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Abstract The profile likelihood of the reliability parameter θ = P(X < Y ) or of
the ratio of means, when X and Y are independent exponential random variables, has a
simple analytical expression and is a powerful tool for making inferences. Inferences
about θ can be given in terms of likelihood-confidence intervals with a simple alge-
braic structure even for small and unequal samples. The case of right censored data
can also be handled in a simple way. This is in marked contrast with the complicated
expressions that depend on cumbersome numerical calculations of multidimensional
integrals required to obtain asymptotic confidence intervals that have been traditionally
presented in scientific literature.

Keywords Comparison of exponential distributions · Exponential right censored
data · Exponential stress–strength models · Profile likelihood of reliability parameter ·
ROC curves
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1 Introduction

Whenever the comparison of the distributions of two exponential random variables X
and Y is of interest, inferences about θ = P(X < Y ) provide a way of summarizing
this comparison in terms of a single parameter. The parameter θ is frequently called
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the reliability or stress–strength parameter. The importance of θ arises in industrial
contexts, since the reliability of a component can be described in terms of the stress
experienced by the component, described by X, and the strength of the component
available to overcome the stress, represented by Y. If the stress exceeds the strength,
the component fails, and otherwise it resists. In such a setting, reliability is thus defined
as the probability of not failing, which is therefore θ = P(X < Y ) and is thus desired
to be close to one. However, θ arises in many other areas of application aside from
industry. The exponential distribution is widely used to model waiting, failure, or sur-
vival times in medicine, behavioral neuroscience, genetics, seismology, biology, and
other areas.

There is also a strong connection, between θ and the receiving operating character-
istic (ROC) curves that can be used to compare the distributions of X and Y, that have
important applications in medicine (Sullivan Pepe 2000; Krzanowski and Hand 2009),
particularly in the case of exponential distributions. For any continuous independent
random variables X, Y , the area under the corresponding ROC curve is precisely equal
to θ (Kotz et al. 2003, pp. 202–203; Krzanowski and Hand 2009, Sect. 2.4.1).

The traditional inferences about θ are described in Sect. 2 and usually require the
estimation of the asymptotic mean squared error of the maximum likelihood estimate
(mle) θ̂ that involves non trivial expressions. In the case of small samples, the mles are
criticized for being biased. Consequently, unbiased estimation methods for θ have been
preferred. These require obtaining θ̃ , the unique minimum variance unbiased estimate
(UMVUE) of θ , and of the variance of θ̃ , in order to obtain confidence intervals for θ .

The estimation of θ in the case of uncensored exponential random variables has
been widely discussed in scientific literature (Tong 1974, 1975; Kelley et al. 1976;
Sathe and Shah 1981; Chao 1982; Cramer and Kamps 1997; Kotz et al. 2003, and from
a Bayesian approach: Enis and Geisser 1971; Ventura and Racugno 2011). However,
complicated procedures and expressions are given in these works. The asymptotic
procedures used generally involve cumbersome numerical calculations of integrals
(frequently multidimensional) over restricted domains that have very complicated
analytical expressions, even in a simple case as the exponential.

When having censored observations, further complications arise. The case of cen-
sored data has been explored by only a few to our knowledge for the exponential case,
such as Jiang and Wong (2008), Ismail et al. (1986), and Saracoglu et al. (2011). Jiang
and Wong (2008) consider a Type 2 right censoring sampling scheme under the same
exponential models described here. They propose estimation intervals for θ that have
accurate confidence levels but involve as well very complicated expressions that have
to be calculated numerically. Ismail et al. (1986) focus again on unbiased minimum
variance point estimates of θ that involve complicated expressions. More recently,
Saracoglu et al. (2011) explore the exponential case under a progressive Type 2 cen-
soring. They compare the performance of three point estimates for θ : the uniformly
minimum variance unbiased estimator, a Bayes estimate, and the mle. The first two
estimates involve again complicated expressions and numerical methods. They recom-
mend using the mle of θ and they present exact confidence intervals based on the same
F pivotal quantity that was used by Jiang and Wong (2008), without acknowledging
that the intervals can be quite close to the corresponding profile likelihood intervals
(LIs) of θ . In Sect. 6 here, it will be shown that these confidence intervals have a
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similar form as the simple profile LIs of θ that will be proposed here for several types
of right censoring.

In stark contrast to all statistical procedures that have been described so far, the
profile likelihood of θ on its own has been largely ignored despite the fact that it is the
immediate result of the probabilistic model and has a very simple analytical expression
for the exponential case. The analysis of the whole profile likelihood function pro-
vides a powerful though simple way for estimating separately a parameter of interest
in the presence of unknown nuisance parameters. Montoya et al. (2009) mentioned
that the profile likelihood has been unduly criticized for giving strange or unintuitive
results. These results arise because of having considered density functions that have
singularities and because of having defined the likelihood function as proportional to
the joint density function of the observed sample. If the likelihood is defined instead
as described in Kalbfleisch (1985, Sect. 9.5), the alleged problems of the profile like-
lihood disappear. The particular case of the exponential distributions poses no such
problems for the profile likelihood function of θ that is suggested here, because the
corresponding density functions are bounded.

Therefore, the profile likelihood can be used to provide informative and accurate
estimation intervals about the parameter of interest through the corresponding profile
LIs. It will be shown here that inferences about θ , as well as for the ratio of exponential
means ϕ, given in terms of profile LIs have a very simple algebraic form, thus enhanc-
ing their scientific interpretation. These intervals also have good coverage frequencies
even for small and/or unequal sample sizes in the exponential case.

The possibility of extending the results presented here for the exponential case to
more complex censoring situations and/or to other more general families of distribu-
tions is feasible under certain conditions that will also be discussed. For instance, the
algebraic structure of the profile likelihood of θ in the exponential case coincidentally
is the same as the one obtained for some other families of distributions. Therefore, the
ideas presented here could also be applied to these other more general cases; however,
that will be explored in future work.

Overall, the great algebraic simplicity of the proposed likelihood confidence (LC)
intervals for θ is noteworthy in contrast to the traditional confidence intervals given
in literature that require very complicated calculations.

2 Traditional inferences about θ in the exponential case

Consider a sample x = (x1, . . . , xn) of independent identically distributed (i id)
exponential random variables with mean α and a second independent sample y =
(y1, . . . , ym) of i id exponential random variables with mean β. Let t = ∑n

i=1 xi ,
s =∑m

i=1 yi and the sample means are x̄ = t/n and ȳ = s/m.
In the exponential case as well as in more general settings, the usual inferential

procedure of θ involves several steps, as mentioned in Kotz et al. (2003, p. 12), who
offer an extensive review on the matter:

(a) Express θ as a function of the parameters in the model.
(b) Calculate the mles of the parameters in the model.
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(c) Calculate θ̂ , the mle of θ , from the mles obtained in (b) using the invariance
property of the likelihood function under reparametrizations.

(d) Provide confidence intervals for θ , usually resorting to asymptotic methods.

Even in the simple case when both samples x and y are exponentially distributed,
complicated expressions can arise when using asymptotic methods to calculate con-
fidence intervals for θ , as mentioned in step (d). An example of this is the following
UMVUE of θ that was presented in Tong (1974, 1975) and also in Kotz et al. (2003,
p. 22),

θ̃ =
{

Q1 (n, m, nx̄, mȳ) , if mȳ ≤ nx̄,

Q2 (n, m, nx̄, mȳ) , if mȳ > nx̄,
(1)

where

Q1 (a, b, c, d) =
a−2∑

i=0

(−1)i Γ (a) Γ (b)

Γ (a − i − 1) Γ (b + i + 1)

(
d

c

)i+1

,

and

Q2 (a, b, c, d) =
a−2∑

i=0

(−1)i Γ (a) Γ (b)

Γ (a + i) Γ (b − i)

( c

d

)i
.

The corresponding UMVUE of the variance of θ̃ is

σ̃ 2 = θ̃2 −
(
n2 − 3n + 2

) (
m2 − 3m + 2

)

n2m2 x̄n−1 ȳm−1 H (n, m, x̄, ȳ) , (2)

where

H (n, m, x̄, ȳ) =
∫

B

(

x̄ − b1 + b2

n

)n−3

(

ȳ − b3 + b4

m

)m−3

db1db2db3db4, (3)

and B = {(b1, b2, b3, b4) : b1 + b2 < nx̄, b3 + b4 < mȳ, 0 < b1 < b3, 0 < b2 <

b4}. Then, a 100(1 − γ )% confidence interval for θ is given by

(
θ̃ − z1−γ /2σ̃ , θ̃ + z1−γ /2σ̃

)
, (4)

where z1−γ /2 is the quantile of probability 1 − γ /2 of a standard normal distribution.
Kotz et al. (2003, p. 38) warn their readers that for calculating (3) and the confidence
interval (4) “even with the modern computer facilities, an application [of these for-
mulae] may require substantial numerical effort”. They then obtain, only for the case
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of equal sample sizes n = m, an asymptotic expression for the MSE(θ̂ ), which is
based on another asymptotic expression for the mean squared error of θ̂ given in Chao
(1982),

σ̃ 2∗ = 2ϕ̂2

n
(
1 + ϕ̂

)4 + 4ϕ̂2
(
2ϕ̂ − 1

) (
ϕ̂ − 2

)

n2
(
1 + ϕ̂

)6 ,

where ϕ̂ = x̄/ȳ, the mle for the ratio of means ϕ. Therefore, a 100(1−γ )% confidence
interval for θ can finally be given as

(
θ̃ − z1−γ /2σ̃∗, θ̃ + z1−γ /2σ̃∗

)
.

Note that the sample sizes must be equal, n = m, in order to have feasible calculations.
The exponential distribution is one of the few cases when P (X < Y ) is of inter-

est, where there are pivotal quantities associated with the parameter θ . A pivotal is
a function of the sample and θ that has a distribution not depending on any unspeci-
fied parameters. Such a quantity was considered in a Bayesian approach by Enis and
Geisser (1971) and presented in Kotz et al. (2003, Sect. 2.4.6). However, this piv-
otal cannot be used in a simple way to produce confidence intervals about θ , without
unmanageable numerical calculations.

There is another much simpler F pivotal quantity associated with θ in the expo-
nential case that was presented in Jiang and Wong (2008). It was used to obtain exact
confidence intervals for θ in order to compare the corresponding coverage frequencies
in simulations with those of their proposed improved confidence intervals that must
be obtained numerically. This pivotal quantity was also used for making inferences
about θ in the exponential case in Saracoglu et al. (2011) and it leads to as simple
expressions as the ones presented in Sect. 5.

3 Inferences about θ using the profile likelihood in the exponential case

In great contrast to the foregoing complicated calculations of the previous section, the
profile likelihood of θ provides a much simpler way of making inferences about θ ,
separately from the other unknown nuisance parameter. This likelihood function is a
direct consequence of the probabilistic model and it has a simple expression as shown
below for the exponential case.

Let X and Y be two independent exponential random variables with respective
means α and β. The corresponding distribution functions are FX = 1 − exp (−x/α)

and FY = 1 − exp (−y/β), respectively. The reliability parameter θ can be given as
an explicit function of α and β,

θ = P (X < Y ; α, β) = β

α + β
= 1

(α/β) + 1
= 1

ϕ + 1
,
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where ϕ = α/β is the ratio of exponential means. Since θ is also a one to one func-
tion of the ratio of exponential means, inferences about θ necessarily correspond to
inferences about ϕ.

For the case of exponential distributions, the following result can be proved in a
straightforward manner. The reliability parameter θ = 1/2 if and only if FX (z) =
FY (z) for all z ∈ R. Therefore inferences about θ are equivalent to statements about
the comparison of the two underlying exponential distributions. When the equality of
the distributions holds, θ = 1/2 and ϕ = 1.

When X and Y are exponentially distributed as described above, the likelihood
function of α and β can be written as

L (α, β; x, y) ∝ α−nβ−m exp

(

− t

α
− s

β

)

. (5)

The mles of α and β are the sample means,

α̂ = 1

n

n∑

i=1

xi = t

n
= x̄ and β̂ = 1

m

n∑

i=1

yi = s

m
= ȳ.

By the invariance property of likelihood, the corresponding mles of θ and ϕ are

θ̂ = β̂

α̂ + β̂
and ϕ̂ = α̂

β̂
.

The likelihood function (5) reparametrized in terms of (θ, β) is

L (θ, β; x, y) ∝
(

θ

1 − θ

)n

β−(n+m) exp

{

− 1

β

[
s + (t − s) θ

1 − θ

]}

.

The profile likelihood of θ can be obtained from this likelihood and has the following
simple analytical expression,

L p (θ; x, y) = max
β|θ L (θ, β; x, y) = L[θ, β̂ (θ) ; x, y]

∝ θn (1 − θ)m

[s + (t − s) θ ]n+m , (6)

where β̂(θ) is the restricted mle of β for a specified θ . However when samples are
small and/or unequal, this profile likelihood can be very asymmetric. In such cases
asymptotic confidence intervals of θ could be misleading and they would have poor
coverage frequencies.

The log relative profile likelihood function of θ is

rp(θ; x, y) = ln

[
L p (θ; x, y)

L p(θ̂; x, y)

]

.
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Its Taylor series expansion about the mle θ̂ ,

rp (θ; x, y) = −u2
θ

2
− F3(θ̂)

3! u3
θ + F4(θ̂)

4! u4
θ − · · · , (7)

can be expressed as a power series of the quantity uθ = (θ̂ − θ)
√

I
θ̂
, where I

θ̂
is the

observed Fisher information of θ ,

I
θ̂

= − ∂2rp (θ; x, y)

∂θ2

∣
∣
∣
∣
θ=θ̂

, (8)

F3(θ̂) = ∂3rp (θ; x, y)

∂θ3

∣
∣
∣
∣
θ=θ̂

I −3/2
θ̂

, (9)

and

F4(θ̂) = ∂4rp (θ; x, y)

∂θ4

∣
∣
∣
∣
θ=θ̂

I −2
θ̂

; (10)

(see Sprott 2000, Sects. 9.1, 9.2, and 9.5 and Kalbfleisch 1985, Sect. 9.7). The quantity
uθ has the structure of a linear pivotal, one that is a linear function of θ , and is distrib-
uted asymptotically as a standard normal variable. However this result may hold as
well for small samples whenever the shape of rp(θ; x, y) is symmetric about θ̂ and
parabolic. This happens when F3(θ̂) is close to zero and F4(θ̂) is small.

The quantities F3(θ̂) and F4(θ̂) depend only on the sample and are statistics that
determine the asymmetry and the thickness of the tails of the profile likelihood func-
tion. Values of F3(θ̂) close to zero are indicative of a symmetric profile likelihood
function about θ̂ . Small values of F4(θ̂) indicate a peakedness similar to those of
a normal profile likelihood (the one obtained from a sample of normal independent
random variables). If F3(θ̂) and F4(θ̂) and the remaining terms of the Taylor expansion
in (7) are negligible, then the relative likelihood function will be symmetric about θ̂

and parabolic. This is a case where the quadratic term in the Taylor expansion suffices
to describe well rp(θ; x, y). That is, the normal approximation denoted as

rN (θ; x, y) = −u2
θ

2
, (11)

will practically overlap the relative log profile likelihood rp(θ; x, y) for all θ .
As stated in the Maximum Likelihood Theorem (Serfling 1980, p. 145), under some

regularity conditions, as the sample size tends to infinity, only the quadratic term in
(7) remains, since the rest of the terms converge to zero. However as mentioned, this
asymptotic result might be reasonable for a finite, even small sample, when the log
relative likelihood can be well approximated only with the quadratic term. For a fixed
sample size, sometimes a suitable one to one parametrization δ = g(θ) can be found
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that symmetrizes the likelihood function of θ in order for this approximation to hold.
This parametrization is such that the quantity F3(δ̂) is zero and F4(δ̂) is small. Such a
reparametrized likelihood can be denoted as r∗

p(δ; x, y) = rp[g−1(δ); x, y] and will

be symmetric about the mle δ̂ and parabolic.
In such a case, it can be assumed that the corresponding quantity uδ = (δ̂ − δ)

√
I
δ̂

already has reached its asymptotic standard normal distribution for the current sample,
so that

(1 − γ ) = P[−z ≤ uδ ≤ z]

= P

[

δ̂ − z
√

I
δ̂

≤ δ ≤ δ̂ + z
√

I
δ̂

]

,

where z is the quantile of probability (1 − γ /2) of a standard normal variable. There-
fore, the LC interval of δ of likelihood level exp(−z2/2) and of confidence level (1−γ )

has the simple form,

δ = δ̂ ± z
√

I
δ̂

. (12)

Inferences about θ can then be obtained by the invariance property of the likelihood
function by merely transforming back to the scale of θ the endpoints of the interval
given in (12) (see Kalbfleisch 1985, Chap. 11; Sprott 2000, Sects. 9.1 and 9.2).

In the case of the exponential model for X and Y considered here,

I
θ̂

= nm

(n + m)
[
θ̂ (1 − θ̂ )

]2 , (13)

F3(θ̂) =
2
[
n + (n + m) (1 − 3θ̂ )

]

√
nm (n + m)

(14)

and

F4(θ̂) = −6

nm (n + m)

[
c1θ̂

2 − c2θ̂ (1 − θ̂ ) + c3(1 − θ̂ )2
]
, (15)

where c1 = 3m2 + 3nm + n2, c2 = 2m2 + 6nm + 2n2, and c3 = m + 3nm + 3n2.
More details about how these expressions were calculated are given in the Appendix.

The procedure that was used here to select an adequate reparametrization δ = g(θ)

was simply to choose δ such that the third derivative in F3(δ̂) was equal to zero, where
δ̂ is the mle of δ; the corresponding value of F4(δ̂) was also checked to be small. The
proposal of the function g was made by trial and error. This procedure is described in
more detail in the Appendix.
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Let

k = (n − m)

3(n + m)
. (16)

Then, such a symmetrizing reparametrization is

δ =
{

log [θ/ (1 − θ)] = log (β/α) , if n = m, (k = 0) ,

[θ/ (1 − θ)]k = (β/α)k , if n �= m, (k �= 0) .
(17)

Note that this power transformation of the parameter ϕ−1 = β/α has a similar alge-
braic structure to that of the Box and Cox (1964) normalizing power transformations
for random variables.

The mle of δ is thus obtained by replacing the mles θ̂ or (α̂, β̂) in (17). The reverse
transformation is

θ =
{

1/
(
1 + e−δ

)
, if n = m, (k = 0) ,

1/
(
1 + δ−1/k

)
, if n �= m, (k �= 0) .

The observed information of δ is

I
δ̂

=
{

n/2, if n = m,

nm
[
(n + m) k2δ̂2

]−1
, if n �= m.

As mentioned, F3(δ̂) = 0 and the values of F4(δ̂) are

F4(δ̂) =
{

1/n, if n = m,

−(2/9)
[
n−1 + m−1 − 13 (n + m)−1] , if n �= m.

Note how these values become smaller as sample sizes n and m increase.
The reparametrized likelihood r∗

p(δ; x, y) is symmetric about δ̂ and parabolic for
all values of n and m; the corresponding normal approximation r∗

N (δ) = −u2
δ/2 is

practically identical to r∗
p(δ; x, y) for all δ. Therefore LC intervals can be obtained

for δ as in (12) and these can be transformed back to the scale of θ . These LC intervals
for θ are thus

⎡

⎣

(

1 + α̂

β̂

1

exp
(−z

√
2/n
)

)−1

,

(

1 + α̂

β̂

1

exp
(
z
√

2/n
)

)−1
⎤

⎦ , if n = m, (18)

and if n �= m,

⎡

⎢
⎣

⎛

⎜
⎝1+ α̂

β̂

1
[
1 + zk

√
n+m
nm

]1/k

⎞

⎟
⎠

−1

,

⎛

⎜
⎝1+ α̂

β̂

1
[
1−zk

√
n+m
nm

]1/k

⎞

⎟
⎠

−1⎤

⎥
⎦ , if k > 0,

(19)
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or

⎡

⎢
⎣

⎛

⎜
⎝1+ α̂

β̂

1
[
1−zk

√
n+m
nm

]1/k

⎞

⎟
⎠

−1

,

⎛

⎜
⎝1 + α̂

β̂

1
[
1 + zk

√
n+m
nm

]1/k

⎞

⎟
⎠

−1⎤

⎥
⎦ , if k < 0.

(20)

Note that these expressions are simple and have not been given before in scientific
literature up to our knowledge. The likelihood level exp(−z2/2) of these intervals is
exact and the confidence level (1 − γ ) is approximate, though quite accurate. These
intervals will be compared with the exact confidence intervals of θ that can be obtained
from a pivotal quantity having an F distribution that will be described in Sect. 5.

4 Inferences about the ratio of exponential means

An alternative way of comparing two exponential distributions is through the ratio
of their means ϕ = α/β. By the invariance of the likelihood function, since θ =
(ϕ + 1)−1, the profile likelihood of ϕ can be obtained from (6) and is

L p (ϕ; x, y) = ϕm [sϕ + t]−(n+m) .

Since ϕ is a one to one function of θ or of δ, by making likelihood inferences about
θ and δ in the way suggested in the previous section, inferences can be made thus as
well for ϕ in terms of LC intervals,

ϕ = ϕ̂ exp

(

±z

√
2

n

)

, if n = m, (21)

and

ϕ = ϕ̂

(

1 ± zk

√
n + m

nm

)−1/k

, if n �= m, (22)

where z is the normal quantile of probability 1 − γ /2. The likelihood level of these
intervals is exp(−z2/2) and the approximate confidence level is (1 − γ ). Note that
the intervals (18)–(20) can be written in a more compact way as the intervals (21)
and (22); however for the sake of the comparison with the intervals presented in the
following section, they were written in a more expanded form.

5 Confidence intervals of θ and ϕ obtained from a pivotal

The following two are pivotal quantities that involve the exponential samples and the
parameters α and β, respectively. These pivotals follow χ2 distributions with 2n and
2m degrees of freedom, respectively,
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G (α, x) = 2n
α̂

α
∼ χ2

(2n), and G (β, y) = 2m
β̂

β
∼ χ2

(2m). (23)

The ratio of these pivotals divided by their respective degrees of freedom is also a
pivotal quantity that has an F distribution with 2n and 2m degrees of freedom,

G (α, x) /2n

G (β, y) /2m
= α̂β

β̂α
=
(
θ̂−1 − 1

)

(
θ−1 − 1

) = ϕ̂

ϕ
= δ1/k

δ̂1/k
∼ F(2n, 2m).

This F pivotal quantity is a one to one function, though non linear, of θ , δ or ϕ. There-
fore it can be used to obtain a confidence interval of probability (1 − γ ) for θ for all
sample sizes. For instance, for a (1 − γ ) × 100 % confidence level,

(1 − γ ) = P[Fγ /2 ≤ δ1/k

δ̂1/k
≤ F1−γ /2]

= P
[
δ̂
(
F1−γ /2

)k ≤ δ ≤ δ̂
(
Fγ /2

)k
]

(24)

= P
[
ϕ̂/F1−γ /2 ≤ ϕ ≤ ϕ̂/Fγ /2

]

= P

[(

1 + α̂

β̂

1

Fγ /2

)−1

≤ θ ≤
(

1 + α̂

β̂

1

F1−γ /2

)−1
]

, (25)

where Fγ /2 and F1−γ /2 are the quantiles of probabilities γ /2 and (1 − γ /2) of the
F(2n,2m) distribution.

Therefore an exact confidence interval for θ of probability (1 − γ ) for all values of
n and m is

[(

1 + α̂

β̂

1

Fγ /2

)−1

,

(

1 + α̂

β̂

1

F1−γ /2

)−1
]

.

The corresponding confidence interval for ϕ is

[
ϕ̂

F1−γ /2
,

ϕ̂

Fγ /2

]

.

These intervals turn out to be practically the same as the LC interval obtained in
(18)–(22) even in cases where n and m are small. This would give evidence in favor
of the assumption made in Sect. 3 that the asymptotic standard normal distribution of
the pivotal quantity uδ holds for the given small sample sizes in consideration. The
closeness of these intervals will be shown in the examples of Sect. 7.

The similarity of the algebraic structure of the intervals for θ obtained using the pro-
posed method of Sect. 3 with these exact confidence intervals for θ suggests exploring
the closeness of the distributions of the following random variables:

(1) The distribution of the random variable W1 = exp
(−Z

√
2/n
)

that is part of
the expression of the interval (18), where Z is a standard normal variable can
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Fig. 1 Densities of W1 (solid) and V1 (dashes) when n = m = 3

be compared to the distribution of the random variable V1 with an F(2n,2m)

distribution that was considered in expression (25) for the case of n = m.
(2) The distribution of the random variable W2 = (

1 + Zk
√

(n + m)/nm
)

that
forms part of the expression of the interval (19) and of interval (20), where Z is
a standard normal variable can compared to the distribution of V2, the k-th power
of the random variable having an F(2n,2m) distribution considered in expression
(24) for the case of n �= m.

The largest discrepancies between these densities are observed when n and m are
small as shown in Figs. 1 and 2 below for some examples with small samples. Note
that by the change of variable theorem, the distribution of W1 is a lognormal random
variable with density function

g (w1) = 1

w1
√

4π/n
exp

[

−n (ln w1)
2

4

]

.

For moderate values of n and m, this density is practically the same as the correspond-
ing density of the random variable V1 that is distributed as an F2n,2m , whose density
is given by

f (v1) = Γ (2n)

Γ (n)2

vn−1
1

(1 + v1)
2n .

Figure 1 shows the overlapping plots of these densities for the case of n = m = 3;
note that g(w1) and f (v1) are practically indistinguishable, particularly in the tails.

The same can be observed in the case of n �= m for the random variable W2 that has a
normal distribution with unitary mean and variance τ 2, where τ = −k

√
(n + m)/nm

whose density function is
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Fig. 2 Densities of W2 (solid) and of V2 (dashes) for n = 8 and m = 4

h (w2) = 1√
2π |τ | exp

[

− (w2 − 1)2

2τ 2

]

.

For moderate values of n and m, this density practically overlaps the density func-
tion of the random variable V2, the k-th power of an F(2n,2m) random variable whose
density is

f (v2) = Γ (n + m) (n/m)n

Γ (n) Γ (m) k

v
(n−k)/k
2

(
1 + n

m v
1/k
2

)n+m .

Figure 2 shows for n = 8 and m = 4, how the corresponding densities h(w2) and
f (v2) are very close. Consequently the estimation intervals for θ , δ, or ϕ will prac-
tically be the same, supporting the fact that the LIs given in (18)–(22) have a very
accurate confidence level even for small sample sizes.

6 Exponential right censored data

As mentioned in the Introduction, the case of right censored data for the exponen-
tial case has been explored by only a few to our knowledge such as Jiang and Wong
(2008), Saracoglu et al. (2011), and Ismail et al. (1986). In the first two of these
works, their proposed estimation intervals have accurate confidence levels but involve
complicated expressions and numerical calculations. The exception to this is the F
confidence intervals for θ given also given by them (Jiang and Wong 2008, p. 642; Sar-
acoglu et al. 2011, formula 26). However, the authors do not compare these intervals
with the corresponding profile LIs of θ as we do here. Ismail et al. (1986) considered
the gamma distributions (which includes the exponential as a particular case) with a
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right censoring scheme, but their interest was focused on point estimates of θ and they
presented complicated expressions.

In contrast, the profile likelihood of θ has again a simple expression in the case of
several schemes of right censoring, as will be described below. Therefore, inferences
about θ or ϕ can be easily given too in terms of LC intervals with a simple algebraic
structure.

The following types of right censoring will be considered here (as described in
Lawless 2003, Sect. 2.2.1) for a sample of size n of (i id) random variables, where
x(1), . . . , x(n1) are the n1 smallest observations. The three types are: (a) Type 1 with a
common right detection limit T1, where x(1), . . . , x(n1) are observed and (n − n1) are
known to fail after time T1, (b) Type 2, where only the n1 smallest data are observed,
x(1), . . . , x(n1), and (n − n1) are known to fail after time x(n1), and (c) progressive
Type 2 censoring that involves a more complex sampling scheme that is described in
Lawless (2003, p. 56) and Saracoglu et al. (2011).

As described in Lawless (2003, Sect. 2.2), all these three sampling schemes lead
to a likelihood function that has the same algebraic structure and this is given for a
general distribution in his formula (Sect. 2.2.3, p.53). In order to simplify the pre-
sentation here, only the first two types of censoring described in (a) and (b) above
will be considered here for the exponential case. Nevertheless, the probability model
considered by Saracoglu et al. (2011) for progressive right censoring in (c) also leads
to a likelihood function with the same algebraic structure as the one presented here
below. Therefore our results are also applicable to this type of censoring.

Assume that x(1), . . . , x(n1) are the first n1 ordered observations of a sample of
size n of i id exponential random variables with mean α. The (n − n1) remaining
observations are known to be larger than x(n1) or than a fixed predetermined value
T1, according to the type of censoring. Let y(1), . . . , y(m1) be the first m1 ordered
observations of a second independent sample of size m of i id exponential random
variables with mean β. The (m − m1) right censored observations, are again known
to be either larger than a common right detection limit time T2, or than observation
y(m1), according to the type of censoring. For simplicity in the following expressions
assume that T1 = x(n1) and T2 = y(m1). Then, let t ′ = ∑n1

i=1 x(i) + (n − n1)T1 and
s′ =∑m1

i=1 y(i) + (m − m1)T2.
The likelihood function of (α, β) for any of this two censoring schemes is thus

L (α, β; x, y) ∝ α−n1β−m1 exp

(

− t ′

α
− s′

β

)

,

after formula (Sect. 2.2.3, Lawless 2003) applied to the corresponding exponential
distributions. Reparametrizing in terms of θ and β, the likelihood function is

L (θ, β; x, y) ∝
(

θ

1 − θ

)n1

β−(n1+m1) exp

{

− 1

β

[
s′ + (t ′ − s′) θ

1 − θ

]}

.

The profile likelihood function of θ for right censored data is thus
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L p (θ; x, y) ∝ θn1 (1 − θ)m1

[s′ + (t ′ − s′) θ ]n1+m1
. (26)

Notice that this function is almost the same as (6) , except that the values of n1, m1
have replaced those of n, m. In this case, the mles are α̂ = t ′/n1, β̂ = s′/m1, and
θ̂ = β̂/(α̂ + β̂). Furthermore, F3(θ̂) and F4(θ̂) are as in (14) and (15) and the LC
intervals for θ are as in (18)–(20) except that again, n is replaced by n1 and m by m1.

The pivotals shown in (23) follow approximately a χ2 distribution even if the sam-
ples are small and the proportion of censoring is large. Consequently, the F pivotal
quantity described in Sect. 6, has an approximate F distribution as well. Therefore
confidence intervals used from these pivotal can be used as suggested in Sect. 5.

The distribution of the quantity −2rp (θ0; x, y), where θ0 is the true value of the
parameter, has an asymptotic χ2 distribution with one degree of freedom, as discussed
in Lawless (2003, Sect. 2.2.3). This asymptotic result usually holds as well even for
small sample sizes in the exponential case and when censoring proportions are large
as can be explored in simulations. This last point is also discussed in Sprott (2000,
Example 2.9.b and Sect. 5.3).

The quantity −2rp (θ0; x, y) is directly linked and determines the coverage fre-
quencies of LIs of θ (Kalbfleisch 1985, Chap. 11). Therefore, LIs obtained from (26)
will usually have adequate coverage frequencies for moderate and small samples.

For making inferences about the ratio of means ϕ when having exponential right
censored observations, the corresponding LC intervals will have the same expressions
as in Sect. 4 except that the mles of α, β must be calculated as described there and the
values of n1, m1 will replace those of n and m, respectively, in all of the corresponding
formulae.

7 Examples

7.1 Small sample examples

The case of small samples arises frequently in reliability settings, where the values of
θ are usually close to one for a very reliable component. In these situations, F3(θ̂) and
F4(θ̂) are usually large in absolute value and thus the corresponding profile likelihood
of θ can be very asymmetric. Table 1 illustrates this situation with two constructed
examples with values of x̄ and ȳ such that θ̂ = 0.99.

Table 1 also shows the Taylor expansion coefficients both for θ and for the proposed
reparametrization δ that symmetrizes the likelihood function for both examples.

Table 1 Possible small sample sized examples with asymmetric profile likelihoods of θ

Examples n m x̄ ȳ θ̂ F3(θ̂ ) F4(θ̂) F3(δ̂) F4(δ̂)

(a) n = m 8 8 10 990 0.99 −1.47 −2.54 0 0.12

(b) n �= m 8 4 10 990 0.99 −1.60 −3.13 0 0.16
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Fig. 3 Relative profile likelihoods of θ for Examples (a) and (b).
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Example (b)

Fig. 4 Relative profile likelihoods of δa and δb (solid) and its normal approximation (dashes) corresponding
to Examples (a) and (b); LI likelihood interval

Figure 3 shows Rp(θ; x, y), the relative profile likelihood of θ , for both exam-
ples which are clearly very asymmetric. Note that the relative profile likelihood of
θ for Example (b), where sample sizes are different, is more asymmetric than the
corresponding one of Example (a).

Figure 4 shows the relative profile likelihood of δ for both examples given in Table
1. These curves are bell shaped and symmetric about their mode, the mle. For both
examples, the normal approximations
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Table 2 LIs of 15 % level from
Rp (θ; x, y); corresponding LC
intervals using the normal
approximation RN (δ; x, y) and
pivotal intervals (PIs) for θ and
ϕ for Examples (a) and (b)

Example (a) (b)

LI θ (0.973, 0.996) (0.969, 0.997)

LC θ (0.974, 0.996) (0.970, 0.997)

PI θ (0.973, 0.996) (0.969, 0.997)

LI ϕ (0.004, 0.027) (0.003, 0.032)

LC ϕ (0.004, 0.027) (0.003, 0.031)

PI ϕ (0.004, 0.028) (0.002, 0.032)

R∗
N (δ; x, y) = exp

[

− (δ − δ̂)2 I
δ̂

2

]

[as in (11) but in terms of δ] practically overlap the corresponding profile likelihoods
of δ, as shown in this figure.

The 15 % likelihood and 95 % confidence intervals for θ and ϕ, both obtained from
the normal approximation of δ, using the formulae of Sects. 3 and 4 are shown in
Table 2. The corresponding intervals obtained with the F pivotal quantity in Table 2
are shown as well and note that they are all quite close.

7.2 Waiting times in a neurobiology experiment

In order to evaluate the effect of a certain drug on memory and learning processes in
mammals, an experiment that involved inhibitory avoidance tasks using Wistar rats
was conducted at the Neurobiology Institute of UNAM (National University of Mex-
ico, Campus Querétaro). As part of this experiment, rats were randomly assigned to a
treatment and a control group of the same size each. The rats on the treatment group
were injected with the drug of interest that is claimed to induce memory loss. The
experiment is described in detail in Díaz-Trujillo et al. (2009).

For the sake of assessing the effect of the drug, the comparison of the times for
doing a given task between the control and the treatment groups of rats becomes
relevant. Traditionally non parametric tests for comparing the medians are used in
Neurobiology in these kind of experiments (Díaz-Trujillo et al. 2009).

Two data sets corresponding to the waiting times in seconds of the treatment and
control groups of rats that were subject to an electric shock of 8 mA will be considered
here. These data were discussed in Díaz-Trujillo et al. (2009). All of these data sets
can be adequately modelled with Exponential distributions. The first data set consists
of the waiting times of 12 rats in the control group and of other 12 rats in the treatment
group. All were uncensored and will be denoted as Escape times. The second data
set consists of the waiting times, denoted Retention times, of the same rats in both
treatment and control groups. Of these, seven waiting times in the control group were
right censored at 600 s. That is, the control group of the Retention Times was the only
one that presented right censored observations. Some descriptive statistics of the two
data sets are given in Table 3.
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Table 3 Descriptive statistics for waiting times of four groups of 12 rats

Times Group Minimum Maximum Mle of mean Empirical median

Escape Control 0.1 3.9 α̂ = 1.7 2.0

Escape Treatment 0.1 5.5 β̂ = 2.1 1.8

Retention Control 24.2 600∗ α̂ = 974.9 600∗

Retention Treatment 6.1 389.2 β̂ = 115.5 81.6

The common right detection limit was 600 s (indicated with an asterisk)
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Fig. 5 Escape times; relative profile likelihoods of θ and ϕ with 15 % LIs and mles (*)

Table 4 Escape and retention
times

LIs of 15 % level from
Rp (θ; x, y) and Rp (ϕ; x, y);
corresponding LC intervals
using the normal approximation
RN (δ; x, y); and PIs for θ and
ϕ

Times Escape Retention

θ̂ 0.55 0.106

LI θ (0.354, 0.733) (0.037, 0.241)

LC θ (0.355, 0.732) (0.037, 0.239)

PI θ (0.351, 0.736) (0.034, 0.238)

ϕ̂ 0.81 8.44

LI ϕ (0.364, 1.822) (3.151, 26.248)

LC ϕ (0.366, 1.813) (3.184, 26.026)

PI ϕ (0.359, 1.848) (3.198, 28.408)

The estimation intervals proposed in Sect. 3 for θ and ϕ are helpful to compare the
exponential distributions of the treatment and control groups. Figure 5a and b show the
relative profile likelihood of θ and ϕ, respectively, for the Escape times. The 15 % LIs
of θ and ϕ are given in Table 4; the mles are marked with asterisks over these intervals.

For the escape times, the values of θ = 0.5 and ϕ = 1 have a large relative like-
lihood and are included in all the intervals, thus supporting the equality of the two
exponential distributions. Note that the LIs and the confidence intervals for θ are
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Fig. 6 Retention times; relative profile likelihoods of θ and ϕ with 15 % LIs and mles (*)

almost the same; the same happens for ϕ. The corresponding PIs are also similar but
slightly wider; nevertheless the values of θ = 0.5 and ϕ = 1 are also included.

For the Retention times, Fig. 6a and b show the corresponding relative profile like-
lihoods of θ and ϕ. The 15 % likelihood intervals (LI θ and LI ϕ of Table 4) are
marked on the curves, and the mles with an asterisk. Again, the LIs and LC intervals
are similar; the PI is again a little wider. Nevertheless, for the Retention times, the
values of θ = 0.5 and ϕ = 1 are excluded from all of the intervals and these values
have negligible relative likelihoods. This means that the data do not support them.
The data provide strong evidence in favor that the exponential mean of the treatment
group is at least three times smaller than the one of the control group. This is in agree-
ment with the non parametric test for the medians presented in Díaz-Trujillo et al.
(2009) where they concluded that amnesia was produced in the treatment group. The
estimation intervals presented here for θ and ϕ provide stronger evidence supporting
their conclusions. The main difference with their analysis is that a suitable exponential
model was used here for their waiting times and that explicit estimation intervals (LC
intervals) can be given for the ratio of means and for θ .

To our knowledge, parametric models that consider right censored observations
have not been considered before in the analyses of this kind of data in neurobiology.

8 Conclusions and possible extensions

Inferences about θ or ϕ in the exponential case can be given in terms of profile LIs that
have simple algebraic expressions and adequate coverage frequencies. The methods
proposed here are particularly useful when having small and/or unequal sample sizes,
as well as when having right censored observations.

The simple algebraic expressions of the LC intervals of θ given in (18)–(22) are
noteworthy when compared to the complicated expressions presented from (1) to (4)
that require heavy or non trivial numerical methods. The latter confidence intervals
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are always symmetric about θ̂ and can be unrealistic or may have poor coverage
frequencies if the likelihood surface is asymmetric.

The exact confidence intervals derived from the F pivotal quantity of Sect. 5 also
have simple algebraic expressions and are practically the same as the profile LIs pro-
posed here for non censored observations, as was shown in the examples. This supports
that the proposed LIs have good coverage properties even for small sample sizes for
uncensored data. For right censored data, the proposed profile LIs and PIs of θ also
have reasonable coverage frequencies even for small sample sizes.

All the results mentioned in Sect. 3 for the profile LIs of θ can be extended as well
to other more general families of distributions, whenever the algebraic structure of the
profile likelihood of θ is the same as the one presented here. This occurs for instance
for the generalized exponential distribution setting considered in Kundu and Gupta
(2005), when the common scale parameter is known, but this will be presented in more
detail in future work.

The analysis of the whole profile likelihood functions of θ (or ϕ), on their own
could also be explored for other distributions. An important requirement is that there
exists a one to one reparametrization from the original parameters of the model to
another set of parameters that includes θ . Then the profile likelihood of θ and profile
LIs can be obtained, though perhaps numerically. Reasonable coverage frequencies for
these intervals for sufficiently large samples are guaranteed by asymptotic maximum
likelihood results.

Summarizing: estimating the reliability parameter even in the simple case of expo-
nential distributions raises great difficulty with standard procedures. This is in stark
contrast with the simple expressions of the profile likelihood function and estimation
intervals of θ that were proposed here.
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Appendix

A brief outline of how to obtain the expressions of I
θ̂
, F3(θ̂), and F4(θ̂) in Sect. 3

is given here. It is also described how the symmetrizing reparametrizations for the
profile likelihood of θ , in terms of δ, were found.

Notice that the first, second, third, and fourth derivatives of the log profile likelihood
of θ , l p (θ; x, y) = ln

[
L p (θ; x, y)

]
, can be written as,

dlp (θ; x, y)

dθ
= n

θ
− m

1 − θ
− (n + m) (t − s)

s + (t − s) θ

d2l p (θ; x, y)

dθ2 = − n

θ2 − m

(1 − θ)2 + (n + m) (t − s)2

[s + (t − s) θ ]2
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d3l p (θ; x, y)

dθ3 = 2n

θ3 − 2m

(1 − θ)3 − 2 (n + m) (t − s)3

[s + (t − s) θ ]3

d4l p (θ; x, y)

dθ4 = −6n

θ4 − 6m

(1 − θ)4 + 6 (n + m) (t − s)4

[s + (t − s) θ ]4 .

Since the mle of θ is θ̂ = ȳ/ (x̄ + ȳ), where x̄ = t/n and ȳ = s/m, the first deriv-
ative evaluated at the mle θ̂ takes a value of zero. The second derivative evaluated at
θ̂ is

d2l p (θ; x, y)

dθ2

∣
∣
∣
∣
θ=θ̂

= − n

θ̂2
− m
(

1 − θ̂
)2 + (n + m) (t − s)2

[
s + (t − s) θ̂

]2

= − n

θ̂2
− m
(

1 − θ̂
)2 + (n + m) (nx̄ − mȳ)2

[
mȳ + (nx̄ − mȳ) θ̂

]2

= −
(

nm

n + m

)
(x̄ + ȳ)4

(x̄ ȳ)2 = − nm

(n + m)
[
θ̂
(

1 − θ̂
)]2

< 0.

Therefore, the observed Fisher information of θ is the negative of this value, after
formula (8), which is the expression given in (13).

In order to calculate F3(θ̂) and F4(θ̂), the third and fourth derivatives of the log
profile likelihood of θ evaluated at the mle are required. These take the following form,

d3l p (θ; x, y)

dθ3

∣
∣
∣
∣
θ=θ̂

= 2nm (x̄ + ȳ)5

(n + m)2 (x̄ ȳ)3 B,

d4l p (θ; x, y)

dθ4

∣
∣
∣
∣
θ=θ̂

= − 6nm (x̄ + ȳ)6

(n + m)3 (x̄ ȳ)4 C,

where B = (m + 2n) x̄ − (2m + n) ȳ, C = c1 ȳ2 − c2 x̄ ȳ + c3 x̄2, and where c1 =
3m2 + 3nm + n2, c2 = 2m2 + 6nm + 2n2, c3 = m + 3nm + 3n2. Therefore, substi-
tuting the expression given above for the third derivative in formula (9) the algebraic
expression for F3(θ̂) is obtained and simplified as,

F3(θ̂) = d3l p (θ; x, y)

dθ3

∣
∣
∣
∣
θ=θ̂

I −3/2
θ̂

= 2√
nm (n + m)

[
(m + 2n) x̄ − (2m + n) ȳ

x̄ + ȳ

]

=
2
[
n + (n + m)

(
1 − 3θ̂

)]

√
nm (n + m)

.

This expression is the one given in formula (14).
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Now substituting again the corresponding fourth derivative and the observed Fisher
information now in formula (10), the expression for F4(θ̂) is also obtained,

F4(θ̂) = d4l p (θ; x, y)

dθ4

∣
∣
∣
∣
θ=θ̂

I −2
θ̂

= − 6

nm (n + m)

[

c1
ȳ2

(x̄ + ȳ)2 − c2
x̄ ȳ

(x̄ + ȳ)2 + c3
x̄2

(x̄ + ȳ)2

]

= − 6

nm (n + m)

[

c1θ̂
2 − c2θ̂

(
1 − θ̂

)
+ c3

(
1 − θ̂

)2
]

.

This was the expression provided in (15).
Finally, in order to obtain a symmetrizing parametrization for θ , a logarithmic and a

power transformation of θ , ϕ, or of a simple function of these parameters were consid-
ered. This was a trial and error procedure, until the reparametrization given in (17 ) was
found. The goal was to obtain a reparametrization δ = g (θ), or δ = h (ϕ) for some
simple one to one functions g and h, such that the expression F3(δ̂) corresponding to
the reparametrized log likelihood of δ, was zero.

For the case n = m the parametrization that worked well was δ = log
(
ϕ−1

) =
log (β/α). This implies that exp(δ̂) = β̂/α̂ and the profile likelihood of δ is found
after substituting θ = 1/

(
1 + e−δ

)
in the profile likelihood of θ given in (6),

L p (δ; x, y) ∝ exp (−mδ)
[
s exp (−δ) + t

]−(n+m)
.

The second and third derivatives of the log profile likelihood of δ can be written as,

d2l p (δ; x, y)

dδ2 = − (n + m) s exp (−δ)

s exp (−δ) + t
+ (n + m) s2 exp (−2δ)

[
s exp (−δ) + t

]2 ,

d3l p (δ; x, y)

dδ3 = (n + m) s exp (−δ)

s exp (−δ) + t
− 3 (n + m) s2 exp (−2δ)

[
s exp (−δ) + t

]2

+2 (n + m) s3 exp (−3δ)
[
s exp (−δ) + t

]3

If n = m, then

I
δ̂

= − d2l p (δ; x, y)

dδ2

∣
∣
∣
∣
δ=δ̂

= nm

n + m
= n

2
,

and

d3l p (δ; x, y)

dδ3

∣
∣
∣
∣
δ=δ̂

= nm (n − m)

(n + m)2 = 0.
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Consequently F3(δ̂) = 0 as desired, and the corresponding profile likelihood of δ will
be symmetric about δ̂.

For the case n �= m, the family of power transformations δ = (
ϕ−1

)k = (β/α)k ,
where k �= 0, worked well, where k is defined in (16). That is, that value of k was
the one that made that F3(δ̂) = 0. For simplicity in the algebraic expressions, let
a = −1/k. Then the mle is δ̂ = (β̂/α̂)−1/a and the profile likelihood of δ is

L p (δ; x, y) ∝ δma (sδa + t
)−(n+m)

.

The second and third derivatives of the log profile likelihood of δ can be written as,

d2l p (δ; x, y)

dδ2 = −ma

δ2 − (n + m) sa (a − 1) δa−2

sδa + t
+ (n + m) s2a2δ2a−2

(sδa + t)2 ,

d3l p (δ; x, y)

dδ3 = 2ma

δ3 − (n + m) sa (a − 1) (a − 2) δa−3

sδa + t

+3 (n + m) s2a2 (a − 1) δ2a−3

(sδa + t)2 − 2 (n + m) s3a3δ3a−3

(sδa + t)3 .

Then

I
δ̂

= − d2l p (δ; x, y)

dδ2

∣
∣
∣
∣
δ=δ̂

= nm

n + m

(
a

δ̂

)2

,

and

d3l p (δ; x, y)

dδ3

∣
∣
∣
∣
δ=δ̂

= aδ̂−3
[

2n − n (a − 1) (a − 2) + 3n2a (a − 1)

n + m
− 2n3a2

(n + m)2

]

.

Therefore, setting

F3(δ̂) = d3l p (δ; x, y)

dδ3

∣
∣
∣
∣
δ=δ̂

I −3/2
δ̂

= 0,

implies that a = −3 (n + m) / (n − m). This is precisely the value of k = −1/a given
in formula (16), that was used to symmetrize the profile likelihood function of θ .
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