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Abstract Based on hybrid censored data, the problem of making statistical infer-
ence on parameters of a two parameter Burr Type XII distribution is taken up. The
maximum likelihood estimates are developed for the unknown parameters using the
EM algorithm. Fisher information matrix is obtained by applying missing value prin-
ciple and is further utilized for constructing the approximate confidence intervals.
Some Bayes estimates and the corresponding highest posterior density intervals of
the unknown parameters are also obtained. Lindley’s approximation method and a
Markov Chain Monte Carlo (MCMC) technique have been applied to evaluate these
Bayes estimates. Further, MCMC samples are utilized to construct the highest pos-
terior density intervals as well. A numerical comparison is made between proposed
estimates in terms of their mean square error values and comments are given. Finally,
two data sets are analyzed using proposed methods.

Keywords Bayes estimates · EM algorithm · Hybrid type I censoring ·
Importance sampling · Lindley approximation method · Loss functions ·
Maximum likelihood estimates
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1 Introduction

The two parameter Burr Type XII distribution was introduced by Burr (1942). Its
probability density function (PDF) and cumulative distribution function (CDF) are
given by, respectively,
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620 M. K. Rastogi, Y. M. Tripathi

fX (x;α, β) = α β xβ−1 (
1 + xβ

)−(α+1)
, x > 0, α > 0, β > 0, (1.1)

FX (x;α, β) = 1 − (
1 + xβ

)−α
, x > 0. (1.2)

We shall denote it as X ∼ Burr(α, β) where α and β are parameters usually known
as shape parameters. Papadopoulos (1978) and Moore and Papadopoulos (2000) have
discussed that Burr(α, β) can cover various shape in the Pearson family, say, of Type I,
IV, VI depending upon the parameter values of α and β. Soliman (2005) have discussed
in detail that the usefulness of Burr(α, β) distribution as a failure model lies in the fact
that its CDF has close form. Due to this computation of percentiles, a very important
characteristics in life testing studies, becomes relatively easier. Author also discussed
that in various studies of quality control and acceptance sampling Burr(α, β) can
be used as an alternative failure model to the s−normal distribution. We refer to Ali
Mousa and Jaheen (2002), Dubey (1973), Evans and Simons (1975), Wingo (1993b),
Gupta et al. (1996), Tadikamalla (1980), Zimmer et al. (1998) for detail discussions
on its applicability as a failure model in the study of various biological, industrial,
reliability and life testing and several clinical experiments.

Inferences for the parameters α and β of a Burr(α, β) distribution under the com-
plete or censored sample space have been investigated by many researchers. For the
complete sample case, Papadopoulos (1978) obtained Bayes estimates for α,β and reli-
ability function under the squared error loss function while Moore and Papadopoulos
(2000) obtained Bayesian estimates for α and the reliability function (here β is known)
under various loss functions such as absolute value loss, squared error and logarithmic
loss. For the complete and Type II censored samples, Evans and Ragab (1983) obtained
Bayes estimates of the unknown parameters and the reliability function for the model
(1.1). Al-Hussaini et al. (1992) considered estimation of the parameter α under Type II
censored sample taken from the model (1.1). They obtained the maximum likelihood
estimate (MLE), uniformly minimum variance unbiased estimate, Bayesian and empir-
ical Bayesian estimates of α and compared these estimates numerically. Ali Mousa
and Jaheen (2002) constructed Bayes prediction bounds for future observations based
on progressively Type II censored data taken from the Burr(α, β) distribution. Based
on progressively Type II censored sample, Soliman (2005) investigated properties of
MLEs and Bayesian estimates of reliability and hazard functions of a Burr(α, β) dis-
tribution against both the symmetric (squared error) and asymmetric (linex, general
entropy) loss functions.

Suppose that X1:n, X2:n, . . . , Xn:n are an ordered lifetimes observations of n inde-
pendent units taken from the model (1.1). In this article, we investigate the infer-
ence problem on unknown parameters α and β under hybrid censored observations.
Epstein (1954) introduced this censoring scheme. By applying this scheme to the case
when lifetimes of independent units follow an exponential Exp(θ) distribution with
unknown mean θ , he obtained a two sided confidence interval for θ . The basic idea here
is to terminate a life testing experiment at a random time T1 with T1 = min(Xr :n, T ).
Here r, (1 ≤ r ≤ n) and T(>0) are prefixed before the test starts. Indeed, Xr :n is
the r th ordered observation and T is a thresh hold time point beyond which the test
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Inference on unknown parameters of a burr distribution 621

can not be conducted. Many authors have dealt with inference problems for various
lifetime distributions by considering hybrid censored data. Among others, we refer to
Kundu and Pradhan (2009) for generalized exponential distribution, Gupta and Kundu
(1998) for exponential distribution, Kundu (2007) for Weibull distribution and also
references cited therein. For more work in this direction one may refer to the papers
by Hangal (1997) and Kim and Yum (2011). Recently, Rastogi and Tripathi (2011)
considered estimation of α for known β under the hybrid censored observations and
proposed some Bayes and empirical Bayes estimates. To the best of our knowledge,
the case where both α and β are unknown has been not investigated under hybrid
censored observations. Rastogi and Tripathi (2011) did not considered interval esti-
mation, however, in present manuscript both the asymptotic and Bayesian credible
intervals are obtained for the unknown parameters.

Rest of this article is organized as follows. In Section 2, maximum likelihood esti-
mates (MLEs) of unknown parameters are obtained using the EM algorithm. Fisher
information matrix is derived using missing value principle and has been used fur-
ther to construct the asymptotic confidence intervals. Bayes estimates are discussed
in Section 3 and in Section 4, these estimates are evaluated using an approxima-
tion method. Bayes estimates and highest posterior density (HPD) intervals for the
unknown parameters are also obtained using the importance sampling scheme which
is discussed in Section 5. In Section 6, a numerical comparison is made between
various estimates in terms of their mean square error values. The approximate confi-
dence and HPD interval estimates for the unknown parameters are also provided in
this section. Finally in Section 7, we present two data set to illustrate our proposed
methods.

2 The maximum likelihood estimation

Suppose that X1:n, X2:n, . . . , Xn:n are ordered lifetimes observations of n independent
units taken from a Burr(α, β) distribution. It is assumed that both parameters α and
β are unknown. Under the hybrid censoring scheme, since the test is terminated at
random time T1 = min(Xr :n, T ), the observed sample may be one of the following
two types.

{
I : {X1:n, X2:n, . . . , Xr :n}, if Xr :n < T
I I : {X1:n, X2:n, . . . , Xm:n}, if m < r, Xm+1:n > T .

In the second case, we note that m failures have occurred up to time T while (m +1)th
failure occurs after T . So, for the hybrid censored data taken from the model (1.1),
the likelihood of α and β can be written as

{
I : L(α, β) ∝ ∏r

i=1 f (xi :n) [1 − F(xr :n)](n−r) ,

I I : L(α, β) ∝ ∏m
i=1 f (xi :n) [1 − F(T )](n−m) .

Utilizing (1.1) and (1.2), the above likelihood functions can be combined as,
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L(α, β) ∝ αd βd
d∏

i=1

x (β−1)
i :n

[
1 + xβ

i :n
]−(α+1) [

1 + cβ
]−α(n−d)

, (2.1)

with d and c defined as

d =
{

r, for case I
m, for case I I

c =
{

xr :n, for case I
T, for case I I.

The logarithm of the likelihood function (2.1) is

log L(α, β) ∝ d log α + d log β + (β − 1)

d∑

i=1

log xi :n − (α + 1)

d∑

i=1

log
(

1 + xβ
i :n

)

−α (n − d) log
(
1 + cβ

)
. (2.2)

Further, the likelihood equations of α and β are given by

∂ log L

∂α
= d

α
−

d∑

i=1

log
(

1 + xβ
i :n

)
− (n − d) log

(
1 + cβ

) = 0, (2.3)

∂ log L

∂β
= d

β
+

d∑

i=1

log xi :n − (1 + α)

d∑

i=1

xβ
i :n log xi :n
(1 + xβ

i :n)
− α (n − d) cβ log c

(
1 + cβ

) = 0.

(2.4)

The maximum likelihood estimates α̂ and β̂, respectively of α and β, are simultaneous
solutions of the Eqs. (2.3) and (2.4). We observe that α̂ and β̂ can not be obtained
in closed forms and hence, some numerical techniques are required to evaluate these
estimates. Here, however, we suggest to use the EM algorithm to compute the desired
MLEs. Further, it is to be noted that d is strictly positive because when it takes value
zero it is difficult to evaluate the MLEs.

Dempster et al. (1977) introduced a general iterative approach commonly known as
EM algorithm as an excellent tool for finding MLEs in cases where observations are
treated as incomplete data. Dealing with hybrid censored observations, the problem of
finding MLEs of unknown parameters α and β associated with the model (1.1) can be
viewed as an incomplete data problem, see, Ng et al. (2002) for further discussion. Now
suppose that X = (X1:n, X2:n, . . . , Xd:n) and Z = (Z1, Z2, . . . , Zn−d) respectively
denote the observed and censored data for a fixed d. We note that Z1, Z2, . . . , Zn−d

are not observable. Here Z can be viewed as missing data and W = (X, Z) represents
the complete data set. The log-likelihood function Lc(W ;α, β) of the complete data
after ignoring the constants is obtained as
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Inference on unknown parameters of a burr distribution 623

Lc(W ;α, β) = n log α + n log β + (β − 1)

(
d∑

i=1

log xi :n +
n−d∑

i=1

log zi

)

−(α + 1)

(
d∑

i=1

log
(

1 + xβ
i :n

)
+

n−d∑

i=1

log
(

1 + zβ
i

))

(2.5)

The E-step of the EM algorithm requires the computation of the conditional expectation
E(Lc(W ;α, β) | X) which is equal to the pseudo log-likelihood function Ls(α, β)

defined as

Ls(α, β) = n log α + n log β + (β − 1)

d∑

i=1

log xi :n − (α + 1)

d∑

i=1

log
(

1 + xβ
i :n

)

+ (β − 1)

n−d∑

i=1

E(log Zi | Zi > c) − (1 + α)

×
n−d∑

i=1

E
(

log
(

1 + Zβ
i

)
| Zi > c

)
. (2.6)

Further, we observe that

E(log Zi | Zi > c) = αβ

1 − FX (c;α, β)

∞∫

c

xβ−1 (
1 + xβ

)−1−α
log x dx

= α

β(1 − FX (c;α, β))

⎡

⎣
1∫

0

uα−1 (
1 + ucβ

)−1−α

× log
(
1 − u + ucβ

)
du −

1∫

0

uα−1 (
1 + ucβ

)−1−α
log u du

⎤

⎦

= A(c, α, β), say (2.7)

and

E
(

log
(

1 + Zβ
i

)
| Zi > c

)
= αβ

1 − FX (c;α, β)

∞∫

c

xβ−1 (
1 + xβ

)−1−α

× log
(
1 + xβ

)
dx = 1

α
+ log

(
1 + cβ

)

= B(c, α, β), say. (2.8)

Next in M-step the pseudo log-likelihood function (2.6) coupled with (2.7) and (2.8)
is maximized with respect to α and β. Thus if (α(k), β(k)) be the estimate of (α, β) at
the kth stage then (α(k+1), β(k+1)) can be obtained by maximizing
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624 M. K. Rastogi, Y. M. Tripathi

g(α, β) = n log α + n log β + (β − 1)

d∑

i=1

log xi :n − (α + 1)

d∑

i=1

log
(

1 + xβ
i :n

)

+ (β − 1)(n − d)A
(

c, α(k), β(k)
)

− (1 + α)(n − d)B
(

c, α(k), β(k)
)

.

(2.9)

To maximize (2.9), we follow the method used in Kundu and Pradhan (2009). First,
we evaluate β(k+1) by solving the fixed point type equation

h(β) = β (2.10)

where

h(β) =
[

1 + α̂(β)

n

d∑

i=1

xβ
i :n log xi :n
(1 + xβ

i :n)
− (n − d)A

n
− 1

n

d∑

i=1

log xi :n

]−1

with

A = A
(

c, α(k), β(k)
)

, B = B(c, α(k), β(k))

and

α̂(β) = n
∑d

i=1 log (1 + xβ
i :n) + (n − d)B

.

Finally, after finding β(k+1) from (2.10) the estimate α(k+1) is derived as α(k+1) =
α̂(β(k+1)).

We also derive Fisher information matrix using the missing value principle approach
developed in Louis (1982) (see also, Kundu and Pradhan (2009)) and then used it to
construct the asymptotic confidence intervals for the unknown parameters α and β.
Missing information principle says that

IX (θ) = IW (θ) − IW |X (θ) (2.11)

where θ = (α, β), X = observed data, W = complete data, IW (θ) denotes the com-
plete information, IX (θ) denotes the observed information and IW |X (θ) is the missing
information. It is to be noted that we have

IW (θ)= − E

[
∂2Lc(W ; θ)

∂θ2

]
and IW |X (θ)=−(n−d)EZ |X

[
∂2 log fZ (z | X, θ)

∂θ2

]
,
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Inference on unknown parameters of a burr distribution 625

and both are matrices of order 2×2. The respective elements of these matrices are now
obtained. We denote the (i, j)th, i, j = 1, 2, elements of IW (θ) as ai j (α, β) where

a11(α, β) = n

α2 , a22(α, β) = n

β2 + nα(α + 1)β

∞∫

0

x2β−1(log x)2

(1 + xβ)α+3 dx

a12(α, β) = a21(α, β) = nαβ

∞∫

0

x2β−1 log x

(1 + xβ)α+2 dx .

Next for IW |X (θ) we get that

IW |X (θ) = (n − d)

(
b11(c;α, β) b12(c;α, β)

b21(c;α, β) b22(c;α, β)

)

where

b11(c;α, β) = 1

α2 , b12(c;α, β) = h1(c;α, β) − cβ log c

1 + cβ
= b21(c;α, β)

b22(c;α, β) = 1

β2 + (α + 1)h2(c;α, β) − αcβ(log c)2

(
1 + cβ

)2

with

h1(c;α, β) = α

β
(
1 + cβ

)−α

⎡

⎣
1∫

0

uα−1 (
1 − u + ucβ

) (
1 + ucβ

)−α−2

× log
(
1 − u + ucβ

)
du

−
1∫

0

uα−1 (
1 − u + ucβ

) (
1 + ucβ

)−α−2
log u du

⎤

⎦

and

h2(c;α, β) = α

β2
(
1 + cβ

)−α

×
⎡

⎣
1∫

0

uα
(
1 − u + ucβ

) (
1 + ucβ

)−α−3
(log

(
1 − u + ucβ

)
)2 du
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+
1∫

0

uα
(
1 − u + ucβ

) (
1 + ucβ

)−α−3
(log u)2 du

−2

1∫

0

uα
(
1 − u + ucβ

) (
1 + ucβ

)−α−3
log u log

(
1 − u + ucβ

)
du

⎤

⎦

Finally, we observe that the asymptotic variance-covariance matrix of the MLEs of
α and β can be evaluated by inverting IX (θ) and utilizing it asymptotic confidence
intervals of unknown parameters are constructed later in Sections 6 and 7.

3 The Bayesian estimation

In this section, we obtain Bayesian estimates of the unknown parameters α and β

against the squared error, linex and entropy loss functions. These loss functions are
defined as, respectively,

L SB(d(μ), d̂(μ)) = (d̂(μ) − d(μ))2

L L B(d(μ), d̂(μ)) = (eh(d̂(μ)−d(μ)) − h(d̂(μ) − d(μ)) − 1), h �= 0,

L E B(d(μ), d̂(μ)) ∝
(

d̂(μ)

d(μ)

)w

− w log

(
d̂(μ)

d(μ)

)
− 1, w �= 0.

Here d̂(μ) denotes an estimate of some parametric function d(μ). For the case of the
squared error loss function desired Bayesian estimate is the posterior mean of d(μ).
While for the linex loss function it is given by

d̂L B(μ) = − 1

h
ln

{
Eμ

(
e−hd(μ)|x

)}
.

And for the entropy loss function we have

d̂E B(μ) = (Eμ((d(μ))−w | x))
−1
w .

Now, let X1:n, X2:n, . . . , Xd:n be a hybrid Type I censored ordered observations
drawn from a Burr(α, β) distribution as defined in (1.1). We assume that α and β are
statistically independent and are a priori distributed as gamma G(p, q) and G (b, a)

distributions respectively. Here, p, q, a and b are chosen to reflect the prior knowledge
about the unknown parameters α and β. The joint prior distribution can be written as

π(α, β) ∝ α p−1 e−qα βb−1 e−aβ α > 0, β > 0, a > 0, b > 0, p > 0, q > 0.

(3.1)

Subsequently, the joint posterior distribution of α and β is obtained as
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Inference on unknown parameters of a burr distribution 627

π(α, β | x) = k−1αd+p−1βd+b−1 e−qα e−aβ
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n (1 + xβ

i :n)
−(α+1)

}

(3.2)

where x = (x1:n, x2:n, . . . , xd:n) and the normalizing constant is

k =
∞∫

0

∞∫

0

αd+p−1βd+b−1 e−qα e−aβ
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n

(
1 + xβ

i :n
)−(α+1)

}

dα dβ.

The corresponding Bayesian estimates of α and β against the loss function L SB

are evaluated as,

α̂SB = E[α | x ] = 1

k

∞∫

0

∞∫

0

αd+pβd+b−1 e−qα e−aβ
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n

(
1 + xβ

i :n
)−(α+1)

}

dα dβ,

and

β̂SB = E[β|x] = 1

k

∞∫

0

∞∫

0

αd+p−1βd+b e−qα e−aβ
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n

(
1 + xβ

i :n
)−(α+1)

}

dα dβ.

Similarly, for the loss function L L B we have

α̂L B = − 1

h
ln

{
E

(
e−hα | x

)}
, h �= 0,

where

E[e−hα|x] = 1

k

∞∫

0

∞∫

0

αd+p−1βd+b−1 e−(q+h)α e−aβ
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n

(
1 + xβ

i :n
)−(α+1)

}

dα dβ,
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and

β̂L B = − 1

h
ln

{
E

(
e−hβ | x

)}
, h �= 0,

where

E[e−hβ |x] = 1

k

∞∫

0

∞∫

0

αd+p−1βd+b−1 e−qα e−(a+h)β
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n

(
1 + xβ

i :n
)−(α+1)

}

dα dβ.

Proceeding in a similar manner, the Bayesian estimate of α against the entropy loss
function L E B is derived as

α̂E B =
{

E(α−w | x)

}− 1
w

,

where

E(α−w|x) = 1

k

∞∫

0

∞∫

0

αd+p−w−1βd+b−1 e−qα e−aβ
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n

(
1 + xβ

i :n
)−(α+1)

}

dα dβ,

and that of β is derived as

β̂E B =
{

E(β−w | x)

}− 1
w

,

where

E(β−w|x) = 1

k

∞∫

0

∞∫

0

αd+p−1βd+b−w−1 e−qα e−aβ
(
1 + cβ

)−α (n−d)

×
{

d∏

i=1

xβ−1
i :n

(
1 + xβ

i :n
)−(α+1)

}

dα dβ.

Next section deals with finding approximate Bayesian estimates of α and β.
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Inference on unknown parameters of a burr distribution 629

4 Lindley approximation method

In previous section, we obtained various Bayesian estimates of α and β based on
hybrid Type I censored observations. We notice that these estimates are in the form of
ratio of two integrals. In practice, by applying Lindley method (see Lindley (1980))
one can approximate all these Bayesian estimates. For the sake of completeness, we
briefly discuss the method below and then apply it to evaluate corresponding approxi-
mate Bayesian estimates. Since the Bayesian estimates are in the form of ratio of two
integrals, we consider the function I (x) defined as

I (x) =
∫ ∞

0

∫ ∞
0 u(α, β) el(α, β|x) + ρ(α, β) dαdβ

∫ ∞
0

∫ ∞
0 el(α, β|x) + ρ(α, β) dαdβ

, (4.1)

where u(α, β) is function of α and β only and l(α, β | x) is the log-likelihood (defined
by the equation (2.2)) and ρ(α, β) = log π(α, β). Indeed, by applying the Lindley
method I (x) can be rewritten as

I (x) = u(α̂, β̂) + 1

2

[(
ûαα + 2ûα ρ̂α

)
σ̂αα +

(
ûβα + 2ûβ ρ̂α

)
σ̂βα

+
(

ûαβ + 2ûα ρ̂β

)
σ̂αβ +

(
ûββ + 2ûβ ρ̂β

)
σ̂ββ

]

+ 1

2

[(
ûα σ̂αα + ûβ σ̂αβ

)(
l̂ααα σ̂αα + l̂αβα σ̂αβ + l̂βαα σ̂βα + l̂ββα σ̂ββ

)

+
(

ûα σ̂βα + ûβ σ̂ββ

)(
l̂βαα σ̂αα + l̂αββ σ̂αβ + l̂βαβ σ̂βα + l̂βββ σ̂ββ

)]
,

where α̂ and β̂ are the MLEs of α and β respectively. Also, uαα is the second deriva-
tive of the function u(α, β) with respect to α and ûαα is the second derivative of the
function u(α, β) with respect to α evaluated at (α̂, β̂). Also, σi, j = (i, j)th elements

of the inverse of the matrix [− ∂2l(α,β|x)

∂α∂β
]−1 evaluated at (α̂, β̂). Other expressions are

obtained as,

l̂αα = ∂2l

∂α2

∣∣∣∣
α=α̂,β=β̂

= − d

α̂2 ,

l̂ββ = ∂2l

∂β2

∣
∣∣∣
α=α̂,β=β̂

= − d

β̂2
− (1 + α̂)

d∑

i=1

x β̂
i :n (log xi :n)2

(1 + x β̂
i :n)

2 − α̂ (n − d) cβ̂ (log c)2

(1 + cβ̂ )2
,

l̂βα = ∂2l

∂β∂α

∣
∣∣∣
α=α̂, β=β̂

= l̂αβ = ∂2l

∂α∂β

∣
∣∣∣
α=α̂, β=β̂

= −
d∑

i=1

x β̂
i :n log xi :n
(1 + x β̂

i :n)

− (n − d) cβ̂ log c

(1 + cβ̂ )
,
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l̂ααα = ∂3l

∂α3

∣∣∣
∣
α=α̂,β=β̂

= 2d

α̂3 , l̂ββα = ∂3l

∂β2∂α

∣∣∣
∣
α=α̂, β=β̂

= −
d∑

i=1

x β̂
i :n [log xi :n]2

(1 + x β̂
i :n)

2 − (n − d) cβ̂ (log c)2

(1 + cβ̂ )2
,

l̂βββ = ∂3l

∂β3

∣∣∣∣
α=α̂,β=β̂

= 2 d

β̂3
− (1 + α̂)

d∑

i=1

x β̂
i :n [log xi :n]3(1 − x β̂

i :n)

(1 + x β̂
i :n)

3

− α̂ (n − d) cβ̂ (log c)3 (1 − cβ̂ )

(1 + cβ̂ )3
,

l̂βαα = ∂3l

∂β∂α2

∣∣∣
∣
α=α̂, β=β̂

= 0, ρ̂α = (p − 1)

α̂
− q, ρ̂β = (b − 1)

β̂
− a.

For the squared error loss function L SB we get that

u(α, β) = α, uα = 1, uαα = uβ = uββ = uβα = uαβ = 0,

and the corresponding Bayesian estimate of α is

α̂SB = E(α|x) = α̂ + 0.5
[
2 ρ̂α σ̂αα + 2 ρ̂β σ̂αβ + σ̂ 2

αα l̂ααα + σ̂αα σ̂ββ l̂ββα

+ 2σ̂αβ σ̂βα l̂αββ + σ̂αβ σ̂ββ l̂βββ

]
.

Next, the Bayesian estimate of β under L SB is obtained as

(here u(α, β) = β, uβ = 1, uα = uαα = uββ = uβα = uαβ = 0),

β̂SB = E(β|x) = β̂ + 0.5
[
2 ρ̂β σ̂ββ + 2 ρ̂α σ̂βα + σ̂ 2

ββ l̂βββ

+ 3 σ̂αβ σ̂ββ l̂αββ + σ̂αα σ̂βα l̂ααα

]
.

For the loss function L L B , noticing that in this case we have

u(α, β)= e−hα, uα = − h e−hα, uαα = h2 e−hα, uβ = uββ = uβα = uαβ = 0,

and with

E(e−hα| x ) = e−hα̂ + 0.5
[
ûαα σ̂αα + ûα (2 ρ̂α σ̂αα + 2 ρ̂β σ̂αβ + σ̂ 2

αα l̂ααα

+ σ̂αα σ̂ββ l̂ββα + 2σ̂αβ σ̂βα l̂αββ + σ̂αβ σ̂ββ l̂βββ)
]
,

the Bayesian estimate of α is obtained as

α̂L B = − 1

h
ln

{
E

(
e−hα|x

)}
.
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Similarly, for β we have

u(α, β) = e−hβ, uβ = −h e−hβ, uββ = h2 e−hβ, uα = uαα = uβα = uαβ = 0,

E(e−hβ | x ) = e−hβ̂ + 0.5
[
ûββ σ̂ββ + ûβ

(
2 ρ̂β σ̂ββ + 2 ρ̂α σ̂βα + σ̂ 2

ββ l̂βββ

+ 3 σ̂αβ σ̂ββ l̂αββ + σ̂αα σ̂βα l̂ααα

)]
,

β̂L B = − 1

h
log

{
E

(
e−hβ |x

)}
.

Finally, we consider the entropy loss function. Notice that for the parameter α and
loss function L E B ,

u(α, β) = α−w, uα = −w α−(w+1), uαα = w (w + 1) α−(w+2),

uβ = uββ = uβα = uαβ = 0,

E(α−w|x) = α̂−w + 0.5
[
ûαα σ̂αα + ûα

(
2 ρ̂α σ̂αα + 2 ρ̂β σ̂αβ + σ̂ 2

αα l̂ααα

+ σ̂αα σ̂ββ l̂ββα + 2σ̂αβ σ̂βα l̂αββ + σ̂αβ σ̂ββ l̂βββ

)]
.

Thus, the approximate Bayesian estimate of α in this case is given by

α̂E B = {
E

(
α−w|x)}− 1

w .

Also, for the parameter β we get that

u(α, β) = β−w, uβ = −w β−(w+1), uββ = w (w + 1) β−(w+2),

uα = uαα = uβα = uαβ = 0,

E(β−w|x) = β̂−w + 0.5
[
ûββ σ̂ββ + ûβ

(
2 ρ̂β σ̂ββ + 2 ρ̂α σ̂βα + σ̂ 2

ββ l̂βββ

+3 σ̂αβ σ̂ββ l̂αββ + σ̂αα σ̂βα l̂ααα

)]
.

Consequently,

β̂E B = {
E

(
β−w|x)}− 1

w .

In the next section we obtain approximate Bayesian estimates of unknown parameters
α and β under stated loss functions using a Markov Chain Monte Carlo (MCMC)
method.

5 MCMC method

In the last two sections, we derived Bayesian estimates of unknown parameters α and
β under different loss functions. However, since the exact probability distributions of
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these estimates are not known it is difficult to evaluate Bayesian intervals of param-
eters using the expressions that we obtained for Bayesian estimates in previous two
sections. To overcome this, we propose importance sampling scheme to calculate the
corresponding Bayesian intervals. Further, we also evaluate the Bayesian estimates of
α and β using this sampling scheme. At this point, under the stated prior distribution
of α and β, the corresponding posterior distribution can be rewritten as

π(α, β | x) ∝ Gα|β
(

d + p, q + (n − d) ln
(
1 + cβ

) +
d∑

i=1

ln
(

1 + xβ
i :n

) )

Gβ

(
d + b, a −

d∑

i=1

ln xi :n
)

h(α, β)

where h(α, β)=e
− ∑d

i=1 ln
(

1+xβ
i :n

)[
q+(n−d) ln

(
1 + cβ

) + ∑d
i=1 ln

(
1 + xβ

i :n
) ]−d−p

.

To proceed further, we implement the following steps.

Step 1 Generate β1 ∼ Gβ(., .), α1 ∼ Gα|β(., .)

Step 2 Repeat Step 1, s times to obtain (α1, β1), (α2, β2), . . . , (αs, βs)

Step 3 Now, Bayesian estimates of some parametric function of α, β, say g(α, β)

under the loss functions L SB, L L B and L E B can be obtained as, respectively,

ĝMC SB(α, β) =
∑s

i=1 g(αi , βi )h(αi , βi )∑s
i=1 h(αi , βi )

ĝMC L B(α, β) = − 1

h
ln

{∑s
i=1 e−hg(αi ,βi )h(αi , βi )∑s

i=1 h(αi , βi )

}

ĝMC E B(α, β) =
{∑s

i=1 g(αi , βi )
−wh(αi , βi )∑s

i=1 h(αi , βi )

}− 1
w

Next, using the idea developed in Chen and Shao (1999) we now illustrate the pro-
cedure to obtain the HPD intervals for the unknown parameters. Suppose that π(θ | x

¯
)

and 	(θ | x
¯
) are the posterior density function and posterior distribution function

respectively of a parameter θ . Also, let θ(p) be the pth quantile of θ and is defined as
θ(p) = inf{θ : 	(θ | x

¯
) ≥ p; 0 < p < 1}. It is easily observed that for a given θ∗,

we have that

	(θ∗ | x
¯
) = E(1θ≤θ∗ | x

¯
)

where 1θ≤θ∗ is the indicator function. Now, a simulation consistent estimate of
	(θ∗ | x

¯
) is obtained as
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	(θ∗ | x
¯
) =

∑s
i=1 1θ≤θ∗h(αi , βi )∑s

i=1 h(αi , βi )
.

Further, let θ(i) be the ordered values of θi and denote

wi = h(α(i), β(i))∑s
i=1 h(α(i), β(i))

for i = 1, 2, . . . , s.

Consequently, we have 	(θ∗ | x
¯
) =

⎧
⎨

⎩

0, if θ∗ < θ(1),∑i
j=1 w j , if θ(i) ≤ θ∗ < θ(i+1),

1 if θ∗ ≥ θ(s).

Applying this an estimate of θ(p) can be derived as

θ̂ (p) =
{

θ(1), if p = 0
θ(i), if

∑i−1
j=1 w j < p ≤ ∑i

j=1 w j .

Now, to obtain a 100(1 − p)% HPD interval, consider

R j (s) =
(
θ̂ (

j
s ), θ̂ (

j+[(1−p)s]
s )

)

for i = 1, 2, . . . , s −[(1 − p)s] and [u] denotes the greatest integer less than or equal
to u. Finally, among all such intervals choose one with the smallest width.

6 Numerical comparisons

In previous sections, we proposed various estimates of unknown parameters α and β

when hybrid Type I censored observations are drawn from the Burr(α, β) distribution
as defined in (1.1). It is easy to observe that the probability distributions of none of
these estimates are known in exact forms. Furthermore, the mathematical expressions
of these estimates are also intractable. Consequently, it becomes difficult to evaluate
the analytical risk expressions of these estimates. In this section, we numerically eval-
uate risk values (mean square error values) of all estimates using simulations. These
values are evaluated based on 5000 generations of random sample of size n from the
Burr(α, β) distribution. The maximum likelihood estimates of α and β are obtained
using the EM algorithm. All Bayesian estimates of unknown parameters are evalu-
ated against three different loss functions namely, squared error loss L SB , linex loss
L L B , and entropy loss L E B . Approximate expressions for these Bayesian estimates
are obtained in Section 4. Further, we have derived these estimates using MCMC tech-
nique as well in Section 5. In tabulating risk values, we have considered three different
arbitrary choices for both h and w (respective parameters of loss functions L L B and
L E B) as −0.25, 0.1, 0.5 and −0.5, 0.5, 1 respectively. In Tables 1 and 2 risk values
of all estimates α̂, β̂, α̂SB, β̂SB, α̂L B, β̂L B, α̂E B, β̂E B, α̂MC SB , β̂MC SB , α̂MC L B ,
β̂MC L B , α̂MC E B, β̂MC E B are tabulated for different combinations of T, r and n.
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Table 1 Average estimates and risk values for different choices of T, r

n = 30 T = 0.5 T = 4

r = 15 r = 20 r = 25 r = 30 r = 15 r = 20 r = 25 r = 30

M L E 1.485106 1.426276 1.406592 1.397222 1.498204 1.326834 1.77621 1.168325

0.441663 0.149192 0.293773 0.291342 0.413977 0.207778 0.091079 0.075923

0.607750 0.622013 0.620301 0.617093 0.610434 0.675013 0.712906 0.713683

0.029869 0.036315 0.035672 0.034789 0.031949 0.073589 0.100838 0.101172

SB 1.21293 1.19151 1.19304 1.19705 1.2197 1.20825 1.20724 1.20689

0.057963 0.031160 0.025466 0.024821 0.049643 0.038031 0.035614 0.035024

0.507272 0.515018 0.515462 0.519406 0.5121 0.523126 0.516624 0.516688

0.013989 0.010297 0.010020 0.010368 0.013609 0.009361 0.008301 0.008292

MC SB 1.23227 1.22055 1.21824 1.22471 1.23952 1.23837 1.21657 1.20524

0.060996 0.058276 0.06316 0.050879 0.051682 0.048256 0.047613 0.045546

0.512744 0.515354 0.511298 0.508327 0.530101 0.526206 0.518614 0.518030

0.012348 0.011621 0.011596 0.010241 0.012348 0.008987 0.008313 0.007972

L B1 1.11083 1.19499 1.20289 1.20652 1.2061 1.21121 1.21496 1.21474

0.066415 0.048547 0.026498 0.025971 0.054671 0.047908 0.036376 0.035894

h = −0.25 0.484458 0.516473 0.517181 0.521143 0.496916 0.524325 0.517743 0.517801

0.035082 0.010609 0.010236 0.011027 0.026063 0.009526 0.008409 0.008399

MC L B1 1.24226 1.23002 1.22756 1.23415 1.24917 1.24602 1.22336 1.21191

0.063194 0.06009 0.064875 0.052479 0.054176 0.050063 0.048769 0.046451

h = −0.25 0.513924 0.516625 0.512528 0.509482 0.531337 0.527348 0.519658 0.519091

0.012514 0.011781 0.011749 0.010359 0.012556 0.009125 0.008345 0.008073

L B2 1.02479 1.18495 1.18909 1.19321 1.03287 1.20227 1.2042 1.20379

0.051492 0.031804 0.025448 0.024834 0.046531 0.034544 0.035386 0.034752

h = 0.1 0.494066 0.514155 0.514778 0.518715 0.498875 0.522648 0.516178 0.516245

0.027718 0.010283 0.009938 0.010703 0.022772 0.009299 0.008259 0.008251

MC L B2 1.22831 1.21681 1.21455 1.22098 1.23571 1.23524 1.21389 1.20261

0.060178 0.057617 0.062529 0.05031 0.050755 0.047576 0.047186 0.045216

h = 0.1 0.512263 0.514844 0.510805 0.507864 0.529607 0.52575 0.518190 0.517619

0.012283 0.011558 0.011535 0.010195 0.012267 0.008934 0.008273 0.007933

L B3 1.11237 1.17293 1.17369 1.17817 1.11664 1.1951 1.19232 1.19169

0.031787 0.024937 0.024512 0.024099 0.038831 0.030497 0.034891 0.034076

h = 0.5 0.49585 0.51154 0.512066 0.515978 0.5004 0.520744 0.514404 0.514481

0.017811 0.009969 0.009632 0.010368 0.015714 0.009068 0.008098 0.008092

MC L B3 1.21273 1.20212 1.20002 1.20631 1.22072 1.2232 1.2033 1.1922

0.054252 0.052341 0.058308 0.046319 0.045421 0.043101 0.043671 0.042076

h = 0.5 0.510335 0.51282 0.508828 0.506006 0.527635 0.523936 0.516543 0.515949

0.012065 0.011311 0.010513 0.010013 0.011949 0.008724 0.008117 0.00778

E B1 1.15174 1.1754 1.1764 1.18071 1.16591 1.19531 1.19492 1.1944

0.034604 0.030203 0.026653 0.026114 0.039472 0.031461 0.035698 0.034976

w = −0.5 0.501324 0.508768 0.509225 0.513186 0.504047 0.518816 0.512511 0.512592
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Table 1 continued

n = 30 T = 0.5 T = 4

r = 15 r = 20 r = 25 r = 30 r = 15 r = 20 r = 25 r = 30

0.013188 0.009939 0.009631 0.010348 0.012605 0.009017 0.008078 0.008071

MC E B1 1.21642 1.20544 1.20322 1.20958 1.2246 1.22628 1.20575 1.19449

0.056411 0.055281 0.060334 0.048951 0.047417 0.044634 0.045873 0.042133

w = −0.5 0.508089 0.510424 0.506504 0.503747 0.525559 0.521987 0.514712 0.514093

0.011996 0.011279 0.011273 0.010012 0.011845 0.008644 0.008076 0.007739

E B2 1.10833 1.14392 1.14437 1.14921 1.11622 1.1757 1.17123 1.17039

0.036861 0.031838 0.033009 0.032712 0.041563 0.034159 0.037525 0.036537

w = 0.5 0.490844 0.497155 0.497342 0.501384 0.496787 0.510616 0.504629 0.504733

0.010478 0.009579 0.009255 0.009872 0.009819 0.008572 0.007779 0.007775

MC E B2 1.18426 1.17492 1.17283 1.17899 1.19443 1.2021 1.18402 1.17289

0.057631 0.05671 0.061996 0.049499 0.048211 0.046233 0.046017 0.044028

w = 0.5 0.498284 0.500105 0.496455 0.494143 0.516147 0.513442 0.506863 0.506148

0.011411 0.010704 0.010768 0.009673 0.01096 0.008065 0.007751 0.00737

E B3 1.1081 1.12971 1.12971 1.13478 1.11774 1.16629 1.16015 1.15917

0.028175 0.036935 0.037749 0.037528 0.045478 0.036914 0.039134 0.038015

w = 1 0.487728 0.491816 0.491889 0.49599 0.494184 0.506834 0.500941 0.501051

0.010149 0.009485 0.009248 0.009821 0.009450 0.008441 0.007698 0.007694

MC E B3 1.16798 1.15954 1.15749 1.16354 1.17921 1.18994 1.17311 1.16205

0.057367 0.057149 0.06251 0.049999 0.050289 0.048465 0.046905 0.045923

w = 1 0.49314 0.494728 0.491207 0.489127 0.511276 0.509117 0502915 0.502148

0.011189 0.01052 0.010093 0.009573 0.010583 0.007831 0.007561 0.007235

For convenience, we take α = 1.2, β = 0.5. The choices for hyperparameters are
taken to be a = 4, b = 2, p = 6, q = 5. In both the tables there are four entries in
each cell. In each case, the first entry corresponds to the estimate of α, second entry
corresponds to the corresponding risk value, third entry corresponds to the estimate of
β and fourth entry corresponds to its risk value. The following conclusions are drawn
from these tables.

1. It is easy to observe from the tabulated estimates and risk values that the perfor-
mance of all Bayesian estimates of α and β are quite satisfactory compared to the
respective maximum likelihood estimates of α and β. In particular the Bayesian
estimates obtained under the squared error loss beat respective MLEs. This holds
true for almost all tabulated choices of n, r and T .

2. Among Bayesian estimates of α with respect to the linex loss function the MCMC
estimate for the choice h = 0.5 seems to be a reasonable choice for all n, r and T .
In addition, the squared error Bayesian estimate performs quite good compared
to the other estimate for all tabulated values of n, r and T . We also observed
that MCMC estimate derived under the squared error loss function shows steady
behavior for all tabulated combinations of n, r and T . For estimating β, the
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Table 2 Average estimates and risk values for different choices of T, r

n = 40 T = 0.5 T = 4

r = 25 r = 30 r = 35 r = 40 r = 25 r = 30 r = 35 r = 40

M L E 1.414328 1.40583 1.398358 1.391114 1.350127 1.287151 1.152622 1.154337

0.267765 0.254193 0.249435 0.247998 0.194015 0.096196 0.060649 0.057893

0.637689 0.628235 0.623792 0.623294 0.657867 0.722178 0.728167 0.725463

0.040226 0.039262 0.037795 0.037570 0.042487 0.049878 0.049326 0.048256

SB 1.20845 1.20954 1.20924 1.20768 1.22088 1.21265 1.20783 1.20831

0.033298 0.032864 0.032028 0.033244 0.032094 0.035198 0.031316 0.034652

0.513003 0.514308 0.512393 0.516398 0.520875 0.516363 0.511178 0.51453

0.008319 0.008840 0.008132 0.008754 0.007668 0.006701 0.006056 0.006024

MC SB 1.22738 1.21056 1.20884 1.21377 1.23762 1.21822 1.20766 1.20235

0.055302 0.050386 0.058595 0.050131 0.041682 0.043794 0.033284 0.036911

0.498045 0.507265 0.502457 0.505663 0.521422 0.51332 0.513285 0.511539

0.008195 0.008284 0.008250 0.008988 0.007556 0.006851 0.006595 0.006283

L B1 1.21316 1.21928 1.21908 1.21740 1.22684 1.21893 1.21396 1.21441

0.052896 0.033785 0.032992 0.034201 0.035065 0.035993 0.031974 0.035357

h = −0.25 0.514266 0.515593 0.513669 0.51778 0.521848 0.517211 0.511983 0.515349

0.008445 0.008972 0.008254 0.008894 0.007765 0.006772 0.006112 0.006085

MC L B1 1.23481 1.21776 1.21601 1.22091 1.24382 1.22369 1.21293 1.20760

0.056714 0.051318 0.059758 0.051078 0.043006 0.044662 0.033839 0.037476

h = −0.25 0.498772 0.508052 0.503219 0.506445 0.5228 0.51411 0.51406 0.51231

0.008205 0.008349 0.008306 0.009067 0.007644 0.006914 0.006654 0.006336

L B2 1.20362 1.20572 1.20538 1.20387 1.21835 1.21017 1.20540 1.20589

0.030688 0.032619 0.031765 0.032991 0.031684 0.034932 0.031093 0.034413

h = 0.1 0.512540 0.513796 0.511884 0.515879 0.520487 0.516025 0.510855 0.514203

0.008271 0.008789 0.008085 0.008702 0.007629 0.006673 0.006034 0.006001

MC L B2 1.22443 1.20771 1.20599 1.21094 1.23516 1.21604 1.20557 1.20027

0.054767 0.050049 0.058157 0.049782 0.041361 0.043456 0.033081 0.036703

h = 0.1 0.497753 0.506949 0.502154 0.505348 0.521079 0.513005 0.512976 0.511231

0.008147 0.008253 0.008228 0.008956 0.007521 0.006826 0.006572 0.006263

L B3 1.18998 1.19098 1.19046 1.18914 1.20821 1.20047 1.19583 1.19639

0.030257 0.032286 0.031354 0.032643 0.031084 0.034152 0.030436 0.033702

h = 0.5 0.510495 0.511761 0.509859 0.513814 0.518946 0.514679 0.509572 0.512901

0.008089 0.008596 0.007908 0.008496 0.007483 0.006564 0.005949 0.005907

MC L B3 1.21272 1.19646 1.19469 1.19969 1.22543 1.20745 1.19732 1.19204

0.052802 0.04889 0.056564 0.048553 0.035693 0.040264 0.030373 0.033979

h = 0.5 0.49577 0.505677 0.500918 0.504081 0.51973 0.51175 0.511744 0.510006

0.008068 0.008145 0.008141 0.008829 0.007383 0.006728 0.006482 0.006181

E B1 1.19252 0.1942 0.19376 1.19233 1.21046 1.20275 1.19830 1.1954

0.030986 0.033140 0.032232 0.033537 0.031637 0.034929 0.031132 0.034459
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Table 2 continued

n = 40 T = 0.5 T = 4

r = 25 r = 30 r = 35 r = 40 r = 25 r = 30 r = 35 r = 40

w = −0.5 0.508316 0.509567 0.507652 0.511609 0.517336 0.513212 0.508125 0.511455

0.008079 0.008586 0.007901 0.008474 0.007447 0.006541 0.005938 0.005885

MC E B1 1.21541 1.19884 1.1971 1.20204 1.22785 1.20946 1.19911 1.19383

0.054291 0.050041 0.056971 0.048921 0.036692 0.041154 0.031998 0.035653

w = −0.5 0.495052 0.504098 0.49934 0.502523 0.518209 0.510327 0.510342 0.508592

0.008081 0.008125 0.008145 0.008811 0.007324 0.006703 0.006459 0.006165

E B2 1.16413 1.16499 1.16428 1.16305 1.19045 1.18368 1.17894 1.17961

0.034441 0.036343 0.035294 0.036819 0.032662 0.035462 0.031709 0.035044

w = 0.5 0.499283 0.500446 0.498524 0.502393 0.510565 0.507112 0.502189 0.505481

0.007817 0.008296 0.007648 0.008134 0.007122 0.006304 0.005776 0.005682

MC E B2 1.19107 1.17521 1.17323 1.17819 1.20819 1.19187 1.18194 1.17672

0.053065 0.050195 0.057789 0.04976 0.038993 0.04232 0.032876 0.036581

w = 0.5 0.488722 0.497392 0.492739 0.495862 0.511692 0.504307 0.50443 0.502671

0.007976 0.007867 0.007984 0.008498 0.006926 0.006463 0.006241 0.005983

E B3 1.15091 1.15153 1.15069 1.14953 1.18119 1.17472 1.16991 1.17063

0.037368 0.039037 0.037921 0.039569 0.033787 0.036180 0.032408 0.035759

w = 1 0.495054 0.49618 0.494251 0.498083 0.50739 0.504212 0.499354 0.502629

0.007784 0.008251 0.007618 0.008067 0.007013 0.006225 0.005729 0.005616

MC E B3 1.17871 1.16334 1.16113 1.16607 1.19831 1.18304 1.17332 1.16814

0.052883 0.050697 0.058052 0.050109 0.039422 0.043128 0.033039 0.036769

w = 1 0.485384 0.493854 0.489256 0.492341 0.508389 0.501281 0.501461 0.499697

0.007954 0.007767 0.007935 0.008368 0.006762 0.006371 0.006160 0.005919

Bayesian estimates corresponding to the choice h = 0.5 perform well compare
to the other tabulated choices of h. In particular, the MCMC estimate again per-
forms significantly well for all choices of n, r and T . In fact, this estimate shows
steady performance when derived under the squared error loss function as well.

3. In case of the entropy loss function the choice w = −0.5 is a good choice for esti-
mating α. Specifically for this choice of w the MCMC estimate obtained under
entropy loss function performs significantly well among the other competitors.
In case of estimating β, we observed that when T is small the choice w = −0.5
seems a reasonable choice for all tabulated n, r and we recommend using the cor-
responding MCMC estimate. However, when T is large, say 4, the choice w = 1
is a good choice and performance of the corresponding MCMC estimate is quite
noticeable in such cases as well.

4. We also observed that with the increase in value of T and n, r kept fixed, the mean
squared error values of all estimates tend to decrease. Similar trend is observed
when T, n are kept fixed and r is allowed to increase.

5. In general, mean squared error values of all estimates decreases as n increases.
6. Similar behavior is observed for various other choices of n, r and T .
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Table 3 Interval estimates of α and β for different choices of T, r

T = 0.5 T = 4

n r Approx. Confidence HPD Approx. Confidence HPD
Intervals intervals Intervals intervals

30 15 (0.521436, 2.4519) (1.156727, 2.05592) (0.577519, 2.42335) (1.279329, 2.199603)

(0.328194, 0.886462) (0.351551, 0.652078) (0.349677, 0.921312) (0.360372, 0.630219)

20 (0.582407, 2.26207) (1.151458, 2.053417) (0.711974, 1.92612) (1.014967, 1.845063)

(0.34297, 0.899762) (0.350722, 0.654415) (0.363727, 0.900348) (0.393481, 0.673866)

25 (0.583375, 2.25357) (1.140732, 2.057221) (0.683469, 1.67642) (0.950521, 1.745496)

(0.343488, 0.898792) (0.350821, 0.656789) (0.400614, 0.878707) (0.414412, 0.619027)

30 (0.579723, 2.23826) (1.15229, 2.065373) (0.677969, 1.65719) (0.934409, 1.782325)

(0.341559, 0.89497) (0.353536, 0.661956) (0.441175, 0.859935) (0.462804, 0.565507)

40 25 (0.680997, 2.1188) (1.221264, 1.939854) (0.787675, 1.90696) (1.119029, 1.900387)

(0.381787, 0.865439) (0.368328, 0.596665) (0.441486, 0.875473) (0.380927, 0.658944)

30 (0.685288, 2.12215) (1.2186, 1.952631) (0.753973, 1.64234) (0.955832, 1.653568)

(0.382209, 0.865148) (0.368613, 0.596552) (0.46752 , 0.938981) (0.366719, 0.667784)

35 (0.685707, 2.12211) (1.205145, 1.930054) (0.734035, 1.57333) (0.769548, 1.360805)

(0.38289, 0.865855) (0.362318, 0.592841) (0.481752, 0.945322) (0.336232, 0.617120)

40 (0.683398, 2.11698) (1.186135, 1.884568) (0.730398, 1.56605) (0.909114, 1.533328)

(0.382939, 0.867074) (0.361540, 0.58687) (0.490418, 0.954358) (0.339513, 0.610786)

Table 4 Pain relief times (in hours) for 20 patients on test

0.828 0.881 1.138 0.879 0.554 0.653 0.698 0.566 0.665 0.917

0.529 0.786 1.110 0.866 1.037 0.788 1.050 0.899 0.683 0.829

Since it is well known that MLEs are asymptotically normal and consequently the
pivotal quantities

α̂ − α
√

V ar(α̂)
,

β̂ − β
√

V ar(β̂)

,

are approximately distributed as standard normal. The (1 − p)100% approximate
confidence intervals for the unknown parameters α and β are respectively given by

α̂ ± z p/2
√

V ar(α̂) and β̂ ± z p/2

√
V ar(β̂) where z p/2 is the (p/2)th upper percentile

of the standard normal distribution. We have performed simulations to tabulate these
intervals and are presented in Table 3 for various combinations of r, n and T . These
intervals are 95% approximate confidence intervals for α and β. Apart from these, the
corresponding HPD Bayesian intervals are also presented in the table. Description of
the prior distribution is given at the beginning of this section. In each cell two intervals
are presented in which the upper ones are estimates of α and the lower ones are that of β.
We observe that for fixed T, n as r increases length of interval decreases. Similar trend
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Table 5 Estimates of α and β for different choices of T, r

T = 0.87 T = 1.2

r = 8 r = 12 r = 16 r = 20 r = 8 r = 12 r = 16 r = 20

M L E 2.43654 2.78611 2.75183 2.75183 2.43654 2.78611 3.45077 2.75956

5.90479 6.36915 6.38728 6.38728 5.90479 6.36915 7.06319 6.16772

SB 2.53679 2.66094 2.58574 2.58574 2.53679 2.66094 3.36031 2.73731

5.72464 5.99202 5.91351 5.91351 5.72464 5.99202 6.78365 6.13979

MC SB 1.48879 2.37499 2.30892 2.80206 1.91399 2.48385 3.26914 2.6686

4.38376 5.6238 4.8575 5.37631 5.11464 5.50905 5.72781 6.01425

L B1 2.7192 2.77347 2.69015 2.69015 2.71924 2.77347 3.48417 2.78695

h = −0.25 6.06876 6.23257 6.14728 6.14728 6.06876 6.23257 7.00699 6.27011

MC L B1 1.51466 2.4017 2.34814 2.87582 1.94879 2.51271 3.36852 2.71459

h = −0.25 4.47646 5.72302 4.90639 5.46706 5.25432 5.57659 5.80776 6.1241

L B2 2.45682 2.61458 2.54285 2.54285 2.45682 2.61458 3.30973 2.7175

h = 0.1 5.58124 5.8937 5.8181 5.8181 5.58124 5.8937 6.6926 6.08747

MC L B2 1.47889 2.36432 2.29304 2.77129 1.89979 2.47192 3.22756 2.65073

h = 0.1 4.34449 5.58056 4.83645 5.33596 5.05227 5.47914 5.69416 5.97131

L B3 2.14214 2.43678 2.37812 2.37812 2.14214 2.43678 3.11951 2.6414

h = 0.5 5.10521 5.5522 5.48577 5.48577 5.10521 5.5522 6.37368 5.89595

MC L B3 1.44127 2.3212 2.22874 2.64303 1.84114 2.42167 3.05641 2.58207

h = 0.5 4.1772 5.38893 4.74397 5.15265 4.77286 5.34112 5.55163 5.80452

E B1 2.36364 2.57223 2.5015 2.5015 2.36364 2.57223 3.28468 2.70157

w = −0.5 5.59891 5.90998 5.83289 5.83289 5.59891 5.90998 6.71651 6.09732

MC E B1 1.45566 2.35112 2.27209 2.74063 1.8716 2.4572 3.19968 2.63492

w = −0.5 4.33552 5.58274 4.83435 5.33568 5.04723 5.47977 5.69725 5.97811

E B2 2.04604 2.40702 2.34474 2.34474 2.04604 2.40702 3014184 2.63366

w = 0.5 5.36259 5.75292 5.67856 5.67856 5.36259 5.75292 6.58649 6.01469

MC E B2 1.38748 2.29827 2.19166 2.60071 1.77049 2.39539 3.04743 2.56687

w = 0.5 4.22877 5.49233 4.78332 5.24457 4.89245 5.41401 5.63257 5.90485

E B3 1.92788 2.33729 2.27846 2.27846 1.92788 2.33729 3.07871 2.6026

w = 1 5.25846 5.6807 5.60762 5.60762 5.25846 5.6807 6.52537 5.97531

MC E B3 1.3518 2.26843 2.14785 2.52105 1.71065 2.35981 2.96643 2.5325

w = 1 4.16974 5.4424 4.75513 5.19378 4.80437 5.37702 5.5984 5.86767

is observed for fixed r, n and T is allowed to increase. In general, length of intervals
decreases with increase in n. Overall, it is clear from the tabulated interval estimates
that HPD intervals are superior to the corresponding approximate confidence intervals.

7 Data analysis

In this section, we present two examples to illustrate our proposed methods of estima-
tion.
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Table 6 Interval estimates of α and β for different choices of T, r

T = 0.87 T = 1.2

r Approx.confidence HPD Approx.confidence HPD
Intervals intervals Intervals intervals

8 (0, 5.22374) (1.50729, 2.48394) (0, 5.22374) (1.71806, 3.4132)

(2.27102, 9.53856) (3.25012, 5.77316) (2.27102, 9.53856) (3.48766, 6.14464)

12 (0.67133, 4.90089) (2.14957, 3.86352) (0.671333, 4.90089) (2.2074, 4.4385)

(3.38016, 9.35814) (3.76481, 6.36898) (3.38016, 9.35814) (4.05817, 6.44153)

16 (0.668874, 4.83479) (1.96319, 4.06883) (1.40687, 5.49467) (2.94028, 4.17414)

(3.37878, 9.39579) (3.58253, 5.93138) (4.38914, 9.73724) (4.50068, 6.58305)

20 (0.668874, 4.83479) (2.05203, 4.16715) (1.52149, 3.99763) (1.87673, 4.30378)

(3.37879, 9.39579) (3.63044, 5.91091) (4.15369, 8.18174) (4.28684, 7.97206)

Example 1 (real data): In this example, a real data as reported in Wingo (1993a) is
taken up for the purpose of illustration. Thirty patients were involved in a clinical
trial that measures the effectiveness of an anesthetic antibiotic ointment in relieving
a certain kind of pain and observed data set is presented in Table 4. To realize dif-
ferent censoring schemes, two choices 0.87 and 1.2 for T and four different choices
such as 8, 12,16, 20 for r have been considered. Bayesian estimates, against linex
and entropy loss functions respectively, are evaluated for three different choices of
h and w as mentioned in Section 6. Furthermore, noninformative prior distribution
is taken in to consideration to evaluate these estimates. This prior distribution corre-
sponds to the case when hyperparameters are defined as p = q = a = b = 0. In
Table 5, average values of all estimates are tabulated. In each cell the upper value
indicates an average estimate of α and lower value indicates an average estimate of β.
From the tabulated estimates now we review the consequence of the shape param-
eters h and w. It is well known for the loss function L L B that h > 0 implies that
overestimation results in more penalty than underestimation and reverse is true for
h < 0. Also L L B becomes symmetric for h close to zero and hence approximately
behaves as the loss function L SB itself. In a similar manner it is to be noted for
the loss function L E B that w > 0 means overestimation is more serious than under
estimation and opposite is true for w < 0. The case w = −1 approximately corre-
sponds to the loss function L SB . For the loss function L L B we find that when h = 0.1
the corresponding Bayes estimates using Lindley method (L B2 row ) are quite sim-
ilar in nature to the squared error Bayes estimates (SB row). This is true for both
the parameters α and β. Similar findings are noticed between corresponding MCMC
estimates (between MC SB and MC L B2 rows). Moreover, h < 0 results in overesti-
mation and alike positive value resulted in underestimation (see rows L B1, MC L B1
and L B3, MC L B3). From the reported estimates analogous observations can be made
for the loss function L E B as well. In addition we observed that resulting estimates
(not presented in table) for w = −1 are approximately similar to the corresponding
squared error Bayes estimates. The 95%, approximate confidence intervals and the
corresponding noninformative HPD intervals for unknown parameters are given in
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Table 7 Estimates of α and β for different choices of T, r

T = 2.5 T = 10

r = 35 r = 40 r = 45 r = 50 r = 35 r = 40 r = 45 r = 50

M L E 1.64149 1.66656 1.66826 1.66826 1.63175 1.66656 1.67002 1.69346

1.10332 1.08179 1.03948 1.03948 1.10332 1.08179 0.959039 0.859687

SB 1.65623 1.66895 1.69148 1.69148 1.65623 1.66895 1.71221 1.72768

0.703725 0.70902 0.718425 0.718425 0.703725 0.70902 0.727266 0.73395

MC SB 1.76627 1.70786 1.68342 1.70934 1.68836 1.70421 1.71078 1.73606

0.735105 0.707889 0.711928 0.724113 0.703731 0.724062 0.731662 0.733963

L B1 1.6658 1.67739 1.69984 1.69984 1.6658 1.67739 1.72028 1.73539

h = −0.25 0.70484 0.710088 0.71939 0.71939 0.70484 0.710008 0.728189 0.734834

MC L B1 1.75098 1.71459 1.68972 1.71641 1.69761 1.7114 1.71779 1.74233

h = −0.25 0.746778 0.708682 0.712753 0.725092 0.704582 0.725413 0.73262 0.73486

L B2 1.65235 1.66558 1.68812 1.68812 1.65235 1.66557 1.70897 1.72448

h = 0.1 0.703279 0.708625 0.718038 0.718038 0.703279 0.708625 0.726897 0.733597

MC L B2 1.76311 1.70521 1.68093 1.70652 1.68467 1.70134 1.70814 1.73357

h = 0.1 0.734436 0.70752 0.711599 0.723723 0.703389 0.723524 0.73128 0.733606

L B3 1.63667 1.65187 1.67467 1.67467 1.63667 1.65187 1.69605 1.71205

h = 0.5 0.70149 0.707044 0.716494 0.716494 0.70149 0.707044 0.725422 0.732184

MC L B3 1.76007 1.69469 1.67112 1.69536 1.67001 1.68987 1.69692 1.72377

h = 0.5 0.731763 0.706293 0.710268 0.722167 0.702011 0.72139 0.729756 0.732178

E B1 1.64422 1.6586 1.68147 1.68147 1.64422 1.6586 1.70273 1.71858

w = −0.5 0.700533 0.706228 0.715737 0.715737 0.700533 0.706228 0.724735 0.731545

MC E B1 1.74672 1.70012 1.67609 1.70108 1.67734 1.69564 1.70259 1.72895

w = −0.5 0.730497 0.705591 0.709617 0.72142 0.701207 0.720402 0.729052 0.73152

E B2 1.61998 1.63798 1.66158 1.66158 1.61998 1.63795 1.68399 1.69489

w = 0.5 0.694188 0.700695 0.710416 0.710416 0.694188 0.700695 0.719716 0.717261

MC E B2 1.73614 1.68474 1.66515 1.68445 1.65515 1.67807 1.68603 1.71479

w = 0.5 0.721186 0.700885 0.704978 0.716027 0.695956 0.713176 0.723827 0.726615

E B3 1.60803 1.62775 1.65188 1.65188 1.60803 1.62775 1.66079 1.67217

w = 1 0.691077 0.697986 0.707812 0.707812 0.691077 0.697986 0.706783 0.714448

MC E B3 1.72511 1.67711 1.65433 1.67607 1.64403 1.66905 1.67768 1.70775

w = 1 0.716513 0.698479 0.702645 0.71338 0.693235 0.709614 0.721213 0.724154

Table 6. Tabulated interval estimates indicate that respective HPD intervals of α and β

are better than the corresponding approximate intervals in terms of average confidence
lengths obtained.

Example 2 (simulated data): Now, we analyze a simulated data. We generated a ran-
dom sample of size 50 form the Burr(α, β) distribution when α = 1.75 and β = 0.75
and it is presented below.
(0.002364, 0.011179, 0.011244, 0.012832, 0.012928, 0.023610, 0.027941,

0.032392, 0.042600, 0.043105, 0.050557, 0.086071, 0.109661, 0.110407,
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Table 8 Interval estimates of α and β for different choices of T, r

T = 2.5 T = 10

r Approx.confidence HPD Approx.confidence HPD
Intervals intervals Intervals intervals

35 (1.17406, 2.42891) (1.70021, 2.65304) (1.17406, 2.42891) (1.65702, 2.31306)
(0.803247, 1.4034) (0.559513, 0.858067) (0.803247, 1.4034) (0.5395, 0.735905)

40 (1.14752, 2.1856) (1.54338, 2.42033) (1.14752, 2.1856) (1.55674, 2.32179)
(0.811762, 1.35182) (0.57459, 0.869229) (0.811762, 1.35182) (0.553672, 0.90469)

45 (1.16315, 2.17337) (1.5416, 2.32813) (1.18195, 2.15809) (1.42727, 2.17595)
(0.787352, 1.29162) (0.563813, 0.897924) (0.734793, 1.18328) (0.568619, 0.895999)

50 (1.16315, 2.17337) (1.54495, 2.40061) (1.21301, 2.17391) (1.26712, 1.94602)
(0.787352, 1.29162) (0.562963, 0.900332) (0.665116, 1.05426) (0.572934, 0.886567)

0.115289, 0.119603, 0.135456, 0.160769, 0.171359, 0.174453, 0.244127,

0.268485, 0.291922, 0.304341, 0.323495, 0.358663, 0.461046, 0.490933,

0.544673, 0.742816, 0.799236, 0.879709, 0.923331, 0.942758, 1.193695,

1.212691, 1.368704, 1.389984, 1.673183, 2.080375, 2.306880, 2.321189,

2.718939, 2.895837, 3.783631, 4.219413, 4.370727, 5.139879, 14.359924,

21.515639)

For different values of T (2.5 and 10) and r(35, 40, 45 and 50), all average point
estimates of α and β are tabulated in Table 7. Among these, Bayesian estimates are
evaluated against the prior distribution as defined in (3.1). For convenience, choices
for hyperparameters are taken as a = 4, b = 3, p = 10.5, q = 6. From the pre-
sented values we observed that on average Bayesian estimates are closer to the true
values of the parameters compare to the corresponding MLEs. For the parameter α,
the MCMC estimate obtained under the squared error loss function performs really
well. Among estimates obtained under linex loss function the MCMC estimate for the
choice h = −0.25 seems to be a good choice. For the entropy loss function, the MCMC
estimate corresponding to the choice w = −0.5 is the best among the other estimates.
Overall, MCMC estimate obtained under the squared error loss is less biased for esti-
mating α compared to all other estimates. It is also observed that for estimating β the
MCMC estimate obtained under linex loss for the choice h = −0.25 is the best in the
sense that it is less biased than all other estimates. The 95%, approximate confidence
intervals and HPD intervals are provided in Table 8. Tabulated intervals indicate that
HPD intervals are superior than the asymptotic intervals in terms of average confidence
lengths obtained.
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