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Abstract We study some mathematical properties of the Marshall–Olkin extended
Weibull distribution introduced by Marshall and Olkin (Biometrika 84:641–652,
1997). We provide explicit expressions for the moments, generating and quantile func-
tions, mean deviations, Bonferroni and Lorenz curves, reliability and Rényi entropy.
We determine the moments of the order statistics. We also discuss the estimation of
the model parameters by maximum likelihood and obtain the observed information
matrix. We provide an application to real data which illustrates the usefulness of the
model.

Keywords Extended distribution · Order statistic · Rényi entropy ·
Weibull distribution

1 Introduction

The Weibull distribution, having exponential and Rayleigh as special sub-models, is
a very popular distribution that has been extensively used over the past decades for
modeling data in reliability, engineering and biological studies. The need for extended
forms of the Weibull distribution arises in many applied areas. The emergence of such
distributions in the statistics literature is only very recent. For some extended forms
of the Weibull distribution and applications, the reader is referred to Xie et al. (2002),
Bebbington et al. (2007), the excellent book by Murthy et al. (2004), Cordeiro et al.
(2010) and Silva et al. (2010).
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Over the last two decades several new models have been proposed that are either
derived from, or in some way related to the Weibull distribution. They provide a rich-
ness that makes them appropriate to model complex data sets. The literature on Weibull
models is vast, disjointed, and scattered across many different journals. When model-
ing monotone hazard rates, the Weibull distribution may be an initial choice because
of its negatively and positively skewed density shapes. However, the Weibull distri-
bution does not provide a reasonable parametric fit for modeling phenomenon with
non-monotone failure rates such as the bathtub shaped and the unimodal failure rates
which are common in reliability and biological studies. Such bathtub hazard curves
have nearly flat middle portions and the corresponding densities have a positive anti-
mode. An example of bathtub shaped failure rate is the human mortality experience
with a high infant mortality rate which reduces rapidly to reach a low. It then remains
at that level for quite a few years before picking up again. Unimodal failure rates can
be observed in course of a disease whose mortality reaches a peak after some finite
period and then declines gradually.

Adding parameters to a well-established distribution is a time honored device for
obtaining more flexible new families of distributions. Marshall and Olkin (1997) pro-
posed an interesting method of adding a new parameter to an existing distribution. The
resulting distribution, called the Marshall–Olkin (MO) extended distribution, includes
the original distribution as a special case and gives more flexibility to model various
types of data. Let F̄(x) = 1 − F(x) denote the baseline survivor function of a contin-
uous random variable X which depends on a parameter vector β = (β1, . . . , βq)� of
dimension q. Further, let f (x) = d F(x)/dx be the density function associated with
the cumulative distribution function (cdf) F(x). Then, the MO extended distribution
has survival function given by

Ḡ(x) = α F̄(x)

1 − ᾱ F̄(x)
= α F̄(x)

F(x) + α F̄(x)
, −∞ < x < ∞, α > 0, (1)

where ᾱ = 1 − α. Clearly, Eq. (1) provides a tool to obtain new parametric distri-
butions from existing ones. For α = 1, Ḡ(x) = F̄(x) and therefore F̄(x) is a basic
exemplar of (1). The probability density function (pdf) corresponding to (1), say g(x),

takes the form

g(x) = α f (x)

(1 − ᾱ F̄(x))2
, −∞ < x < ∞.

Some special cases of (1) recently discussed in the literature take F(x) to be the
Pareto (Ghitany 2005), gamma (Ristić et al. 2007), Lomax (Ghitany et al. 2007)
and linear failure-rate (Ghitany and Kotz 2007) distributions. Economou and Caroni
(2007) showed that the MO extended distributions have a proportional odds property.
More recently, Gómez–Déniz (2010) and Gómez–Déniz and Vázquez–Polo (2010)
presented a new generalization of the geometric and normal distributions using the
MO scheme, respectively. Caroni (2010) presented some Monte Carlo simulations con-
sidering hypothesis testing on the parameter α for the extended Weibull distribution.
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On the Marshall–Olkin extended Weibull distribution 335

In this note, we study the three-parameter Marshall–Olkin extended Weibull
(denoted with the prefix “MOEW” for short) distribution, initially proposed by Mar-
shall and Olkin (1997, Sect. 4). This distribution has been studied by Ghitany et al.
(2005) and Zhang and Xie (2007). Ghitany et al. (2005) showed that the MOEW can
be obtained as a compound distribution with mixing exponential distribution, whereas
Zhang and Xie (2007) investigated the model characterization based on the Weibull
probability plot. However, these authors do not derive general mathematical proper-
ties for this class of distributions as, for example, moment generating function, mean
deviations, entropy, reliability and order statistics. Here, we provide a comprehensive
description of some of these properties with the hope that it will attract wider appli-
cations in reliability, engineering and in other areas of research. Additionally, these
results seem to be new for the MOEW distribution and do not have any connection
with the corresponding results for the other extended Weibull models.

The cdf and pdf of the Weibull distribution are (for x > 0)

Fλ,γ (x) = 1 − e−λxγ

and fλ,γ (x) = γ λxγ−1e−λxγ

, (2)

respectively, where γ > 0 is the shape parameter and λ > 0 is the scale parameter.
Then, the cdf G(x) and the pdf g(x) of the MOEW distribution, for x > 0, are given
by

G(x) = 1 − e−λxγ

1 − ᾱe−λxγ (3)

and

g(x) = αγλxγ−1e−λxγ

(1 − ᾱe−λxγ
)2 , (4)

respectively. A random variable X with density function (4) is denoted by X
∼ MOEW(α, γ, λ). If γ = 1, we obtain the Marshall–Olkin extended exponential
(MOEE) distribution. The MOEW hazard rate function takes the form

h(x) = γ λxγ−1

1 − ᾱe−λxγ , x > 0. (5)

It can be verified that the function h(x) is increasing if α ≥ 1 and γ ≥ 1, and decreas-
ing if α ≤ 1 and γ ≤ 1 (Marshall and Olkin 1997). Additionally, from Theorem 2 of
Ghitany et al. (2005), for α ≤ 1 and γ > 1 such that �(α, γ ) = γ − 1 − ᾱγ e−1/γ ≥
0, h(x) is increasing, otherwise, h(x) is increasing-decreasing-increasing. Also, for
α ≥ 1 and γ < 1 such that �(α, γ ) = γ − 1 − ᾱγ e−1/γ ≤ 0, h(x) is decreasing,
otherwise, h(x) is decreasing-increasing-decreasing.

Plots of (4) and (5) for selected parameter values are shown in Figs. 1 and 2, respec-
tively. The plots in Fig. 1 indicate that the MOEW distribution is very versatile and
that the value of α has a substantial effect on its skewness and kurtosis. Based on the
plots in Fig. 2, we note that this distribution can be used in a variety of problems in
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Fig. 1 Plots of the density function (4) for some parameter values; λ = 1

modeling survival data since its hazard rate function can be decreasing, increasing, or
initially increasing, then decreasing and eventually increasing. Similar plots for the
MOEW distribution for some parameter values were also presented by Ghitany et al.
(2005) and Zhang and Xie (2007).

The organization of this article is as follows. In Sect. 2, we demonstrate that the
MOEW density function can be expressed as a linear combination of Weibull density
functions. General properties of the MOEW distribution as, for example, moments,
two representations for the moment generating function (mgf), mean deviations about
the mean and the median, Rényi entropy, reliability and order statistics are presented
in Sect. 3. Estimation by the method of maximum likelihood and the observed infor-
mation matrix are presented in Sect. 4. An application to real data is performed in
Sect. 5. Finally, some conclusions are addressed in Sect. 6.

2 Expansion for the density function

In this section, we obtain a very useful representation for the MOEW density function,
which will be used to obtain general properties of this distribution in the next sections.
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Fig. 2 Plots of the hazard rate function (5) for some parameter values; λ = 1

For |z| < 1 and ρ > 0, we have

(1 − z)−ρ =
∞∑

j=0

�(ρ + j)

�(ρ) j ! z j , (6)

where �(·) is the gamma function. Applying (6) in (4), for α ∈ (0, 1), yields

g(x) =
∞∑

j=0

w j fλ( j+1),γ (x), x > 0, (7)

where w j = w j (α) = α(1 − α) j . Otherwise, if α > 1, we can obtain

g(x) =
∞∑

j=0

v j fλ( j+1),γ (x), x > 0, (8)

where v j = v j (α) = [( j + 1)α]−1∑∞
k= j (−1) j (k + 1)

(k
j

)
(1 − 1/α)k .
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Fig. 3 Skewness and kurtosis of the MOEW distribution as a function of α for some values of γ ; λ = 10

We can easily verify that
∑∞

j=0 w j = ∑∞
j=0 v j = 1. The MOEW density func-

tion can be expressed as an infinite linear combination of Weibull density functions.
Equations (7) and (8) have the same form except for the coefficients which are w′

j s in
(7) and v′

j s in (8). So, we can obtain several mathematical properties of the MOEW
distribution directly from those properties of the Weibull distribution.

3 General properties of the MOEW distribution

In this section, we study some general properties of the MOEW distribution.

3.1 Moments

Here and henceforth, let X be distributed according to (4). Some of the most impor-
tant features and characteristics of a distribution can be studied through moments (e.g.,
tendency, dispersion, skewness and kurtosis). The r th moment of a Weibull random
variable Z with scale λ and shape γ is E(Zr ) = λ−r/γ �(r/γ + 1). We consider only
the case α ∈ (0, 1), since we can replace w j by v j when α > 1. From Eq. (7), we can
obtain

μ′
r = E(Xr ) = λ−r/γ �

(
r

γ
+ 1

) ∞∑

j=0

w j

( j + 1)r/γ
. (9)

The skewness and kurtosis measures can be calculated from the ordinary moments
given in (9) using well-known relationships. Plots of the skewness and kurtosis for
selected parameter values as a function of α are given in Fig. 3.

The central moments (μp) and cumulants (κp) of X are obtained from the above
equation by
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On the Marshall–Olkin extended Weibull distribution 339

μp =
p∑

k=0

(
p

k

)
(−1)k μ′k

1 μ′
p−k

and

κp = μ′
p −

p−1∑

k=1

(
p − 1

k − 1

)
κk μ′

p−k,

respectively, where κ1 = μ′
1. Thus, κ2 = μ′

2 − μ′2
1 , κ3 = μ′

3 − 3μ′
2μ

′
1 + 2μ′3

1 , etc.
The pth descending factorial moment of X is

μ′
(p) = E[X (p)] = E[X (X − 1) × · · · × (X − p + 1)] =

p∑

k=0

s(p, k) μ′
k,

where s(r, k) = (k!)−1[dk x (r)/dxk]x=0 is the Stirling number of the first kind. Thus,
the factorial moments of X are

μ′
(p) =

p∑

k=0

λ−k/γ �

(
k

γ
+ 1

)
πk s(p, k),

where πk = ∑∞
j=0 w j ( j + 1)−k/γ .

3.2 Generating function

Here, the algebraic developments follow closely the work by Cordeiro et al. (2010).
For the case α ∈ (0, 1), the mgf M(t) = E{exp(t X)} of X can be determined from
(7) as

M(t) = λγ

∞∑

j=0

w j ( j + 1) M j (t), (10)

where

M j (t) =
∞∫

0

xγ−1 exp{t x − ( j + 1)λxγ }dx .

If α > 1, we simply replace w j by v j .
We can determine M j (t) from two different representations based on the Wright

generalized hypergeometric function (Wright 1935) and the Meijer G-function (Grad-
shteyn and Ryzhik 2007, Sect. 9.3). These functions are available in mathematical
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software such as MAPLE and MATHEMATICA. First, the Wright generalized hyper-
geometric function is defined by

p�q

[
(α1, A1) , · · · ,

(
αp, Ap

)

(β1, B1) , · · · ,
(
βq , Bq

) ; x

]

=
∞∑

n=0

⎧
⎨

⎩

p∏

j=1

�(α j + A j n)

⎫
⎬

⎭

⎧
⎨

⎩

q∏

j=1

�(β j + B j n)

⎫
⎬

⎭

−1
xn

n! .

The Wright function exists if 1 +∑q
j=1 B j −∑p

j=1 A j > 0. By expanding exp(t x)

in the last integral, we obtain

M j (t) =
∞∑

m=0

tm

m!
∞∫

0

xm+γ−1 exp{−( j + 1)λxγ }dx

= 1

( j + 1)γ λ

∞∑

m=0

tm

[( j + 1)λ]m/γ m!�
(

m

γ
+ 1

)

= 1

( j + 1)γ λ
1�0

[ (
1, γ −1

)

− ; t

[( j + 1)λ]1/γ

]
,

provided that γ > 1. Inserting the last equation in (10) gives

M(t) =
∞∑

j=0

w j 1�0

[ (
1, γ −1

)

− ; t

[( j + 1)λ]1/γ

]
. (11)

The second representation for M j (t) follows from the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣
a1, . . . , ap

b1, . . . , bq

)
= 1

2π i

∫

L

H1(m, n, a j , b j , t)

H2(n, m, p, q, a j , b j , t)
x−t dt,

where

H1(m, n, a j , b j , t) =
m∏

j=1

�(b j + t)
n∏

j=1

�(1 − a j − t),

H2(n, m, p, q, a j , b j , t) =
p∏

j=n+1

�
(
a j + t

) q∏

j=m+1

�
(
1 − b j − t

)
,

i = √−1 is the complex unit and L denotes an integration path (see, Gradshteyn and
Ryzhik 2007, Sect. 9.3). The Meijer G-function contains many integrals with elemen-
tary and special functions. Some of these integrals are included in Prudnikov et al.
(1986).
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We use the result

exp{−g(x)} = G1,0
0,1

(
g(x)

∣∣∣∣
−
0

)

for an arbitrary g(·) function. Then, we can write

M j (t) =
∞∫

0

xγ−1 exp(t x) G1,0
0,1

(
( j + 1)λxγ

∣∣∣∣
−
0

)
dx .

Further, we assume that γ = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers.
Using Eq. 2.24.1.1 in Prudnikov et al. (1990), we obtain

M j (t) = pγ−1/2(−t)−γ

(2π)(p+q)/2−1
G p,q

q,p

(
p pγ q [( j + 1)λ]q/γ

(−t)pqq

∣∣∣∣∣

1−γ
p ,

2−γ
p , . . . ,

p−γ
p

0, 1
q , . . . ,

q−1
q

)
.

Inserting the last equation in (10) gives

M(t) = γ λpγ−1/2(−t)−γ

(2π)(p+q)/2−1

∞∑

j=0

w j ( j + 1) G p,q
q,p

×
(

p pγ q [( j + 1)λ]q/γ

(−t)pqq

∣∣∣∣∣

1−γ
p ,

2−γ
p , . . . ,

p−γ
p

0, 1
q , . . . ,

q−1
q

)
. (12)

Note that the condition γ = p/q in (12) is not very restrictive since every real number
can be approximated by a rational number. For an irrational value of γ, an approx-
imation of vanishingly small error can be made using increasingly accurate rational
approximations of this parameter.

Equations (11) and (12) are the main results of this section. Clearly, special for-
mulas for the mgf of some sub-models of the MOEW distribution can be determined
from these equations by substitution of known parameters.

3.3 Quantile function

We can easily invert the cdf (3) to obtain the MOEW quantile function

x = Q(u) = λ−1/γ

{
log

(
1 − ᾱu

1 − u

)}1/γ

. (13)

Simulation of the MOEW random variable follows directly from (13), i.e. if U
∼ U(0, 1), then X = Q(U ) has a MOEW(α, γ, λ) distribution. This scheme is useful
because of the existence of fast generators for uniform random variables.
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3.4 Mean deviations

The amount of scatter in X is evidently measured to some extent by the mean deviations
about the mean and the median defined by

δ1(X) =
∞∫

0

|x − μ′
1|g(x)dx and δ2(X) =

∞∫

0

|x − m|g(x)dx,

respectively, where μ′
1 = E(X) is calculated from (9) and m = λ−1/γ {log(1 +α)}1/γ

is the median of X . The measures δ1(X) and δ2(X) can be expressed as

δ1(X) = 2μ′
1G(μ′

1) − 2J (μ′
1) and δ2(X) = μ′

1 − 2J (m), (14)

where G(q) is directly obtained from (3) and J (q) = ∫ q
0 x g(x)dx . Consider the case

α ∈ (0, 1). We can write from (7)

J (q) =
∞∑

j=0

w j

q∫

0

x f( j+1)λ,γ (x),

and then

J (q) =
∞∑

j=0

w j

[( j + 1)λ]1/γ

[
�
(
γ −1 + 1

)
− �

(
γ −1 + 1, [( j + 1)λqγ ]

)]
, (15)

where �(a, b) = ∫∞
b wa−1 e−wdw (for a > 0) is the complementary incomplete

gamma function. If α > 1, we simply replace w j by v j in (15).
A straightforward application of (15) is to construct Bonferroni and Lorenz curves.

They are used in economics, reliability, demography, insurance and medicine, and can
be calculated from (15) as

B(p) = J (q)

pμ′
1

and L(p) = J (q)

μ′
1

,

respectively, where q = Q(p) comes from (13) for a given probability p.

3.5 Rényi entropy

Entropy has been used in various situations in science and engineering. Numerous
entropy measures have been studied and compared in the literature. The entropy of a
random variable X with density function g(x) is a measure of variation of the uncer-
tainty. The Rényi entropy is defined by
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IR(δ) = (1 − δ)−1 log

⎧
⎨

⎩

∞∫

−∞
g(x)δdx

⎫
⎬

⎭ ,

where δ > 0 and δ 
= 1. For further details, the reader is referred to Song (2001).
Let X be a random variable following the MOEW(α, γ, λ) distribution. By applying
Eq. (6), we can obtain after some algebra for α ∈ (0, 1)

g(x)δ = αδ fλ,γ (x)δ

�(2δ)

∞∑

k=0

(1 − α)k�(2δ + k)
[1 − Fλ,γ (x)]k

k!

and for α > 1

g(x)δ = fλ,γ (x)δ

αδ�(2δ)

∞∑

k=0

(α − 1)k�(2δ + k)
Fλ,γ (x)k

k! .

Thus, the Rényi entropy follows as

IR(δ) = (1 − δ)−1 log

⎧
⎨

⎩

∞∑

j=0

e j

∞∫

0

fλ,γ (x)δ Fλ,γ (x) j dx

⎫
⎬

⎭ (16)

and

IR(δ) = (1 − δ)−1 log

⎧
⎨

⎩

∞∑

j=0

h j

∞∫

0

fλ,γ (x)δ Fλ,γ (x) j dx

⎫
⎬

⎭ , (17)

respectively, where

e j = e j (α) = αδ

�(2δ)

∞∑

k= j

(
k

j

)
(−1) j (1 − α)k�(2δ + k)

k!

and

h j = h j (α) = (α − 1) j�(2δ + j)

αδ+ j�(2δ) j ! .

We can compute the above integral by

∞∫

0

fλ,γ (x)δ Fλ,γ (x) j dx = γ δ−1λ(δ−1)/γ �
(

1 + (δ − 1)(1 − γ −1)
)

×
j∑

s=0

(−1)s
( j

s

)

(δ + s)1+(δ−1)(1−γ −1)
,
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where the last equation holds for (δ−1)(γ −1) > −1. Thus, inserting this expression
in Eqs. (16) and (17) yields the Rényi entropy.

3.6 Reliability

In the context of reliability, the stress–strength model describes the life of a compo-
nent which has a random strength X1 that is subjected to a random stress X2. The
component fails at the instant that the stress applied to it exceeds the strength, and the
component will function satisfactorily whenever X1 > X2. Hence, R = Pr(X2 < X1)

is a measure of component reliability. It has many applications in several areas of engi-
neering and science. We now derive the reliability R when X1 and X2 have independent
MOEW(α1, γ, λ1) and MOEW(α2, γ, λ2) distributions with the same shape param-
eter γ . We denote the parameters associated with the distribution i with subscript
i = 1, 2. We assume that α1 ∈ (0, 1) and α2 ∈ (0, 1). If α1 ≥ 1 or α2 ≥ 1, we have
only to substitute w1 j or w2 j by v1 j or v2 j , respectively, which are well-defined in
Sect. 2. The cdf of X2 and pdf of X1 can be expressed from (7) as

G2(x) =
∞∑

k=0

w2k

[
1 − e−(k+1)λ2xγ

]

and g1(x) = γ λ1 xγ−1
∞∑

j=0

( j + 1) w1 j e−( j+1)λ1xγ

.

We have

R =
∞∫

0

g1(x)G2(x)dx = γ λ1

∞∑

j,k=0

( j + 1) w1 j w2k

×
∞∫

0

xγ−1 e−( j+1)λ1xγ

(1 − e−(k+1)λ2xγ

)dx .

By application of
∫∞

0 xc−1 exp(−μxc)dx = (cμ)−1, we obtain

R =
∞∑

j,k=0

{
w1 j w2k − ( j + 1) w1 j w2k

( j + 1) + (k + 1)λ2 λ−1
1

}
.

3.7 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Here, we obtain a useful mixture representation for the pdf of the ith order statistic
Xi :n, say gi :n(x), in a random sample of size n from the MOEW(α, γ, λ) distribution.
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The pdf of Xi :n can be written as

gi :n(x) = α n! fλ,γ (x)

n−i∑

l=0

(−1)l

(i − 1)!(n − i)!
Fλ,γ (x)l+i−1

{1 − ᾱ F̄λ,γ (x)}l+i−1
, x > 0.

For α ∈ (0, 1), using (6) in the above equation and after some algebra, we obtain

gi :n(x) =
∞∑

j=0

n−i∑

l=0

j∑

k=0

j+l−k+i−1∑

m=0

u j,l,k,m f(m+1)λ,γ (x), (18)

where

u j,l,k,m = u j,l,k,m(α) = αn!(−1)l+ j−k+m(1 − α) j
( j

k

)(l+i+ j
j

)( j+l−k+i−1
m

)

(i − 1)!(n − i)!(m + 1)
.

Analogously, for α > 1, it follows that

gi :n(x) =
∞∑

j=0

n−i∑

l=0

j+l+i−1∑

k=0

c j,l,k f(k+1)λ,γ (x), (19)

where

c j,l,k = c j,l,k(α) = n!(−1)l+k(α − 1) j
(l+i+ j

j

)( j+l+i−1
k

)

αl+ j+i (i − 1)!(n − i)!(k + 1)
.

Clearly, for given i and n, we have

∞∑

j=0

n−i∑

l=0

j∑

k=0

j+l−k+i−1∑

m=0

u j,l,k,m =
∞∑

j=0

n−i∑

l=0

j+l+i−1∑

k=0

c j,l,k = 1.

Equations (18) and (19) reveal that the pdf of the MOEW order statistics can be
expressed as an infinite linear combination of Weibull density functions. We can pro-
vide some mathematical properties of these order statistics directly from those prop-
erties of the Weibull distribution. For example, the sth moment associated with (18) is

E(Xs
i :n) = λ−s/γ �

(
s

γ
+ 1

) ∞∑

j=0

n−i∑

l=0

j∑

k=0

j+l−k+i−1∑

m=0

u j,l,k,m

(m + 1)s/γ
.

Further, the mgf of the MOEW order statistics can be derived from Eqs. (11), (18) and
(19) if γ > 1. When γ = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers, it can
be obtained from Eqs. (12), (18) and (19).
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3.8 Alternative formulae for moments of order statistics

Here, we offer alternative expressions for the moments of order statistics of the MOEW
distribution. We base these results on Barakat and Abdelkader (2004) general formula
for independent and identically distributed random variables given by (subject to
existence)

E(Xs
i :n) = s

n∑

j=n−i+1

(−1) j−n+i−1
(

j − 1

n − i

)(
n

j

)
I j (s), (20)

where I j (s) = ∫∞
0 xs−1 {1 − G(x)} j dx . We obtain explicit expressions for the func-

tion I j (s) considering two distinct cases: 0 < α < 1 and α > 1.
First, for 0 < α < 1, we can expand [1 − ᾱ F̄(x)]− j by (6) to yield

I j (s) = α j

�( j)

∞∑

k=0

�( j + k) ᾱk

k!
∞∫

0

xs−1 exp{−( j + k)λ xγ }dx

and then calculating the integral, we obtain

I j (s) = α j �(s/γ )

γ λs/γ �( j)

∞∑

k=0

�( j + k) ᾱk

k! ( j + k)s/γ
. (21)

The moments of the order statistics are much simpler to be computed from (20) and
(21) since they involve only two sums than those from Eq. (18) which involves four
sums.

Secondly, for α > 1, we can write (1 − ᾱ F̄)− j = α j [1 − (α − 1)F(x)/α]− j and
expand the binomial by (6) to obtain

I j (s) =
∞∑

k=0

k∑

r=0

(−1)r �( j + k) (α − 1)k

(k − r)! r ! αk �( j)

∞∫

0

xs−1 exp{−( j + r)λ xγ } dx .

Finally,

I j (s) = �(s/γ )

γ λs/γ �( j)

∞∑

k=0

k∑

r=0

(−1)r �( j + k) (α − 1)k

(k − r)! r ! αk ( j + r)s/γ
. (22)

The moments E(Xs
i :n) from Eqs. (20) and (22) and those from (19) have the same

complexity since both methods involve three sums.
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4 Maximum likelihood

We estimate the model parameters by the method of maximum likelihood. Let
x = (x1, . . . , xn)� be a random sample of size n from the MOEW distribution with
unknown parameter vector θ = (α, γ, λ)�. The total log-likelihood function for θ is

(θ) = n log(αγ λ) + (γ − 1)

n∑

i=1

log(xi ) − λ

n∑

i=1

xγ

i − 2
n∑

i=1

log(1 − ᾱe−λxγ
i ).

By taking the partial derivatives of the log-likelihood function with respect to the three
parameters in θ , we obtain the components of the score vector Uθ = (Uα, Uγ , Uλ)

�:

Uα = n

α
− 2

n∑

i=1

v̇i , Uλ = n

λ
−

n∑

i=1

xγ

i − 2ᾱ

n∑

i=1

xγ

i v̇i ,

Uγ = n

γ
+

n∑

i=1

log(xi ) − λ

n∑

i=1

xγ

i log(xi ) − 2ᾱλ

n∑

i=1

xγ

i v̇i log(xi ),

where

v̇i = v̇i (α, γ, λ) = e−λxγ
i

1 − ᾱe−λxγ
i

, i = 1, . . . , n.

Setting Uα, Uγ and Uλ equal to zero and solving the equations simultaneously yields
the MLE θ̂ = (̂α, γ̂ , λ̂)� of θ = (α, γ, λ)�. These equations cannot be solved ana-
lytically and statistical software can be used to solve them numerically using itera-
tive methods such as the Newton–Raphson type algorithms. Estimation of the model
parameters of the MOEW distribution for censored samples can be found in Ghitany
et al. (2005) and Zhang and Xie (2007).

The normal approximation of the MLE of θ can be used for constructing approx-
imate confidence intervals and for testing hypotheses on the parameters α, γ and λ.
Under conditions that are fulfilled for the parameters in the interior of the parameter

space, we have that
√

n(θ̂ −θ)
a∼ N3(0,K−1

θ ), where
a∼ means approximately distrib-

uted and Kθ is the unit expected information matrix. The asymptotic behavior remains
valid if Kθ = limn→∞ n−1Jn(θ), where Jn(θ) is the observed information matrix, is
replaced by the average sample information matrix evaluated at θ̂ , i.e. n−1Jn(θ̂). The
observed information matrix is given by

Jn(θ) = − ∂2(θ)

∂θ∂θ� = −
⎡

⎣
Uαα Uαγ Uαλ

Uαγ Uγ γ Uγ λ

Uαλ Uγ λ Uλλ

⎤

⎦ ,

whose elements are
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Uαα = − n

α2 + 2
n∑

i=1

v̇2
i , Uαγ = 2λ

n∑

i=1

v̇i xγ

i (1 + ᾱ v̇i ) log(xi ),

Uαλ = 2
n∑

i=1

v̇i xγ

i (1 + ᾱ v̇i ), Uλλ = − n

λ2 + 2ᾱ

n∑

i=1

v̇i x2γ

i (1 + ᾱ v̇i ),

Uγ γ = − n

γ 2 − λ

n∑

i=1

xγ

i [log(xi )]2 − 2ᾱλ

n∑

i=1

v̇i xγ

i (1 − λxγ

i − ᾱλ v̇i xγ

i )[log(xi )]2,

Uγ λ = −
n∑

i=1

xγ

i log(xi ) − 2ᾱ

n∑

i=1

v̇i xγ

i log(xi ) + 2ᾱλ

n∑

i=1

v̇i x2γ

i (1 + ᾱ v̇i ) log(xi ).

We can easily check if the fit using the MOEW model is statistically “superior”
to a fit using the Weibull model by testing the null hypothesis H0 : α = 1 against
H1 : α 
= 1. For testing H0 : α = 1, the likelihood ratio (LR) statistic is given by

w = 2{(̂α, γ̂ , λ̂) − (1, γ̃ , λ̃)},

where α̂, γ̂ and λ̂ are the unrestricted MLEs obtained from the maximization of (θ)

under H1 and γ̃ and λ̃ are the restricted MLEs obtained from the maximization of (θ)

under H0. The limiting distribution of this statistic is χ2
1 under the null hypothesis. The

null hypothesis is rejected if the test statistic exceeds the upper 100(1 − η)% quantile
of the χ2

1 distribution. Caroni (2010) carried out a simulation study by considering the
LR, Wald and score statistics for testing hypothesis on the parameters of the MOEW
distribution. The author showed that the LR test performs better than the Wald and
score tests.

5 Application

Here, we give an empirical application to demonstrate the great flexibility of the
MOEW distribution. We compare the results of the fits of the MOEW, MOEE, Weibull
and exponential distributions. For the sake of comparison, the three-parameter expon-
entiated Weibull (ExpW) model is also considered (Mudholkar and Srivastava 1993).
The cdf of the ExpW distribution for x > 0 takes the form G(x) = [Fλ,γ (x)]β =
(1 − e−λxγ

)β, where β > 0. We shall consider the data set corresponding to a record
of 799 intervals between pulses along a nerve fibre presented in Cox and Lewis (1966)
and reported in Jørgensen (1982). Jørgensen (1982) analyzed these data by consider-
ing the generalized inverse Gaussian distribution and showed that this distribution fits
these data well.

Table 1 lists the MLEs (and the corresponding standard errors in parentheses)
of the model parameters and the following statistics: Akaike Information Crite-
rion (AIC), Bayesian Information Criterion (BIC) and Hannan–Quinn Informa-
tion Criterion (HQIC). All the computations were done using the Ox matrix
programming language (Doornik 2006), which is freely distributed for academic pur-
poses and available at http://www.doornik.com. The BFGS method with analytical
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Table 1 MLEs (standard errors in parentheses) and the measures AIC, BIC and HQIC

Estimates Statistic

Distribution α γ λ AIC BIC HQIC

MOEW 0.3496 1.3234 0.0205 5407.73 5421.78 5413.13

(0.0997) (0.0687) (0.0074)

MOEE 1.2020 1 0.1000 5424.31 5433.68 5427.91

(0.1430) (0.0066)

Weibull 1 1.0841 0.0721 5418.17 5427.54 5421.77

(0.0295) (0.0065)

Exponential 1 1 0.0913 5424.64 5429.32 5426.44

(0.0032)

derivatives has been used for maximizing the log-likelihood functions. The results
indicate that the MOEW distribution has the lowest AIC, BIC and HQIC values
among all fitted models, and so it could be chosen as the best model. The LR sta-
tistics for testing the hypotheses H0: MOEE against H1: MOEW, H0: Weibull against
H1: MOEW and H0: exponential against H1: MOEW are 18.5797 (p value < 0.01),
12.4364 (p value < 0.01) and 20.9067 (p value < 0.01), respectively. Thus, we reject
the null hypothesis in all cases in favor of the MOEW distribution at any usual sig-
nificance level, i.e. the MOEW model is significantly better than the MOEE, Weibull
and exponential models based on the LR statistics.

Now, we apply formal goodness-of-fit tests to verify which distribution fits better to
these data. We apply the Cramér–von Mises (W ∗) and Anderson–Darling (A∗) statis-
tics. In general, the smaller the values of the statistics W ∗ and A∗, the better the fit to
the data. Let H(x; θ) be the cdf, where the form of H is known but θ (a k-dimensional
parameter vector, say) is unknown. We calculate the statistics W ∗ and A∗ as fol-
lows: (i) Compute vi = H(xi ; θ̂), where the x ′

i s are in ascending order; (ii) Compute
yi = �−1(vi ), where �(·) is the standard normal cdf and �−1(·) its inverse; (iii) Com-
pute ui = �{(yi − ȳ)/sy}, where ȳ = n−1∑n

i=1 yi and s2
y = (n−1)−1∑n

i=1(yi − ȳ)2;
(iv) Calculate

W 2 =
n∑

i=1

{
ui − (2i − 1)

2n

}2

+ 1

12n

and

A2 = −n − 1

n

n∑

i=1

{(2i − 1) log(ui ) + (2n + 1 − 2i) log(1 − ui )};

(v) Modify W 2 into W ∗ = W 2(1+0.5/n) and A2 into A∗ = A2(1+0.75/n+2.25/n2).
For further details the reader is referred to Chen and Balakrishnan (1995). The values
of W ∗ and A∗ for all models are listed in Table 2. According to these statistics, the
MOEW model fits the current data set better than the other models.
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Table 2 Goodness-of-fit tests
Statistic

Distribution W∗ A∗

MOEW 0.11301 0.99940

MOEE 0.29771 1.99659

Weibull 0.27590 1.87084

Exponential 0.22476 1.58185

Table 3 MLEs (standard errors
in parentheses) and the measures
W∗ and A∗ for the ExpW
distribution

Estimates Statistic

β γ λ W∗ A∗

1.9331 0.7694 0.2512 0.31758 2.65268

(0.4293) (0.0862) (0.0861)

intervals between pulses along a nerve fibre

pd
f
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0.00

0.02

0.04
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MOEW
MOEE
Weibull
Exponential

Fig. 4 Estimated densities of the MOEW, MOEE, Weibull and exponential distributions

The MLEs (standard errors in parentheses) of the model parameters of the ExpW
distribution and the statistics W ∗ and A∗ are given in Table 3. By comparing the fig-
ures in Tables 2 and 3, we conclude that the MOEW model outperforms the ExpW
model and hence it yields a better fit than the three-parameter Weibull distribution.
Therefore, the MOEW model may be an interesting alternative to the three-parameter
Weibull distribution for modeling positive real data.

Plots of the estimated density functions of all fitted models are given in Fig. 4. It is
evident that the MOEW model provides a better fit than the other models. QQ-plots for
the MOEW, MOEE, Weibull, exponential and ExpW distributions are shown in Fig. 5.
From the Q-Q plots, the MOEW model outperforms the other models. The estimated
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QQ−plot: Weibull distribution

0 10 20 30 40 50 60

0

10

20

30

40

50

60

empirical quantiles

th
eo

re
tic

al
 q

ua
nt

ile
s

QQ−plot: exponential distribution
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Fig. 5 QQ-plots

MOEW hazard rate function is plotted in Fig. 6. It shows an increasing pattern in the
first 6 intervals, followed by a decreasing hazard up to the 26th interval, and eventually
increases afterwards.
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Fig. 6 Estimated MOEW hazard rate function

6 Concluding remarks

Marshall and Olkin (1997) proposed a simple transformation of a baseline distribu-
tion function by adding a shape parameter α > 0 in order to obtain a larger class
of distribution functions, which contains the parent distribution when α = 1. Based
on this approach, they defined a three parameter model, called the MOEW distribu-
tion, which was also investigated by Ghitany et al. (2005) and Zhang and Xie (2007).
In this note, we demonstrate that the MOEW density function can be expressed as
an infinite linear combination of Weibull density functions. Based on this result, we
derive explicit expressions for the ordinary, factorial and inverse moments and two
representations for the moment generating function. We calculate mean deviations,
Bonferroni and Lorenz curves, Rénvi entropy and reliability. The density function of
the order statistics can also be expressed as an infinite linear combination of Weibull
density functions. The estimation of the parameters is approached by the method of
maximum likelihood and the observed information matrix is derived. The usefulness
of the new model is illustrated in an analysis of real data using likelihood ratio statis-
tics and goodness-of-fit tests. In conclusion, the MOEW distribution provides a rather
flexible mechanism for fitting a wide spectrum of positive real world data sets.
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Ristić MM, Jose KK, Ancy J (2007) A Marshall–Olkin gamma distribution and minification process. Stress

Anxiety Res Soc 11:107–117
Silva GO, Ortega EMM, Cordeiro GM (2010) The beta modified Weibull distribution. Lifetime Data Anal

16:409–430
Song KS (2001) Rényi information, loglikelihood and an intrinsic distribution measure. J Stat Plan Inference

93:51–69
Wright EM (1935) The asymptotic expansion of the generalized hypergeometric function. J Lond Math

Soc 10:286–293
Xie M, Tang Y, Goh TN (2002) A modified Weibull extension with bathtub-shaped failure rate function.

Reliab Eng Syst Saf 76:279–285
Zhang T, Xie M (2007) Failure data analysis with extended Weibull distribution. Commun Stat Simul

Comput 36:579–592

123


	On the Marshall--Olkin extended Weibull distribution
	Abstract
	1 Introduction
	2 Expansion for the density function
	3 General properties of the MOEW distribution
	3.1 Moments
	3.2 Generating function
	3.3 Quantile function
	3.4 Mean deviations
	3.5 Rényi entropy
	3.6 Reliability
	3.7 Order statistics
	3.8 Alternative formulae for moments of order statistics

	4 Maximum likelihood
	5 Application
	6 Concluding remarks
	Acknowledgements
	References


