2, 3 asymptotically follow Multi-

variate Normal distribution, that is

n
1
2 (bfs − β)

d→ Np(0p×1, Af	sA′
f)

where 0p×1 is the mean vector with all elements zero and

	1 = 
 + 1

r
σ 2

u �v; (29)

	2 = 
 + 1

r2 σ 2
u �v; (30)

	3 = 
 + 1

r(r − 1)
σ 2

u �v; (31)


 = 1

r
(σ 2

u + rσ 2
ε + β ′�vβ)� + 1

r
σ 2

ε �v + 1

r(r − 1)
(�vββ ′�v + (β ′�vβ)	v);

� = �M + �W;
A0 = �−1;
A1 =

[
Ip − A0R′(RA0R′)−1R

]
A0;
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A2 =
[
Ip − �−1

A R′(R	−1
A R′)−1R

]
A0;

A3 =
[
Ip − �−1

D R′(R�−1
D R′)−1R

]
A0;

A4 =
[
Ip − R′(RR′)−1R

]
A0;

�A = � + �v;
�D = � + 1

r
�v. ��

The proof of the above Theorem is included in the appendix.

Since the mean of the asymptotic distribution of n
1
2 (bf s −β); f = 0, 1, 2, 3, 4; s =

1, 2, 3 is zero, hence all the estimators are asymptotically unbiased. From (29)–(31),
it is interesting to note that the asymptotic distribution of the estimators is unaffected
by the non-normality of any random components. This suggests that using replicated
measurements provides a fairly robust way of estimation in case of deviations from
Normality.

Comparing the three classes of estimators, it is observed that for every f

Af 	1A′
f − Af 	2A′

f = σ 2
u

(
1

r
− 1

r2

)
Af �vA′

f

which is positive definite since �v is positive definite. Similarly, we observe that
the difference (Af	3A′

f − Af	2A′
f) is positive definite. This implies that for f =

0, 1, 2, 3, 4 the estimators bf 2 dominate bf 1 and bf 3. It can be seen on similar lines
that bf 3 dominates bf 1. Now we derive the dominance conditions among the restricted
estimators in the same class of estimators. The restricted estimator b1s dominates b2s
as long as (A2	sA′

2 − A1	sA′
1) is positive definite, i.e.

(�1 − �2)A0	sA0 + A0	sA0(�1 − �2)
′ > �1A0	sA0�

′
1

− �2A0	sA0�
′
2 (32)

where �1 = A0R′(RA0R′)−1R and �2 = �−1
A R′(R�−1

A R′)−1R. The reverse holds
true, i.e., b2s dominates b1s when (32) holds with reverse inequality. In case of no
measurement error in the explanatory variables, that is, if �v is a null matrix, both b1s
and b2s are equally efficient. Similarly, the dominance conditions for other restricted
estimators can be obtained.

5 Simulations study

A Monte-Carlo simulations study is conducted to study the properties of the estimators
in detail. Coding is done in MATLAB. The effect of non-normality on the properties
of the estimators is studied when measurement error and random components in the
model follow

1. Normal distribution (symmetric and non kurtic);
2. t distribution (symmetric but kurtic);
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3. Gamma distribution (non symmetric and kurtic).

The effect of kurtosis is studied by comparing the results for Normal and t distri-
bution. Comparison of the results for t and Gamma distribution gives an idea about
the effect of skewness. The elements of U and ε are generated from the univariate
versions of the above mentioned distributions. For generating the elements of W and
V , we consider a system where matrix 	v is such that the diagonal elements are
given by σ 2

v and the off-diagonal elements are given by ρvσ
2
v where ρv denotes the

common correlation coefficient among the columns of V . Similarly, the diagonal and
the off-diagonal elements of 	w are considered as σ 2

w and ρwσ 2
w, respectively. Using

this setup, the elements of W and V are generated using the multivariate versions
of the above mentioned distributions. Simulations are performed for n = 15, 45 and
r = 3, 6. The values of σ 2

u , σ 2
ε , σ 2

w, ρw and ρv are fixed a priori as 0.5. To evaluate
the effect of increasing measurement error variance, we performed the simulations
for σ 2

v = 0.5 and σ 2
v = 1.0. The random numbers have been suitably scaled to have

mean zero and variances as specified above. The vectors β and R are fixed a priori as
β = ( 2.4 1.3 1.9 )′ and R = ( 0.3 0.5 0.8 ), respectively. Since ξ = M + W , hence
in order to get the matrix ξ , we fixed two matrices of order 15 × 3 and 45 × 3 for M.
For these matrices, we have

1

n
M′CM =

⎡

⎣
1.9225 −0.6302 0.6987

−0.6302 2.2909 −0.5638
0.6987 −0.5638 1.8649

⎤

⎦ when n = 15

and

1

n
M′CM =

⎡

⎣
2.2547 −0.5056 0.2594

−0.5056 1.9845 −0.3872
0.2594 −0.3872 1.9356

⎤

⎦ when n = 45.

Simulations are performed for 10,000 iterations. The square error matrix and the bias
vector are computed empirically for the estimator proposed in Sect. 3. When the sample
size is large, the Mean Square Error Matrices (MSEM) of the estimators are observed
to be close to the variance–covariance matrices computed using the asymptotic expres-
sion given in Theorem 1. This validates the correctness of asymptotic formulas derived
in the last section. However, there are large fluctuations in the MSEMs of estimators
when the sample size is small. This may be due to the fact that the consistent estima-
tors in measurement error regression may not have finite moments (Cheng and Kukush
2006). Thus for the purpose of comparing the estimators, we use the empirically com-
puted Median Square Error Matrix (MedSEM) and the Median Bias (MedB) vector.
MedSEM and MedB of an estimator b are defined as

MedSEM(b) = median
{
(b − β) × (b − β)′

}
and

MedB(b) = (median(b) − β).

For each parametric combination considered above, the MedSEM and the MedB are
computed empirically for the estimators proposed in Sect. 3. The norm of MedB vec-
tor written as median absolute bias (MedAB) is used for comparing the bias in the
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Replicated measurement error model 263

estimators since any change in MedAB reflects the increase/decrease in the bias of
the estimators. Due to space constraint, only a few simulations results are reported
here in Tables 1 and 2. The other tables can be available in Electronic Supplementary
Material.

From the tables, we see that the MedSEM and the MedAB of the estimators approach
zero as the sample size increases. This validates the theoretical findings that the esti-
mators are consistent. Also for a fixed sample size, increasing the number of replicates
reduces the variability as well as the bias of the estimators.

Comparing the estimators with respect to the bias, we observe that

MedAB(b1s) < MedAB(b3s) < MedAB(b2s) < MedAB(b4s),

for each s = 1, 2, 3. Comparing the MedSEM of restricted estimators, we observe that
b1s turns out to be the best choice in most of the cases considered in the simulations.
This is in agreement with the dominance condition stated in the last section and is veri-
fied under the given parametric setup. However, no uniform dominance relationship is
observed between other restricted estimators based on the ordering of their MedSEM.
So, we also compare the estimators under a weaker criterion of the trace of MedSEM.

Comparing the restricted estimators within each class using the trMedSEM, it is
clear from Fig. 1 that for each s = 1, 2, 3

trMedSEM(b1s) < trMedSEM(b3s) < trMedSEM(b2s) < trMedSEM(b4s).

On comparing the results for the cases when σ 2
v = 0.5 and σ 2

v = 1.0, it is evident
that the variability and the bias of the estimators increase as the measurement error
variance increases.

From tables and Fig. 1, it is also observed that for f = 1, 2, 3, 4 and each s = 1, 2, 3

trMedSEM(bf s) < trMedSEM(b0s) and

MedAB(bf) < MedAB(b0s).

This indicates that inclusion of prior information in the form of exact linear restrictions
improves the efficiency of the estimators in terms of both variability and bias.

To evaluate the effect of non-normality on the properties of the estimators, we com-
pare the simulations results when the random components in the model follow Normal,
t and Gamma distributions. Since the estimators are asymptotically unbiased and there
is no non-normality effect on the asymptotic variance-covariance matrix as evident
from Theorem 1, it is relevant to discuss the effect of non-normality only in small
samples. We first discuss the effect of non-normality on the bias of the estimators.
From tables, it is observed that

• the bias for t distribution is less than that for Normal distribution. This indicates that
the kurtosis reduces the bias;

• comparing Gamma and t distribution results, we observe that the skewness escalates
the bias in the estimators.
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Fig. 1 Trace of MedSEM versus sample size for σ 2
v = 1.0, r = 3 and Normal Distribution case

We now discuss the effect of non-normality on the variability in the estimators. From
Tables, we observe that for each estimator, the differences in the variability for differ-
ent distributions are very small. This suggests that as far as the variability is concerned,
the estimators are fairly robust to the assumption of normality.

6 Conclusions

A replicated ultrastructural measurement error (RUME) multiple regression model
is considered where the replicated observations on study and predictor variables are
available. It is assumed that some prior information regarding the regression coeffi-
cients is available in the form of exact linear restrictions. Three classes of consistent
restricted estimators are proposed. These are based on three consistent unrestricted
estimators available in the literature. The asymptotic properties of unrestricted and
restricted consistent estimators are studied without imposing any distributional con-
straints on any random component. It is observed that asymptotically, the estimators
follow the Multivariate Normal distribution and are unbiased. In large samples, the
estimators are robust to the non-normality of random components in the model. Monte
Carlo simulations are performed to explore properties of the estimators. It is observed
that inclusion of prior information improves the estimators in terms of both bias and
variability.
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Appendix

Lemma A.1 Let C = (ci j ) be a (m×m) matrix and let ‖C‖1 = max1≤i≤m
∑m

j=1

∣∣ci j
∣∣

and ‖C‖2 = max1≤ j≤m
∑m

i=1

∣∣ci j
∣∣ be the maximum column sum and maximum row
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sum matrix norms, respectively. If ‖C‖1 < 1 and/or ‖C‖2 < 1, then (Im − C) is
invertible and

(Im − C)−1 =
∑∞

i=0
Ci, where Co = Im ��

For a proof, one can refer to Rao and Rao (1998).

Lemma A.2 Let Vn = ∑n
j=1UjnXj where X1, . . . , Xn are (p × 1) independent and

identically distributed random vectors with E(Xj) = 0 and U1n, . . . , Unn are (q × p)

non-stochastic matrices. Suppose that limn→∞ cov(Vn) = �, where � is positive
definite matrix.

∣∣�i j
∣∣ < ∞, for each i, j where �i j is the (i, j)th element of �. If there

exists a function ω(n) such that limn→∞ ω(n) = ∞, and if the elements of ω(n)Ujn

are bounded, then Vn
d→ Nq (0,�) as n → ∞. ��

The above result, known as the Central Limit Theorem, is due to Malinvaud (1966).

We first write some expressions and derive a few results which shall be useful in
deriving the asymptotic distribution of the estimators. These are

�ξ = 1

n
M′CM + �w,

�XA = �ξ + �v,

�XD = �ξ + 1

r
�v and

Z = [C( M+W)] ⊗ er = A [(M+W) ⊗ er] = D [(M+W) ⊗ er] .

Using assumption 6, it can be easily seen that

lim
n→∞ �ξ = �M + �w = �,

lim
n→∞ �X A = � + �v = �A and

lim
n→∞ �X D = � + 1

r
�v = �D.

Thus using (5)–(7) and definitions of �ξ , �X A, �X D and Z, we can write

1

nr
X′AY = �ξβ + 1

n1/2 h, (33)

1

nr
X′DY = �ξβ + 1

n1/2 (h+h∗), (34)

1

nr
X′AX = �X A + 1

n1/2 H1, (35)

1

nr
X′DX = �X D + 1

n1/2 H2 (36)
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where

h∗ = 1

n1/2r

[
V ′(D − A) [U + (ε⊗er)]

]
, (37)

h = 1

n1/2

[
Qβ − 1

r
(Z′Vβ − Z′ [U + (ε⊗er)] − V ′A [U + (ε⊗er)])

]
, (38)

H1 = 1

n1/2

[
Q + 1

r
(V ′AV − nr�v)

]
, (39)

H2 = 1

n1/2

[
Q + 1

r
(V ′DV − n�v)

]
(40)

for

Q = (M′CW + W ′CM) + (W ′CW − n�w) + 1

r
(Z′V + V ′Z).

From Assumptions 1–7, we observe that h∗, h, H1 and H2 are of order OP (1). Using
(35) and Lemma A.1, we observe that

[
1

nr
X′AX

]−1

=
[
�XA(I p + 1

n1/2 �−1
XAH1)

]−1

= (I p − 1

n1/2 �−1
XAH1)�

−1
XA + OP (n−1). (41)

Equation (36) and Lemma A.1 lead to the expression

[
1

nr
X′DX

]−1

= (I p − 1

n1/2 �−1
XDH2)�

−1
XD + OP (n−1) (42)

Further, using (41) and Lemma A.1, we have

(
R
[

1

nr
X′AX

]−1

R′
)−1

=
(

R�−1
XAR′ − 1

n1/2 R�−1
XAH1�

−1
XAR′ + OP (n−1)

)−1

=
(

RXA

[
Iq − 1

n1/2 R−1
XAR�−1

XAH1�
−1
XAR′ + OP (n−1)

])−1

=
[

Iq + 1

n1/2 R−1
XAR�−1

XAH1�
−1
XAR′

]
R−1

XA + OP (n−1) (43)

where RXA = R�−1
XAR′ .

Using (42) and Lemma A.1, we can write

(
R
[

1

nr
X′DX

]−1

R′
)−1

=
[

Iq + 1

n1/2 R−1
XDR�−1

XDH2�
−1
XDR′

]
R−1

XD + OP (n−1)

(44)
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where RXD = R�−1
XDR′.

Equations (35), (36) and Lemma A.1 give

[
1

nr
X′(rD − A)X

]−1

=
[
(r − 1)�ξ + 1

n1/2 H
]−1

= 1

(r − 1)

[
IP − 1

n1/2(r − 1)
�ξ

−1H
]

�ξ
−1 + OP (n−1)

(45)

where H = rH2 − H1.
Using (45) and Lemma A.1, we get

{
R
[

1

nr
X′(rD−A)X

]−1

R′
}−1

= (r − 1)

[
Iq+ 1

n1/2(r − 1)
R−1

ξ
R�ξ

−1H�ξ
−1R′

]
R−1

ξ

+ OP (n−1)

(46)

where Rξ = R�ξ
−1R′ .

Now using (13)–(15), (33), (34), (45), we can write

b0s =
{[

IP− 1

n1/2(r − 1)
�ξ

−1H
]

�ξ
−1+OP (n−1)

}{
�ξβ+ 1

n1/2 h + ds

n1/2 h∗
}

(47)

where for s = 1, 2, 3, we have d1 = 0, d2 = 1 and d3 = r
r−1 .

Solving (47), we get

n
1
2 (b0s − β) = �ξ

−1
[

h − 1

r − 1
Hβ + dsh∗

]
+ OP (n− 1

2 ). (48)

From (23)–(25), we write

(b1s − β) = (b0s − β) + [X′(rD − A)X
]−1 R′ {R

[
X′(rD − A)X

]−1 R′}−1

×(θ − Rb0s). (49)

Using (8) and (48), we have

(θ − Rb0s) = − 1

n1/2 R�ξ
−1
[

h − 1

r − 1
Hβ + dsh∗

]
+ OP (n−1). (50)
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Thus using (45)–(48) and (50) in (49), we get

n
1
2 (b1s − β) =

[
Ip − �ξ

−1R′R−1
ξ

R
]
�ξ

−1
[

h − 1

r − 1
Hβ + dsh∗

]
+ OP (n− 1

2 )

(51)

Proceeding similarly as for n
1
2 (b1s − β) and using (26), (27), (41)–(44), (48) and (50),

we get

n
1
2 (b2s − β) =

[
Ip − �−1

XAR′R−1
XAR

]
�ξ

−1
[

h − 1

r − 1
Hβ + dsh∗

]
+ OP (n− 1

2 )

(52)

and

n
1
2 (b3s − β) =

[
Ip − �−1

XDR′R−1
XDR

]
�ξ

−1
[

h − 1

r − 1
Hβ + dsh∗

]
+ OP (n− 1

2 )

(53)

Further, from (28), we have

(b4s − β) = (b0s − β) + R′ [RR′]−1
(θ − Rb0s). (54)

Thus using (48) and (50) in (54), we get

n
1
2 (b4s − β) =

[
Ip − R′(RR′)−1R

]
�ξ

−1
[

h − 1

r − 1
Hβ + dsh∗

]
+ OP (n− 1

2 ).

(55)

We now proceed with the proof of Theorem 1.

Proof of Theorem.1 From (48), (51)–(53) and (55), it is obvious that for s =
0, 1, . . . , 4, the asymptotic distribution of n

1
2 (bfs − β) is same as that of[

h − 1
r−1 Hβ + dsh∗

]
up to a matrix factor, which is different for every f and s.

Using (37)–(40), we can write

[h − 1

r − 1
Hβ + dsh∗] = 1

n1/2r

{
([C(M + W)] ⊗ er)

′(U + (ε⊗er) − Vβ)

+V ′A[U + (ε⊗er)] + dsV ′(D − A)[U + (ε⊗er)]
− 1

r − 1
V ′(rD − A)Vβ

}
. (56)

Using the definition of matrix A, we have

1

n1/2 V ′AU = 1

n1/2 (V ′U − 1

nr
V ′enre′

nrU). (57)
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From the Assumptions 1–7, it is observed that 1
nr V ′enre′

nrU = Op(1). Hence (57)
can be written as

1

n1/2 V ′AU = 1

n1/2 V ′U + Op(n
− 1

2 ).

Similarly, using matrix D and Assumptions 1–7, we get

1

n1/2 V ′DU = 1

n1/2 V ′V∗U + Op(n
− 1

2 )

where D∗ = In ⊗ 1
r ere′

r.
Proceeding on similar lines, (56) becomes

[
h − 1

r − 1
Hβ + dsh∗

]
= H∗

s + Op(n
− 1

2 ) (58)

where

H∗
s = 1

n1/2r

{[
(M′C + W ′) ⊗ e′

r
]′

(U + (ε⊗er) − Vβ)

+ (1 − ds)V ′ [U + (ε⊗er)] + dsV ′D∗ [U + (ε⊗er)]

− 1

r − 1
(rV ′D∗V − V ′V)β

}

So the asymptotic distribution of
[
h − 1

r−1 Hβ + dsh∗
]

will be same as that of H∗
s .

Let (i : j)indicate the row corresponding to j th replicate of i th subject for i =
1, . . . , n and j = 1, . . . , r . Then V ′

i:j, V ′
i:j and ui : j denote the (i : j)th rows of D∗V, V

and (i : j)th element of U, respectively. Using these notations, we define

V∗
i = [

V∗
i:1, . . . , V∗

i:r
] ;

Vi = [Vi:1, . . . , Vi:r] ;

and

Ui = [ui :1, . . . , ui :r ] .

We also denote the i th rows of CM and W by MC′
i and W ′

i. Using these notations,
H∗

s can be written as

H∗
s = 1

n1/2r

⎧
⎪⎨

⎪⎩

[([
MC

1 . . . MC
n

]
+ [W1 . . . Wn]

)
⊗ e′

r

]
⎛

⎜⎝

⎡

⎢⎣

U′
1

.

.

.

U′
n

⎤

⎥⎦+
⎡

⎢⎣

ε1er
.
.
.

εner

⎤

⎥⎦−
⎡

⎢⎣

V ′
1

.

.

.

V ′
n

⎤

⎥⎦β

⎞

⎟⎠

+ ((1 − ds) [V1 . . . Vn] + ds
[
V∗

1 . . . V∗
n
])
⎛

⎜⎝

⎡

⎢⎣

U′
1

.

.

.

U′
n

⎤

⎥⎦+
⎡

⎢⎣

ε1er
.
.
.

εner

⎤

⎥⎦

⎞

⎟⎠
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+
(

1

r − 1
[V1 . . . Vn] − r

r − 1

[
V∗

1 . . . V∗
n
])
⎡

⎢⎣

V ′
1

.

.

.

V ′
n

⎤

⎥⎦β

⎫
⎪⎬

⎪⎭

= 1

n1/2r

∑n

i

{[
(MC

i + Wi) ⊗ e′
r

]
(U′

i + εier − V ′
iβ)

+((1 − ds)Vi + dsV∗
i )
[
U′

i + εier
]+

(
1

r − 1
Vi − r

r − 1
V∗

i

)
V ′

iβ

}
.

On simplification, this becomes

H∗
s =

n∑

i

CiDi

where, for i = 1, . . . , n,

Ci = 1

n1/2r

[
MC

i ⊗ e′
r, Ip,−β ′ ⊗ (MC

i ⊗ e′
r),

−β ′ ⊗ Ip, (1 − ds)Ip, dsIp,
−β ′

r − 1
⊗ Ip

]

and

Di =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

U′
i + εier(

Wi ⊗ e′
r
) [

U′
i + εier

]

vec
(
V ′

i

)

vec
([

Wi ⊗ e′
r
]

V ′
i

)

Vi
[
U′

i + εier
]

V∗
i

[
U′

i + εier
]

vec
([

rV∗
i − Vi

]
V ′

i

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Ci and Di are the matrices of constants and independent and identically distributed
random vectors, respectively. Assumptions 1–7 imply that E(Di) = 0 and n1/2Ci is
bounded for fixed r . Thus the conditions of Lemma A.2 are satisfied. Hence by the
central limit theorem, we have

H∗
s

d→ Np(0p×1,	s). (59)

Using (58) along with (59), we get

[
h − 1

r − 1
Hβ + dsh∗

]
d→ Np(0p×1,	s) (60)

where, for s = 1, 2, 3

	s = lim
n→∞ E

{[
h − 1

r − 1
Hβ + dsh∗

] [
h − 1

r − 1
Hβ + dsh∗

]′}
.
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Using Assumptions 1–7 and after evaluating the expectations, we get the expressions
for 	s; s = 1, 2, 3 as given in the Eqs. (29)–(31).

Thus from (48), (51)–(53), (55) and (60), we have for f = 0, 1, 2, 3, 4

n
1
2 (bfs − β)

d→ Np(0p×1, Af 	sA′
f ),

where Af : f = 0, 1, . . . , 4 are given as

A0 = lim
n→∞ �ξ

−1 = �−1;
A1 = lim

n→∞
[
Ip − �ξ

−1R′R−1
ξ

R
]
�ξ

−1 =
[
Ip − A0R′(RA0R′)−1R

]
A0;

A2 = lim
n→∞

[
Ip − �−1

XAR′R−1
XAR

]
�ξ

−1 =
[
Ip − �−1

A R′(R�−1
A R′)−1R

]
A0;

A3 = lim
n→∞

[
Ip − �−1

XDR′R−1
XDR

]
�ξ

−1 =
[
Ip − �−1

D R′(R�−1
D R′)−1R

]
A0

and

A4 = lim
n→∞

[
Ip − R′(RR′)−1R

]
�ξ

−1 =
[
Ip − R′(RR′)−1R

]
A0. ��
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