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Abstract Consider a sequence of binary (success–failure) random variables (RVs)
ordered on a line. The number of strings with a constrained number of consecutive
failures between two subsequent successes is studied under an overlapping enumera-
tion scheme. The respective waiting time is examined as well. The study is first devel-
oped on sequences of independent and identically distributed RVs. It is extended then
on sequences of dependent, exchangeability and Markovian dependency is considered,
and independent, not necessarily identically distributed, RVs. Exact probabilities and
moments are obtained by means of combinatorial analysis and via recursive schemes.
An explicit expression of the mean value of the number of strings for both independent
and dependent sequences is derived. An application in system reliability is provided.
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1 Introduction and preliminaries

Binary sequences commonly arise in several fields of science and engineering. The
study of random variables (RVs) defined on such sequences, that count some sort of
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784 F. S. Makri, Z. M. Psillakis

binary patterns (e.g. runs, scans and certain strings of binary symbols 0–1 or F–S)
according to several enumerating rules or represent waiting times until a number of
patterns occur, have been popular in applied probability and statistics. Their popular-
ity can be attributed to the fact that such statistics appear in many areas of applied
research including computer science, finance and insurance, biology and bioscience,
and statistical inference. In such cases, even the problems associated with the study
of enumerating/waiting time RVs are usually formulated without difficult notions or
involved technical terms, their solutions are far from trivial. Past and current devel-
opments on pattern statistics are well documented in Glaz and Balakrishnan (1999),
Balakrishnan and Koutras (2002), Antzoulakos (2003), Fu and Lou (2003) and Koutras
(2003). Some recent contributions on the topic are the works of Fu and Lou (2007),
Dafnis et al. (2010), Demir and Eryilmaz (2010), Eryilmaz (2010a, 2011), Makri
(2010) and Makri and Psillakis (2011a).

It is a common practice in strings literature that a binary sequence is generated by a
certain random source or probabilistic model in such a way it assumes a proper inter-
nal structure. Besides of the theoretical interest on some models, applications often
suggest what is a reasonable set of probabilistic assumptions for a binary sequence.
Usually, a random source generates binary sequences with elements from an alpha-
bet {0, 1} that occur either independently of each other (memoryless source) or have
some kind of dependence among them. For the latter case the most used models are:
a (homogeneous/non-homogeneous) Markov (MRKV) chain of some order implying
a Markovian dependency among a number of consecutive elements of the sequence
(MRKV source) and the assumption that the generated sequence is an exchangeable
(EXCH) one (EXCH source) which efficiently captures the notion of symmetry of a
collection of RVs. Finally, the case of independent and identically distributed (IID)
RVs is of particular importance in studies of strings. This is so, because in addition to
its own independent merit in studies of applied probability, it can also be considered
as a special case of the three previously mentioned random sources. The latter fact
also serves as a valuable crosscheck of results referring to several random sources and
obtained by various methods.

Let {Xi }i≥1 be a sequence of binary (two-state) RVs taking on the values 1 (Success,
S) or 0 (Failure, F) ordered on a line. For n ≥ 2 and two non-negative integer numbers k
and �, 0 ≤ k ≤ � ≤ n − 2, we consider the RV Mn;k,� which enumerates constrained
(k, �) strings S F F . . . F

︸ ︷︷ ︸

d

S with (constrained) length equal to d + 2, k ≤ d ≤ �;

i.e. strings which consist of a failure run (consecutive failures) of length at least k and
at most � between two subsequent successes. In other words, Mn;k,� counts in the first
n trials the number of strings S F F . . . F

︸ ︷︷ ︸

≥k,≤�
S of two subsequent successes separated

(or interrupted) by a run of failures of length at least k and at most �. Interpreting
the number of consecutive failures as the distance between two subsequent successes
Mn;k,� also enumerates the strings in which the distance between two subsequent
successes is at least k and at most �. The counting of such strings is considered in
the overlapping sense; that is, a success which is not at either end of the sequence
may contribute towards counting two possible strings, the one which ends with the
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Exact distributions of constrained (k, �) strings 785

occurrence of it and the next one which starts with it. Including the string S F F . . . F
︸ ︷︷ ︸

d
of length d + 1, 0 ≤ k ≤ d ≤ � ≤ n − 1, of at least k and at most � failures after the
last success in the count, we define the RV Nn;k,�. It holds

Nn;k,� = Mn;k,� + In, In =
�

∑

j=k

Xn− j

j−1
∏

i=0

(1 − Xn−i ). (1)

Readily, Mn;k,� = 0 for k > n − 2 and Nn;k,� = 0 for k > n − 1. The supports (range
sets) of Mn;k,� and Nn;k,� are

R(Mn;k,�) =
{

0, 1, . . . ,

⌊

n − 1

k + 1

⌋}

and R(Nn;k,�) =
{

0, 1, . . . ,

⌊

n

k + 1

⌋}

,

(2)

respectively. �x� stands for the greatest integer less than or equal to a real number x .
As an illustration let F SF F F SF F F F SSSF SSF F SF F SSF F be the first n =

25 outcomes of a binary sequence. Then we have M25;1,2 = 3, N25;1,2 = 4 and
M25;1,3 = 4, N25;1,3 = 5.

A RV related to Mn;k,� is the waiting time Wm;k,� until the mth, m ≥ 1, occurrence
of a constrained (k, �) string. It is defined and related to Mn;k,� as follows

Wm;k,� = min{n ≥ m(k + 1)+ 1 : Mn;k,� = m}, Wm;k,� > n iff Mn;k,� < m.

(3)

Hence, via Eq. (3) it is offered an alternative way of obtaining results for the waiting
time RV Wm;k,� through formulae established for the string enumerative RV Mn;k,�
and vise versa.

The study of constrained (k, �) strings via Mn;k,� covers as particular cases strings
that have been considered recently by several authors. Specifically, Mn;0,�, Mn;k,k
and Mn;k,n−2 enumerate strings of two subsequent successes separated by a run of
failures of length at most, exactly and at least equal to a non-negative integer number;
i.e. strings of the form S F F . . . F

︸ ︷︷ ︸

≤�
S, S F F . . . F

︸ ︷︷ ︸

k

S and S F F . . . F
︸ ︷︷ ︸

≥k

S, respectively.

Relevant contributions on the subject are the works of Antzoulakos (2001), Sarkar
et al. (2004), Sen and Goyal (2004), Holst (2007), Huffer et al. (2009), Dafnis et al.
(2012) and Makri and Psillakis (2012). Moreover, Mn;0,0 is the Ling (1988) RV M (2)

n
which counts overlapping success runs of length 2 (with overlapping part of length at
most 1); see e.g. Hirano et al. (1991), Antzoulakos and Chadjiconstantinidis (2001),
Mori (2001), Joffe et al. (2004) and Makri et al. (2007a). In these works special forms
of constrained (k, �) strings are studied on binary sequences of dependent, exchange-
ability and Markovian dependency of some order is considered, and of independent
(identically/non-identically distributed) elements.

Constrained (k, �) strings defined on binary sequences of finite or infinite length of
internal structures like the ones mentioned previously were studied since Shannon’s era
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786 F. S. Makri, Z. M. Psillakis

and applications were found in information theory and data compression (see Zehavi
and Wolf 1988; Jacquet and Szpankowski 2006; Stefanov and Szpankowski 2007) in
urn models, record models and random permutations (see Chern et al. 2000; Chern and
Hwang 2005; Holst 2008a,b, 2009, 2011) in system reliability (see Eryilmaz and Zuo
2010; Makri 2011) and in biomedical engineering (see Dafnis and Philippou 2011).
The methods used to derive exact/limiting, marginal/joint probability distributions
include combinatorial analysis, generating functions, MRKV chain imbedding tech-
nique, embedding in a marked Poisson process, and asymptotic analysis of differential
equations.

In the present paper we establish in a unified way the exact distributions of Mn;k,�
and Wm;k,� referring to the flexible class of constrained (k, �) strings. Our approach
is based on simple and efficient probabilistic arguments and combinatorial analysis.
The vast majority of our results are new, whereas some known results, on particular
forms of constrained (k, �) strings, are recaptured using different methods and provide
alternative formulae. In summary, the paper is organized as follows.

The results are first derived for sequences of IID binary RVs with a common suc-
cess probability p = P(Xi = 1) = 1 − P(Xi = 0) = 1 − q, i = 1, 2, . . . , n.
They are presented in Sect. 2. Specifically, in Sect. 2.1 we obtain recursive schemes of
the probability mass function (PMF), the probability generating function (PGF), the
moment generating function (MGF) as well as of the factorial and ordinary moments
of the RVs Mn;k,� and Nn;k,�. In Sect. 2.2, we express by means of a combinatorial
technique the PMF of Mn;k,� in terms of sums of binomial coefficients. In Sect. 2.3
we derive a simple explicit formula of the expected value of Mn;k,� by means of a
representation of Mn;k,� as a sum of indicator RVs.

The results of Sect. 2 are given in forms proper for their extension on binary
sequences of more general internal structures. They are sequences of: (a) indepen-
dent but not necessarily identically distributed (INID) RVs, with P(X1 = x1, X2 =
x2, . . . , Xn = xn) = ∏n

i=1 pi , for xi ∈ {0, 1} and pi = P(Xi = 1) = 1 − P(Xi =
0) = 1 − qi , i = 1, 2, . . . , n; (b) EXCH or symmetrically dependent RVs, the
joint distribution of which is invariant under any permutation of its arguments, with
pn(s) = P(X1 = x1, X2 = x2, . . . , Xn = xn) for xi ∈ {0, 1} and s = ∑n

i=1 xi ;
(c) MRKV dependent RVs defined on a {0, 1}-valued time-homogeneous first-order
MRKV chain with one step transition probability matrix P = (pi j ) and initial prob-

ability vector p(1) = (p(1)0 , p(1)1 ) with pi j = P(Xn = j | Xn−1 = i), p(1)0 =
P(X1 = 0) = 1− P(X1 = 1) = 1− p(1)1 for n ≥ 2 and i, j ∈ {0, 1}. Readily, an IID
sequence is a particular INID sequence with pi = p = 1−q, an EXCH sequence with
pn(s) = psqn−s, n > 0 or a MRKV sequence with p00 = p10 = q, p01 = p11 = p
and (p(1)0 , p(1)1 ) = (q, p). Accordingly, in Sect. 3 the results of Sect. 2 are gen-
eralized in a way such that to hold for INID (Sect. 3.1), EXCH (Sect. 3.2) and
MRKV (Sect. 3.3) sequences. The section is concluded with the study (Sect. 3.4)
of Wm;k,� defined on sequences of independent and dependent (EXCH and MRKV)
binary RVs.

In Sect. 4 an application of Mn;0,�−1 connected with the reliability of a constrained
(k, �)-out-of-n:F system (with IID, EXCH and MRKV components) is provided. The
paper is ended with Sect. 5 presenting a discussion on some further results.
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Exact distributions of constrained (k, �) strings 787

Throughout the article, δi, j denotes the Kronecker δ function of the integer argu-
ments i and j . Also, we apply the conventions

∑b
i=a = 0,

∏b
i=a = 1, for a > b; that

is, an empty sum (product) is to be interpreted as a zero (unity).

2 Results on IID trials

In the present section we establish results for binary sequences of IID RVs
X1, X2, . . . , Xn with a common success probability p.

2.1 Recursive schemes for Nn;k,� and Mn;k,�

First, we obtain recursive schemes for the PMF (Theorem 1), PGF (Proposition 1) and
MGF (Proposition 2) of Nn;k,�. Next, using these results, we derive recursive schemes
(Theorem 2; Propositions 3, 4) for the corresponding functions of Mn;k,�. Recursive
schemes for the r th (descending) factorial and the r th moment, r ≥ 1, of Nn;k,� and
Mn;k,� are provided in Corollaries 1 and 2, respectively. Next, for compactness of the
derived results, we set

ai = pqi , for i = k, �+ 1. (4)

Theorem 1 The PMF gn(x) = P(Nn;k,� = x), x ∈ R(Nn;k,�), of the RV Nn;k,�, 0 ≤
k ≤ � ≤ n − 1, satisfies for n ≥ k + 1 the recursive scheme

gn(x) = gn−1(x)− ak[gn−k−1(x)− gn−k−1(x − 1)]
−a�+1[gn−�−2(x − 1)− gn−�−2(x)] (5)

with initial conditions gn(x) = 0 if x < 0 or x > � n
k+1�, gn(x) = 0 if n < 0 and

gn(x) = δx,0 for 0 ≤ n < k + 1.

Proof Obviously, for x < 0 or x > � n
k+1�, and 0 ≤ n < k + 1, the theorem holds.

For n ≥ k + 1, we first observe that

P(Nn;k,� = r + 1, Nn−1;k,� = r) = pqk P(Nn−1−k;k,� = r), r = 0, 1, . . . (6)

and

P(Nn;k,� = r − 1, Nn−1;k,� = r) = pq�+1 P(Nn−�−2;k,� = r − 1), r = 1, 2, . . . .

(7)

Then for x ≥ 1, we have P(Nn;k,� = x) = P(Nn−1;k,� = x) − P(Nn;k,� = x +
1, Nn−1;k,� = x)− P(Nn;k,� = x − 1, Nn−1;k,� = x)+ P(Nn;k,� = x, Nn−1;k,� =
x − 1) + P(Nn;k,� = x, Nn−1;k,� = x + 1) and P(Nn;k,� = 0) = P(Nn−1;k,� =
0) − P(Nn;k,� = 1, Nn−1;k,� = 0) + P(Nn;k,� = 0, Nn−1;k,� = 1). Using (6) and
(7) we obtain the result of the theorem. ��
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Multiplying both sides of (5) by t x , and summing up for all x we obtain the PGF
of Nn;k,� and consequently its MGF.

Proposition 1 The PGF ψn(t) = E(t Nn;k,� ), t ∈ R of Nn;k,� satisfies the recursive
scheme

ψn(t) = ψn−1(t)− (1 − t)[akψn−k−1(t)− a�+1ψn−�−2(t)], n ≥ k + 1 (8)

with the initial conditions ψn(t) = 1 if 0 ≤ n < k + 1 and ψn(t) = 0 if n < 0. ��

Proposition 2 The MGF θn(t) = E(et Nn;k,� ) = ψn(et ), t ∈ R of the RV Nn;k,�
satisfies the recursive scheme

θn(t) = θn−1(t)− (1 − et )[akθn−k−1(t)− a�+1θn−�−2(t)], n ≥ k + 1 (9)

with initial conditions θn(t) = 1 if 0 ≤ n < k + 1 and θn(t) = 0 if n < 0. ��

Next, using the formulae

dr

dtr
[tψn(t)] = r

dr−1

dtr−1ψn(t)+ t
dr

dtr
ψn(t) and

dr

dtr
[etθn(t)] =

r
∑

i=0

et
(

r

i

)

di

dt i
θn(t)

(10)

we get, by differentiating the respective generating function r times with respect to
t , recursive schemes for the r th descending (falling) factorial moment and the r th
moment (crude or raw moment) of Nn;k,�, r ≥ 1.

Corollary 1 Let ρn,r = E[Nn;k,�(Nn;k,� − 1) · · · (Nn;k,� − r + 1)] and νn,r =
E(Nr

n;k,�), r ≥ 1. Then,

ρn,r = ρn−1,r + r(akρn−k−1,r−1 − a�+1ρn−�−2,r−1), n ≥ k + 1 (11)

with ρn,0 = 1 for n ≥ 0; ρn,r = 0 for n < 0, r ≥ 0; ρn,r = 0 for 0 ≤ n < k +1, r ≥
1 and

νn,r = νn−1,r +
r−1
∑

i=0

(

r

i

)

(akνn−k−1,i − a�+1νn−�−2,i ), n ≥ k + 1 (12)

with νn,0 = 1 for n ≥ 0; νn,r = 0 for n < 0, r ≥ 0; νn,r = 0 for 0 ≤ n < k +1, r ≥
1. ��

After that, using the results for the RV Nn;k,� we derive the following respective
results for the RV Mn;k,�.
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Theorem 2 The PMF fn(x) = P(Mn;k,� = x), x ∈ R(Mn;k,�), of the RV
Mn;k,�, 0 ≤ k ≤ � ≤ n − 2, satisfies for n ≥ k + 2 the recursive scheme

fn(x) = pgn−1(x)+ q fn−1(x) (13)

with initial conditions fn(x) = 0 if x < 0 or x > � n−1
k+1 � and fn(x) = δx,0 for

0 ≤ n < k + 2.

Proof By the total probability law we have that P(Mn;k,� = x) = P(Mn;k,� = x |
Xn = 1)P(Xn = 1) + P(Mn;k,� = x | Xn = 0)P(Xn = 0) = P(Nn−1;k,� =
x)p + P(Mn−1;k,� = x)q. ��
Proposition 3 The PGF φn(t) = E(t Mn;k,� ), t ∈ R of Mn;k,� satisfies the recursive
scheme

φn(t) = pψn−1(t)+ qφn−1(t), n ≥ k + 2 (14)

with the initial condition φn(t) = 1 if 0 ≤ n < k + 2. ��
Proposition 4 The MGF ηn(t) = E(et Mn;k,� ) = φn(et ), t ∈ R of the RV Mn;k,�
satisfies the recursive scheme

ηn(t) = pθn−1(t)+ qηn−1(t), n ≥ k + 2 (15)

with the initial condition ηn(t) = 1 if 0 ≤ n < k + 2. ��
Corollary 2 Let πn,r = E[Mn;k,�(Mn;k,� − 1) · · · (Mn;k,� − r + 1)] and μn,r =
E(Mr

n;k,�), r ≥ 1. Then,

πn,r = pρn−1,r + qπn−1,r , n ≥ k + 2 (16)

with πn,0 = 1 for n ≥ 0; πn,r = 0 for 0 ≤ n < k + 2, r ≥ 1 and

μn,r = pνn−1,r + qμn−1,r , n ≥ k + 2 (17)

with μn,0 = 1 for n ≥ 0 and μn,r = 0 for 0 ≤ n < k + 2, r ≥ 1. ��
Remark 1 Using Corollary 2, an alternative expression of the PMF of Mn;k,� is given
by

fn(x) = 1

x !
∑

r≥x

(−1)r−x πn,r

(r − x)! =
∑

r≥x

(−1)r−x
(

r

x

)

π
′
n,r . (18)

where π
′
n,r = E[(Mn;k,�

r

)] = πn,r
r ! is the r th binomial moment of Mn;k,�. ��

Alternative recursive schemes for φn(t), fn(x) and μn,r of the RVs Mn;0,�, 0 ≤
� ≤ n − 2; Mn;k,k, 0 ≤ k ≤ n − 2; Mn;k,n−2, 0 ≤ k ≤ n − 2 are provided by Dafnis
et al. (2012) by employing a MRKV chain imbedding technique.
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2.2 PMF of Mn;k,� via combinatorial analysis

In this section we obtain the PMF (Theorem 3; Remark 3) of Mn;k,� by means of
combinatorial analysis (Lemma 1; Corollary 3; Remark 2).

Lemma 1 Let Ci,r−i (α, m, k1 −1, k2 −1) be the number of allocations of α indistin-
guishable balls into m distinguishable cells, i specified of which have capacity k1 − 1
and each of r − i specified cells has capacity k2 − 1, 0 ≤ r ≤ m, 0 ≤ i ≤ r, k1 ≥
1, k2 ≥ 1. Then,

Ci,r−i (α, m, k1 − 1, k2 − 1) =
� αk1

�
∑

j1=0

� α−k1 j1
k2

�
∑

j2=0

(−1) j1+ j2

(

i

j1

)(

r − i

j2

)

×
(

α + m − k1 j1 − k2 j2 − 1

α − k1 j1 − k2 j2

)

. (19)

Proof It follows by expanding the generating function g(t) = (1−tk1)i (1−tk2)r−i (1−
t)−m of Ci,r−i (α, m, k1 − 1, k2 − 1). ��

Setting k1 = k2 = k in Lemma 1 we obtain, as a corollary, the following result.

Corollary 3 (Makri et al. 2007b) Let Hr (α, m, k −1) be the number of allocations of
α indistinguishable balls into m distinguishable cells where each of the r, 0 ≤ r ≤ m,
specified cells is occupied by at most k − 1 balls. Then,

Hr (α, m, k − 1) = Ci,r−i (α, m, k − 1, k − 1)

=
� αk �
∑

j=0

(−1) j
(

r

j

)(

α + m − k j − 1

α − k j

)

. (20)

Remark 2 For k = 1, Corollary 3 gives

Hr (α, m, 0) = Ci,r−i (α, m, 0, 0) =
(

α + m − r − 1

α

)

. (21)

Next, for β ∈ {0, 1} we define

x,s,β(k, �) =
(

s − 1

x

) s−1−x
∑

z=0

(

s − 1 − x

z

)

Cx,z(αk, s + β, �− k, k − 1), if k ≥ 1

=
(

s − 1

x

)

Hx (α0, s + β, �), if k = 0 (22)

with αk = n − s − kx − (�+ 1)(s − 1 − x − z) if k ≥ 1; n − s − (�+ 1)(s − 1 − x)
if k = 0.
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Theorem 3 The PMF P(Mn;k,� = x), x ∈ R(Mn;k,�), n ≥ k + 2, is given by

P(Mn;k,� = x) =
n−kx
∑

s=x+1

psqn−sx,s,1(k, �)+ qnδx,0. (23)

Proof Let Sn be a RV denoting the number of successes in the sequence of
n Bernoulli trials. For k ≥ 1 we observe that in an element of the event
(Mn;k,� = x, Sn = s) a string S F F . . . F

︸ ︷︷ ︸

≥1

S appears in one of the types

S F F . . . F
︸ ︷︷ ︸

≥k,≤�
S, S F F . . . F

︸ ︷︷ ︸

≤k−1

S, S F F . . . F
︸ ︷︷ ︸

≥�+1

S, which we call type (A), (B) and (C),

respectively. We consider that sSs in the sequence form s +1 cells. To derive the prob-
ability P(Mn;k,� = x, Sn = s) we proceed by visualizing the problem as a model of
allocation of n −s indistinguishable balls (Fs) in the s +1 distinguishable cells so that
x strings of type (A), z, 0 ≤ z ≤ s − 1 − x , strings of type (B) and s − 1 − z − x of
type (C) appear. Noting that all sequences of n trials with the same number of Ss (and
consequently the same number of Fs) have the same probability we get, summing
with respect to z, that for x + 1 ≤ s ≤ n − kx

P(Mn;k,� = x, Sn = s) = psqn−s
(

s − 1

x

) s−1−x
∑

z=0

×
(

s − 1 − x

z

)

Cx,z(αk, s + 1, �− k, k − 1),

by Lemma 1, and P(Mn;k,� = x, Sn = 0) = qnδx,0. Summing with respect to s the
case k ≥ 1 follows. The case k = 0 follows in a similar way by observing that in a
sequence of the event (Mn;0,� = x) only strings of types (A) and (C) may appear. ��

Remark 3 For k = � = 0, Theorem 3 reduces to

P(Mn;0,0 = x) =
n

∑

s=x+1

psqn−s
(

s − 1

x

)(

n − s + 1

n − 2s + x + 1

)

+ qnδx,0. (24)

for x ∈ {0, 1, . . . , n − 1}, n ≥ 2, by Remark 2. ��

Sen and Goyal (2004) obtained alternative formulae of the PMF of Mn;k,k and
Mn;k,n−2, 1 ≤ k ≤ n − 2, in terms of sums of binomial coefficients, too. Holst
(2008a) obtained E[(Mn;0,0

r

)] in terms of a sum of binomial coefficients which in turns,
via Remark 1, gives the PMF of Mn;0,0. The latter expression contains a double sum-
mation of binomial coefficients instead of the single summation formula given by
Remark 3.
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2.3 Mean value of Mn;k,�

In this section we give a simple explicit formula for the mean value, E(Mn;k,�) of
Mn;k,�, 0 ≤ k ≤ � ≤ n − 2. It is in particular useful for large values of n, because
of the computation effort needed to compute the required recursions or the binomial
coefficients involved.

Specifically, we first note that Mn;k,� may be defined as a sum of indicator RVs;
i.e.

Mn;k,� =
n

∑

i=k+2

Ii , Ii =
βi −k
∑

r=1

Xi−k−r

i−1
∏

j=i−k−r+1

(1 − X j )Xi (25)

where βi = i − 1, for i = k + 2, k + 3, · · · , �+ 1; �+ 1 for i = �+ 2, �+ 3, · · · , n.
Then its mean value is given by

E(Mn;k,�) = qk{(n − k − 1)p − q + q�−k+1[1 − (n − �− 1)p]} (26)

after some algebra. Moreover, using (1) and (26) an explicit expression for the mean
value of Nn;k,� is given by

E(Nn;k,�) = pqk{n − k − (n − �− 1)q�−k+1}

that is

E(Nn;k,�)− E(Mn;k,�) = qk(1 − q�−k+1) = O(qk). (27)

For the particular cases: (i) k = 0, 0 ≤ � ≤ n − 2, (ii) 0 ≤ k = � ≤ n − 2 and
(iii) 0 ≤ k ≤ n − 2, � = n − 2 it holds E(Mn;0,�) = q�+1[1 − (n − �− 1)p] + np −
1, E(Mn;k,k) = (n−k−1)p2qk and E(Mn;k,n−2) = qk[(n−k−1)p−q(1−qn−k−1)],
respectively. Furthermore, by (26) for k = � = 0, i.e. for the RV Mn;0,0 = M (2)

n , we
get the known result E(Mn;0,0) = (n − 1)p2.

2.4 Indicative numerics for IID trials

Next, some numerics are presented. They have been computed by implementation of
almost all the formulae provided so far.

Table 1 shows fn(r), πn,r , μn,r , ξn,r = E[{Mn;k,� − E(Mn;k,�)}r ], for r =
0, 1, . . . , � n−1

k+1 � and the shape factors γ1 = ξn,3

ξ
3/2
n,2

, γ2 = ξn,4

ξ2
n,2

− 3 for the indicative

values n = 11, k = 1, � = 2, 3 and p = 1/4, 1/2. The entries of the table illustrate
the numerical values of the involved functions and parameters as well as relationships
among them. Furthermore, using (27) and the fact that E(M11;1,�) = π11,1 = μ11,1
we obtain E(N11;1,�) = 1.031250 (� = 2), 1.321289 (� = 3) for p = 1/4, and
2.000000 (� = 2), 2.281250 (� = 3) for p = 1/2, respectively.
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Table 1 Numerics of M11;1,�, � = 2, 3 and p = 1/4, 1/2

p r � = 2 � = 3
f11(r) π11,r μ11,r ξ11,r f11(r) π11,r μ11,r ξ11,r

1/4 0 0.516557 1.000000 1.000000 1.000000 0.431809 1.000000 1.000000 1.000000

1 0.312209 0.703125 0.703125 0.000000 0.321987 0.887695 0.887695 0.000000

2 0.127886 0.546570 1.249695 0.755310 0.178695 0.797316 1.685011 0.897008

3 0.038308 0.352910 2.675740 0.754894 0.061772 0.510375 3.790017 0.701701

4 0.004982 0.126532 6.773080 2.165042 0.005678 0.143217 9.674372 2.320766

5 0.000058 0.006952 18.996584 4.855608 0.000058 0.006952 27.045928 4.389995

γ1 1.150000 0.825958

γ2 0.795035 −0.115712

1/2 0 0.148926 1.000000 1.000000 1.000000 0.094727 1.000000 1.000000 1.000000

1 0.318359 1.625000 1.625000 0.000000 0.261230 1.843750 1.843750 0.000000

2 0.322754 2.093750 3.718750 1.078125 0.382813 2.533203 4.376953 0.977539

3 0.179199 1.831055 9.737305 0.190430 0.228516 2.173828 11.617188 −0.057495

4 0.030273 0.785156 28.052734 2.760498 0.032227 0.832031 33.451172 2.380822

5 0.000488 0.058594 86.717773 1.666718 0.000488 0.058594 102.566406 −0.002625

γ1 0.170110 −0.059488

γ2 −0.625079 −0.508512

3 Extensions (independent, EXCH and MRKV dependent trials)

In this section, on the one hand we extend, in a simple way, the results of Sect. 2 on
INID and EXCH sequences. This is done in Sects. 3.1 and 3.2, respectively. On the
other hand we obtain new results which are not directly derived by those presented in
Sect. 2. They refer to the PMF of Mn;k,� defined on a MRKV chain (Sect. 3.3) and to
the PMF of Wm;k,� (Sect. 3.4) defined on INID, EXCH and MRKV trials.

3.1 Independent trials

Let {Xi }i≥1 be a sequence of INID binary trials where each trial has its own probability
of success pi = P(Xi = 1) = 1 − P(Xi = 0) = 1 − qi . For 0 ≤ k ≤ � ≤ n − 1 we
set

an,i = pn−i

n
∏

j=n−i+1

q j for i = k, �+ 1 (28)

with the convention p0 = p so that an,�+1 reduces to a�+1 = pqn for � = n − 1 in
the case of IID trials (see (4)). Then substituting ak and a�+1 with an,k and an,�+1,
respectively, in Theorem 1, Propositions 1, 2 and Corollary 1 we capture the respective
results for Nn;k,� defined on an INID sequence. Consequently, substituting p and q
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with pn and qn , respectively, in Theorem 2, Propositions 3, 4 and Corollary 2 we get
the respective results for Mn;k,�.

Next, Eq. (25) and the independence of the sequence Xi give

E(Mn;k,�) =
n

∑

i=k+2

βi −k
∑

r=1

ci,r , ci,r = pi−k−r

⎛

⎝

i−1
∏

j=i−k−r+1

q j

⎞

⎠ pi . (29)

For particular INID sequences with pi = α/(α+β+ i −1), i ≥ 1 and α > 0, β ≥
0, Holst (2008a) provided implicitly the distribution of Mn;0,0 via an explicit expres-
sion of E[(Mn;0,0

r

)], r ≥ 1 in terms of a sum of binomial coefficients. Furthermore, for
such sequences with β = 0, Holst (2007) obtained an alternative explicit expression
of E(Mn;k,k) and he also reestablished (for Mn;0,0 see also Hahlin 1995 if α = 1 and
Mori 2001 if α > 0) that Mn;k,k is a Poisson RV with E(Mn;k,k) = α/(k + 1) when
n tends to infinity.

3.2 EXCH trials

First, for completeness and the reader’s convention we restate some results useful in
the study of EXCH sequences. After that, the relation between the distribution of a RV
defined on a sequence of IID trials and on a sequence of EXCH trials is elucidated. It
implies the capture of the distribution of Mn;k,� defined on EXCH trials through the
distribution of Mn;k,� defined on IID trials.

Let {Xi }i≥1 be an EXCH binary sequence of RVs (see, e.g. Billingsley 1995,
pp. 473–474). That is, for each n > 0 the joint distribution of (X1, X2, . . . , Xn)

is invariant under any permutation of its indices; i.e. P(Xπ1 = x1, Xπ2 =
x2, . . . , Xπn = xn) = P(X1 = x1, X2 = x2, . . . , Xn = xn) for any permutation
(π1, π2, . . . , πn) of the indices in {1, 2, . . . , n}. Assume a fixed success (1)–failure
(0) composition of a sequence of a fixed length n > 0. Then, because of the exchange-
ability, any sequence with s1s and n − s 0s, 0 ≤ s ≤ n, has probability

pn(s) = P(X1 = x1, X2 = x2, . . . , Xn = xn)

= P(X1 = X2 = · · · = Xs = 1, Xs+1 = Xs+2 = · · · = Xn = 0). (30)

By de Finetti’s Theorem (see, e.g. Theorem 1.2 of Mahmoud 2009) there is a RV �

supported on (0, 1) with cumulative distribution function (CDF) F(θ) such that

pn(s) = E[�s(1 −�)n−s] =
1

∫

0

θ s(1 − θ)n−sd F(θ), s = 0, 1, . . . , n (31)

for any n > 0 and s = ∑n
i=1 xi . The distribution F(θ) is called de Finetti measure or

the prior (distribution). George and Bowman (1995) proved an alternative representa-
tion of pn(s) as
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pn(s) =
n−s
∑

j=0

(−1) j
(

n − s

j

)

λs+ j , s = 0, 1, . . . , n; λi = pi (i),

i = 1, 2, . . . , n; λ0 = 1. (32)

We mention that the probability density function f (θ) = d F(θ)/dθ or alternatively
the probabilities λi , have to be (explicitly) determined for a certain EXCH sequence.
For an IID sequence with a common success probability p it holds λi = λi

1 with
λ1 = p and f (p) is a point mass at p, p ∈ (0, 1) (see, e.g. Eryilmaz 2011). Hence,
for an IID sequence

pn(s) = ps(1 − p)n−s, s = 0, 1, . . . , n. (33)

Denote by U (e)
n and Un RVs defined by the same rule (enumeration scheme) on an

EXCH Z (e)1 , Z (e)2 , . . . , Z (e)n and on an IID Z1, Z2, . . . , Zn binary sequence, respec-

tively. Let S(e)n and Sn be the number of successes in the EXCH and in the IID sequence,
respectively. Because of exchangeability, all finite sequences with the same length n
and the same number of successes s are equally likely. Hence (see, e.g. Lemma 2.2
of Eryilmaz and Demir 2007; Proposition 2.1 and Remark 2.2 of Makri et al. 2007b;
and Lemma 4.1 of Inoue and Aki 2010) the conditional distributions of U (e)

n and Un ,
given the number of successes, are identical, i.e.

P(U (e)
n = x | S(e)n = s) = P(Un = x | Sn = s), (34)

P(U (e)
n = x) = ∑

s
P(Un = x | Sn = s)P(S(e)n = s), P(S(e)n = s) = (n

s

)

pn(s).

(35)

Accordingly, the marginal distribution of U (e)
n , defined on an EXCH sequence with

certain pn(s), can be captured from the marginal distribution of Un in a simple way.
Specifically, replacing ps(1− p)n−s with pn(s) in the expression giving the latter one.

Therefore, substituting psqn−s and qn with pn(s) and pn(0), respectively, in
Theorem 3 we get the PMF of Mn;k,� defined on an EXCH binary sequence with
a known pn(s). Furthermore (see Eq. (2.2) of Makri 2010) it holds

P(M (e)
n;k,� = x | S(e)n = s) = P(Mn;k,� = x | Sn = s)

=
(

n

s

)−1

x,s,1(k, �), s > 0; δx,0, s = 0 (36)

where x,s,1(k, �) as in (22).
Next, Eq. (25) and the exchangeability of Xi s give

E(Mn;k,�) =
n

∑

i=k+2

βi +1
∑

j=k+2

p j (2). (37)
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3.3 MRKV dependent trials

Let {Xi }i≥1 be a time-homogeneous {0, 1}-valued first order MRKV chain with

transition probability matrix P =
(

p00 p01
p10 p11

)

and initial probability vector p(1) =
(p(1)0 , p(1)1 ) = (p0, p1). Under this setup we have the following results.

Theorem 4 The PMF P(Mn;k,� = x), x ∈ R(Mn;k,�), n ≥ k + 2, is given by

P(Mn;k,� = x) =
1

∑

i=0

1
∑

j=0

n−kx−i− j
∑

s=x+1

min{n−s,s−1+i+ j}
∑

r=rk,�

×(1 − pi )p
r− j
01 pr−i

10 pn−s−r
00 ps−r−1+i+ j

11 �x,s,r,i, j (k, �)

+p0 pn−1
00 δx,0 (38)

where rk,� = x + i + j if 0 < k ≤ �; i + j if 0 = k < �, �x,s,r,i, j (k, �) =
( s−1

r−i− j

)(r−i− j
x

)∑r−x−i− j
z=0

(r−x−i− j
z

)

Cx,z(αk,�, r, � − k, k − 2), if k ≥ 2, � ≥
k; ( s−1

r−i− j

)(r−i− j
x

)

Hx (α1,�, r, � − 1), if k = 1, � ≥ k; ( s−1
r−i− j

)( r−i− j
x−s+r+1−i− j

)

Hx−s+r+1−i− j (α0,�, r, � − 1), if k = 0, � ≥ 1 with αk,� = n − s − r − (k −
1)x − �(r − x − z − i − j), if k ≥ 2, � ≥ k; n − s − r − �(r − x − i − j), if
k = 1, � ≥ k; n − s − r − �(s − x − 1), if k = 0, � ≥ 1 and

P(Mn;0,0 = x) =
1

∑

i=0

1
∑

j=0

� n+x+1−i− j
2 �

∑

s=x+1

(

n − s − 1

s − x − 2 + i + j

)(

s − 1

s − x − 1

)

×(1 − pi )p
s−x−1+i
01 ps−x−1+ j

10 pn−2s+x+1−i− j
00 px

11 + p0 pn−1
00 δx,0,

for x = 0, 1, . . . , n − 2

= p1 pn−1
11 , for x = n − 1. (39)

Proof For the proof, we follow a method recently used by Eryilmaz and Yal-
cin (2011) which is based on the joint distribution of the examined RV, the run
lengths and the corresponding number of runs. Let Sn and Rn be the number of
successes and the number of failure runs in the sequence, respectively. An ele-
ment of the event (Mn;k,� = x, Sn = s, Rn = r) is a sequence which occurs
in one of the forms: (A) F F . . . F

︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y2

. . . F F . . . F
︸ ︷︷ ︸

yr−1

SS . . . S
︸ ︷︷ ︸

zr−1

F F . . . F
︸ ︷︷ ︸

yr

;

(B) F F . . . F
︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y2

. . . SS . . . S
︸ ︷︷ ︸

zr−1

F F . . . F
︸ ︷︷ ︸

yr

SS . . . S
︸ ︷︷ ︸

zr

; (C) SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z2

. . . F F . . . F
︸ ︷︷ ︸

yr−1

SS . . . S
︸ ︷︷ ︸

zr

F F . . . F
︸ ︷︷ ︸

yr

; (D) SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z2

. . . SS . . . S
︸ ︷︷ ︸

zr

F F . . . F
︸ ︷︷ ︸

yr

SS . . . S
︸ ︷︷ ︸

zr+1

. For a sequence of type (A) in the event (Mn;k,� = x, Sn =

s, Rn = r), k ≥ 2, and s ≥ 1, zi ’s and yi ’s are positive integers such that (I)
z1 + z2 + · · · + zr−1 = s and (II) y1 + y2 + · · · + yr = n − s with x of
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y2, y3, . . . , yr−1 taking values greater than or equal to k and less than or equal to
�. The number of such sequences i.e. the number of solutions of the two equations, is
(s−1

r−2

)(r−2
x

) ∑r−x−2
z=0

(r−x−2
z

)

Cx,z(n − s − kx − (�+ 1)(r − 2 − x − z)− z − 2, r, �−
k, k −2), by the multiplicative principle and Lemma 1. Each sequence of type (A) has
probability p0 pr−1

01 pr−1
10 pn−s−r

00 ps−r+1
11 . For s = 0 the sequence 00 . . . 0

︸ ︷︷ ︸

n

has probabil-

ity p0 pn−1
00 δx,0. Proceeding in a similar way for the sequences of types (B), (C) and (D)

and summing with respect to s and r the probabilities of all the possible arrangements,
the case k ≥ 2 follows.

For k = 1, � ≥ k, the number of solutions of Eqs. (I) and (II) is
(s−1

r−2

)(r−2
x

)

Hx (n −
s − r − �(r − 2 − x), r, � − 1). For k = 0, � ≥ 1, noting that the r − 1 runs
of S’s give s − r + 1 strings with no failures between two subsequent S’s, which
must be counted among the x strings, the number of arrangements of type (A) is
(s−1

r−2

)( r−2
x−s+r−1

)

Hx−s+r−1(n − s − (x − s + r − 1)− [r − 2 − (x − s + r − 1)](�+
1)− 2, r, �− 1). Continuing as in case k ≥ 2 the results follow for k = 1, � ≥ k and
k = 0, � ≥ 1.

The case k = � = 0 needs a different treatment. For x ∈ {0, 1, . . . , n − 2} we
observe that for an arrangement of type (A), if sS’s create x strings, i.e. x SS’s (possi-
bly overlapping), they are separated in s − x runs of S’s and there are also s − x + 1
runs of F’s in the sequence. Then the number of sequences of type (A) is given by
( s−1

s−x−1

)(n−s−1
s−x

)

. Each such sequence has probability (1−p1)p
s−x
01 ps−x

10 pn−2s+x−1
00 px

11.
Proceeding as in case k ≥ 2 the result follows. The computation of the probability
P(Mn;0,0 = n − 1) = P(SS . . . S

︸ ︷︷ ︸

n

) is obvious. ��

Next, by Eq. (25) and the MRKV dependence of Xi s we have

E(Mn;k,�) = p10 pk
00 p01

n
∑

i=k+2

βi −k
∑

r=1

(1 − ζi−k−r )p
r−2
00 , if k ≥ 1

=
n

∑

i=2

[p10 p01

βi
∑

r=2

(1 − ζi−r )p
r−2
00 + p11(1 − ζi−1)], if k = 0 (40)

where (see, Eq. (30) of Makri and Psillakis 2011b) for 1 − p00 + p10 
= 0,

ζ j = P(X j = 0) = (1 − p1)(p00 − p10)
j−1

+ p10

1 − p00 + p10
[1 − (p00 − p10)

j−1], j = 1, 2, . . . , n.

3.4 Waiting time distributions for INID, EXCH and MRKV trials

First, because of Eq. (3), the PMF wm(n) = P(Wm;k,� = n) is implicitly determined
by
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wm(n) =
m−1
∑

x=0

[ fn−1(x)− fn(x)], n ≥ m(k + 1)+ 1, m ≥ 1. (41)

The probabilities fn−1(x) = P(Mn−1;k,� = x) and fn(x) = P(Mn;k,� = x) are
obtained by the formulae in Sects. 3.1, 3.2 and 3.3. Second, wm(n) is explicitly given
by Theorems 5, 6 and 7 for INID, EXCH and MRKV trials, respectively. The expres-
sions of wm(n) provided by these theorems are computationally faster than those
obtained using Eq. (41).

Theorem 5 The PMF of Wm;k,� defined on a sequence X1, X2, . . . , Xn, . . . of INID
binary RVs with P(Xn = 1) = pn = 1 − qn, n ≥ 2 is given by

wm(n) =
�−k
∑

d=0

pn

(

d+k
∏

i=1

qn−i

)

pn−d−k−1gn−d−k−2(m − 1),

n ≥ m(k + 1)+ 1, m ≥ 1 (42)

where gn is obtained by the INID version of Theorem 1.

Proof We observe that P(Wm;k,� = n) = ∑�
d=k P(Xn = 1, Xn−1 = · · · = Xn−d =

0, Xn−d−1 = 1, Nn−d−2 = m − 1). The result follows by the independence of the
sequence. ��
Theorem 6 The PMF of Wm;k,� defined on a sequence X1, X2, . . . , Xn, . . . of EXCH
binary RVs with joint probability distribution pn(s), n ≥ 2 is given by

wm(n) =
n−km
∑

s=m+1

pn(s)
m

s − 1
m,s,0(k, �), n ≥ m(k + 1)+ 1, m ≥ 1 (43)

where m,s,0(k, �) are given by Eq. (22).

Proof We follow the procedure of the proof of Theorem 3. We consider that s suc-
cesses in a sequence of the event (Wm;k,� = n, Sn = s) create s cells the last one of
which (the s-th) is created between the s − 1-th and the s-th success and receives at
least k and at most � failures. Then for k ≥ 1 we have P(Wm;k,� = n, Sn = s) =
pn(s)

( s−2
m−1

) ∑s−1−m
z=0

(s−1−m
z

)

Cm,z(n−s−km−(�+1)(s−1−m−z), s, �−k, k−1).

Setting
( s−2

m−1

) = m
s−1

(s−1
m

)

the result follows. The case k = 0 follows similarly. ��
Remark 4 For k = � = 0 Theorem 6 reduces to

wm(n) =
n

∑

s=m+1

pn(s)

(

s − 2

m − 1

)(

n − s

n − 2s + m + 1

)

, n ≥ m + 1, m ≥ 1. (44)

Theorem 7 The PMF P(Wm;k,� = n), n ≥ m(k + 1)+ 1, m ≥ 1, of Wm;k,� defined
on a {0, 1}-valued time-homogeneous MRKV chain X1, X2, . . . , Xn, . . . with transi-
tion probability matrix P and initial probabilities p0 and p1 is given by
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(a) for k ≥ 2, � ≥ k,

P(Wm;k,� = n) =
1

∑

i=0

n−km−i
∑

s=m+1

min{n−s, s−1+i}
∑

r=m+i

(

s − 2

r − 1 − i

)(

r − 1 − i

m − 1

)

×
r−m−i
∑

z=0

(

r − m − i

z

)

Cm,z(α, r, �− k, k − 2)

×(1 − pi )p
r
01 pr−i

10 pn−s−r
00 ps−r−1+i

11 , n ≥ m(k + 1)+ 1

(45)

with α = n − s − r − (k − 1)m − (r − m − z − i)�;
(b) for k = 1, � ≥ k,

P(Wm;1,� = n) =
1

∑

i=0

n−m−i
∑

s=m+1

min{n−s, s−1+i}
∑

r=m+i

×
(

s − 2

r − 1 − i

)(

r − 1 − i

m − 1

)

Hm(α, r, �− 1)

×(1 − pi )p
r
01 pr−i

10 pn−s−r
00 ps−r−1+i

11 , n ≥ 2m + 1 (46)

with α = n − s − r − (r − m − i)�;

(c) for k = 0, � ≥ 1,

P(Wm;0,� = m + 1) = p1 pm
11

P(Wm;0,� = n) =
1

∑

j=0

1
∑

i=0

n j
∑

s=m+1

min{n−s, s}
∑

r=r j

(

s − 2

r − 1 − i + j

)

×
(

r − 1 − i + j

m − s + r − i + j

)

Hm−s+r+ j (α, r, �− 1)

×p j pr
01 pr−1+ j

10 pn−s−r
00 ps−r− j

11 , n ≥ m + 2 (47)

with α = n − s − r − (s − m − 1)�, n0 = n − 1 − i, n1 = n − 1, r0 = i + 1
and r1 = 1;

(d) for k = � = 0,

P(Wm;0,0 = m + 1) = p1 pm
11
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P(Wm;0,0 = n) =
1

∑

i=0

� n+m+1−i
2 �

∑

s=m+1

(

s − 2

s − m − 1

)(

n − s − 1

s − m − 2 + i

)

×(1 − pi )p
s−m−1+i
01 ps−m−1

10 pn−2s+m+1−i
00 pm

11, n ≥ m + 2.

(48)

Proof Let Sn and Rn be as in Theorem 4. For k ≥ 1, � ≥ k an element of the
event (Wm;k,� = n, Sn = s, Rn = r) is a sequence which occurs in one of the forms:
(A) F F . . . F

︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y2

. . . F F . . . F
︸ ︷︷ ︸

yr−1

SS . . . S
︸ ︷︷ ︸

zr−1

F F . . . F
︸ ︷︷ ︸

yr

S; (B) SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z2

. . . F F . . . F
︸ ︷︷ ︸

yr−1

SS . . . S
︸ ︷︷ ︸

zr

F F . . . F
︸ ︷︷ ︸

yr

S. For a sequence of type (A), zi ’s

and yi ’s are positive integers such that (I) z1 + z2 + · · · + zr−1 = s − 1 and (II)
y1 + y2 + · · · + yr = n − s with yr and exactly m − 1 of y2, y3, . . . , yr−1 tak-
ing values greater than or equal to k and less than or equal to �. The number of
such sequences i.e. the number of solutions of Eqs. (I) and (II), for 2 ≤ k ≤ �,
is

(s−2
r−2

)( r−2
m−1

) ∑r−1−m
z=0

(r−1−m
z

)

Cm,z(n − s − 1 − km − z − (r − 1 − m − z)

(�+1), r, �−k, k−2) and
(s−2

r−2

)( r−2
m−1

)

Hm(n−s−1−m−(�+1)(r −1−m), r, �−1),
for 1 = k ≤ �, by the multiplicative principle and Lemma 1. Each sequence has prob-
ability p0 pr

01 pr−1
10 pn−s−r

00 ps−r
11 . For a sequence of type (B) zi ’s and yi ’s are positive

integers such that (I) z1 + z2 + · · · + zr = s − 1 and (II) y1 + y2 + . . .+ yr = n − s
with yr and exactly m − 1 of y1, y2, . . . , yr−1 taking values greater than or equal to k
and less than or equal to �. The number of solutions of (I) and (II) is now, for 2 ≤ k ≤
�,

(s−2
r−1

)( r−1
m−1

)∑r−m
z=0

(r−m
z

)

Cm,z(n −s −km − z −(�+1)(r −m − z), r, �−k, k −2)

and for 1 = k ≤ �,
(s−2

r−1

)( r−1
m−1

)

Hm(n − s − m − (r − m)(� + 1), r, � − 1). Each

sequence has probability p1 pr
01 pr

10 pn−s−r
00 ps−1−r

11 . Summing with respect to s and r
the probabilities of all the sequences of types (A) and (B), parts (a) and (b) of the
theorem follow.

For k = 0, � ≥ 1, n ≥ m +2, an element of the event (Wm;0,� = n, Sn = s, Rn =
r) occurs in one of the forms: (A

′
) F F . . . F
︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y2

. . . SS . . . S
︸ ︷︷ ︸

zr−1

F F . . . F
︸ ︷︷ ︸

yr

SS . . . S
︸ ︷︷ ︸

zr ≥2

; (B
′
) F F . . . F

︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y2

. . . F F . . . F
︸ ︷︷ ︸

yr−1

SS . . . S
︸ ︷︷ ︸

zr−1

F F . . . F
︸ ︷︷ ︸

yr

S; (C
′
)

SS . . . S
︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z2

. . . SS . . . S
︸ ︷︷ ︸

zr

F F . . . F
︸ ︷︷ ︸

yr

SS . . . S
︸ ︷︷ ︸

zr+1≥2

; (D
′
) SS . . . S

︸ ︷︷ ︸

z1

F F . . . F
︸ ︷︷ ︸

y1

SS . . . S
︸ ︷︷ ︸

z2

. . . F F . . . F
︸ ︷︷ ︸

yr−1

SS . . . S
︸ ︷︷ ︸

zr

F F . . . F
︸ ︷︷ ︸

yr

S. The proof continues in the same lines of

the proof of parts (a) and (b) by observing, in advance, that z1 + z2 + · · · + zr = s
successes appearing in r success runs in the sequence, create s − r strings of type SS,
i.e. strings with k = � = 0.

For k = � = 0, n ≥ m +2, the result follows as above by observing that an element
of the event (Wm;0,0 = n, Sn = s) is a sequence of type A

′
or C

′
and that m strings
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of type SS (possibly overlapping) in the sequence are created in s − m or s − m − 1
success runs for a sequence of type A

′
or C

′
, respectively. The theorem follows. ��

For MRKV trials Antzoulakos (2001) obtained a closed formula for the PGF of
Wm;0,� whereas Dafnis and Philippou (2011) derived closed formulae for the PGFs
and recursive schemes for the PMFs of Wm;0,� and Wm;k,k . For IID trials these expres-
sions reduce to the ones obtained in Dafnis et al. (2012) in which the PGF and PMF
of the waiting time related to the at least scheme are given in respective forms as well.
These authors used a MRKV chain imbedding technique. Sarkar et al. (2004) stud-
ied Wm;0,� and Wm;k,k in the case of higher order homogeneous MRKV chains, and
derived a system of equations satisfied by their PGFs using the method of conditional
PGFs.

4 A note for application: system reliability

Recently a new system reliability model called constrained (k, �)-out-of-n:F was
proposed by Eryilmaz and Zuo (2010). A constrained (k, �)-out-of-n:F system con-
sists of n linearly ordered components and fails if and only if there are at least k
failed components or there are less than � consecutive working components between
any two successive failed ones. Readily, constrained (k, 0)-out-of-n:F reduces to the
usual k-out-of-n:F system. As stated by the authors constrained (k, �)-out-of-n:F sys-
tems might be useful in some situations including the analysis of constrained binary
sequences arising in communication systems and particularly in infrared detecting
systems.

In the sequel we derive in a unified way the reliability of a constrained (k, �)-out-
of-n:F when the system components are IID, EXCH, and MRKV. Our approach uses
the formal definition of Mn;0,�−1 and provides, as direct byproducts of Theorems 3
and 4, the reliability of such systems.

Let us denote by Xi the state of a system component with Xi = 0 (or F), if the
component functions, and Xi = 1 (or S), if the component is failed, i = 1, 2, . . . , n.
If Qn;k,� (Rn;k,�) denotes the failure probability (reliability) of a constrained (k, �)-
out-of-n:F, then

Qn;k,� = 1 − Rn;k,� = P({Sn ≥ k} ∪ {Mn;0,�−1 ≥ 1}), 1 ≤ k ≤ n, � ≥ 1 (49)

where Sn represents the total number of failed components and Mn;0,�−1 counts the
number of strings of two successive failed components separated by a run of work-
ing components of length at most equal to � − 1, � ≥ 1. We note that the event
{Mn;0,�−1 ≥ 1} is equivalent to the event {X (1)n < �} where X (1)n denotes the mini-
mum distance between two successive 1s in a {0, 1} sequence. The RV X (1)n is studied
for IID and EXCH trials by Makri (2011) and for MRKV trials by Eryilmaz and Yalcin
(2011).

By Eq. (49) the reliability Rn;k,� of a constrained (k, �)-out-of-n:F system, is

Rn;k,� = P(Sn < k, Mn;0,�−1 = 0)
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Table 2 Exact reliability of a constrained (k, �)-out-of-n:F when the components are IID and MRKV

p1 0.10 0.05 0.10 0.05
p01 0.10 0.05
p11 0.20 0.10

n k � IID IID MRKV MRKV

10 3 1 0.8911 0.9736 0.8232 0.9532
2 0.8566 0.9603 0.7956 0.9412

4 0.8007 0.9387 0.7505 0.9217

30 3 1 0.3962 0.7949 0.3378 0.7535

2 0.3815 0.7783 0.3262 0.7388

4 0.3538 0.7468 0.3042 0.7105

9 1 0.7650 0.9330 0.5811 0.8700

2 0.6237 0.8796 0.4902 0.8246

4 0.4646 0.8002 0.3817 0.7560

100 30 1 0.4015 0.7893 0.1573 0.6219

2 0.1975 0.6429 0.0872 0.5160

300 90 1 0.0636 0.4894 0.0038 0.2384

=
k−1
∑

s=0

P(Sn = s, Mn;0,�−1 = 0), 1 ≤ k ≤ n, � ≥ 1. (50)

Therefore, the probability of the particular event {Sn = s, Mn;0,�−1 = 0}, � ≥ 1,
given in Theorems 3 and 4 immediately provides Rn;k,�. Specifically, we have

Rn;k,� =
k−1
∑

s=0

(

n − �(s − 1)

s

)

psqn−s, � ≥ 1 (51)

when the system components are IID, and

Rn;k,� =
1

∑

i=0

1
∑

j=0

min{k−1, n−i− j}
∑

s=1

(

n − s − 1 − (�− 1)(s − 1)

s+i + j − 2

)

ti, j,s + p0 pn−1
00 , � ≥ 2

=
1

∑

i=0

1
∑

j=0

min{k−1, � n+1−i− j
2 �}

∑

s=1

(

n − s − 1

s − 2 + i + j

)

ti, j,s + p0 pn−1
00 , � = 1 (52)

with ti, j,s = (1 − pi )p
s−1+i
01 ps−1+ j

10 pn−2s+1−i− j
00 , when the system components are

MRKV. Eryilmaz and Zuo (2010) provided similar expressions for Rn;k,� via analo-
gous combinatorial arguments, without the formal usage of Mn;0,�−1.

In Table 2 we compute and present Rn;k,� for various values of n, k and � when
the system components are: (a) IID with common component unreliability p = p1 =
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0.10, 0.05, and (b) MRKV dependent with p1 = 0.10, p01 = 0.10, p11 = 0.20 and
p1 = 0.05, p01 = 0.05, p11 = 0.10.

Next we consider that the states {Xi }n
i=1 of the components of a constrained (k, �)-

out-of-n:F system consist an EXCH sequence. As it is stated by Eryilmaz (2008) the
most appropriate illustrative example for EXCH components’ states is the multicom-
ponent stress-strength model which is of specific importance in reliability literature
(see, e.g. Kotz et al. 2003; Eryilmaz and Demir 2007; Eryilmaz 2010b; Inoue and Aki
2010).

Let Yi (i = 1, 2, . . . , n) denote the random strength of the i-th system component
subject to a random stress Z . We assume that Y1, Y2, . . . ,Yn are IID with continuous
CDF FY (z) = P(Yi ≤ z), i = 1, 2, . . . , n and independent of Z having contin-
uous CDF FZ (z) = P(Z ≤ z). A component fails (works) if the applied stress
exceeds (precedes) its strength at any moment, i.e. Xi = 1, if Yi ≤ Z ; 0, if Yi > Z ,
for i = 1, 2, . . . , n. Then the RVs X1, X2, . . . , Xn are EXCH. Accordingly, the
material of Sect. 3.2 along with Eq. (51) enables us to evaluate the reliability of
a constrained (k, �)-out-of-n:F in a stress-strength setup. The determination of the
probability λi = P(X1 = X2 = · · · = Xi = 1) is sufficient for the computation of
the system reliability. By conditioning on Z , we have

λi = P(Y1 ≤ Z , Y2 ≤ Z , . . . ,Yi ≤ Z) =
∞

∫

−∞
[FY (z)]i d FZ (z). (53)

For an illustration let FZ (z) = 1 − e−c1z and FY (z) = 1 − e−c2z , for z ≥ 0. This
yields

λi = c1

i
∑

j=0

(−1) j
(

i

j

)

(c1 + jc2)
−1 = i !ci

2
∏i

j=1(c1 + jc2)
, i = 0, 1, . . . , n (54)

(see Inoue and Aki 2010). Therefore,

Rn;k,� =
k−1
∑

s=0

(

n − �(s − 1)

s

) n−s
∑

i=0

(−1)i
(

n − s

i

)

(i + s)!ci+s
2

∏i+s
j=1(c1 + jc2)

. (55)

In Table 3 Rn;k,�, for a stress-strength set-up, is computed and presented for several
values of n, k, �, c1 and c2.

5 Discussion on further results

Another potential application of constrained (k, �) strings might be associated with
the study of Mn;k,� or Wm;k,� on stochastic processes describing the occurrence of
critical events (e.g. records, extremes, exceedances). These model sequences might be
derived by a Hope–Polya or a Polya–Eggenberger urn model (see Holst 2007, 2008a;
Makri and Psillakis 2012) by interpreting the drawings of white balls as occurrences
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Table 3 Exact reliability of a constrained (k, �)-out-of-n:F in a stress-strength setup

n k � c1 c2 Rn;k,� n k � c1 c2 Rn;k,�

10 3 1 2 4 0.1402 10 5 1 2 4 0.1768

3 3 0.2545 3 3 0.3121

4 2 0.4273 4 2 0.5015

12 2 0.7536 12 2 0.8093

2 2 4 0.1308 2 2 4 0.1405

3 3 0.2384 3 3 0.2540

4 2 0.4030 4 2 0.4237

12 2 0.7250 12 2 0.7418

20 5 1 3 3 0.1956 20 10 1 3 3 0.2178

12 2 0.6722 12 2 0.6997

20 2 0.8115 20 2 0.8281

2 3 3 0.1668 2 3 3 0.1695

12 2 0.6075 12 2 0.6112

20 2 0.7540 20 2 0.7563

of critical events. Accordingly, the distributional properties of Mn;k,� representing the
number of two subsequent white balls (successes or ones) interrupted by a run of
non-white balls (failures or zeros) might be helpful for understanding the behavior
of the under study process. Early results are encouraging in this direction and gen-
eralize/extend results derived recently by other researchers for particular constrained
(k, �) strings and certain processes.

Poisson approximation for the RVs of interest can be a future study, too. To accom-
plish this, the recent results of Holst (2008b) and Huffer et al. (2009) on constrained
(k, k) strings of a particular structure might be helpful.
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