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Abstract In this article we study the residual lifetime of a coherent system after the
r th failure, i.e. the time elapsed from the r th failure until the system failure given that
the system operates at the time of the r th failure. We provide a mixture representa-
tion for the corresponding residual lifetime distribution in terms of signature. We also
obtain some stochastic ordering results for the residual lifetimes.
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1 Introduction

Residual lifetime is an important characteristic in both reliability and survival anal-
ysis. It has been well studied especially in the context of reliability. Traditionally,
for a lifetime random variable T, the corresponding residual lifetime is defined as
{T − t | T > t} and represents the residual lifetime after time t given that the unit/sys-
tem has survived beyond time t. For a system consisting of n components, vari-
ous type of residual lifetime random variables have been defined and studied (Asadi
and Bayramoglu 2006; Khaledi and Shaked 2007; Asadi and Goliforushani 2008;
Poursaeed and Nematollahi 2008; Samaniego et al. 2009; Poursaeed 2010). Recently,
Bairamov and Arnold 2008 studied the residual lifetimes of the remaining functioning
components at the time of the kth failure. These new definitions are all related to the
order statistics associated with components’ lifetimes.
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Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system consisting of n com-
ponents whose lifetimes are X1, . . . , Xn . If X1, . . . , Xn have the common continuous
distribution then the well-known mixture representation for the survival function of
T is given by (Samaniego 1985):

P{T > t} =
n∑

i=1

pi P {Xi :n > t}, (1)

where Xi :n is the i th smallest among X1, . . . , Xn . The representation 1 also holds
for any coherent system with components having absolutely continuous joint distri-
bution (Navarro and Rychlik 2007). In 1 the vector p = (p1, p2, . . . , pn) of coef-
ficients represents the system signature with pi = P {T = Xi :n} , i = 1, 2, . . . , n
and

∑n
i=1 pi = 1. The signature of a system does not depend on the distribution of

X1, . . . , Xn because P {X1 < . . . < Xn} = P
{

Xπ(1) < . . . < Xπ(n)

}
holds for any

permutation π = (π(1), . . . , π(n)).

In fact, for a coherent structure φ its signature has the form

p = (0, . . . , 0, pkφ , pkφ+1, . . . , pzφ+1, 0, . . . , 0),

where kφ represents the minimum number of failed components that may cause system
failure and zφ is the maximum number of failed components such that the system can
still work.

The signature-based mixture representation of residual lifetime of a coherent sys-
tem has been found to be useful to obtain stochastic ordering results (Li and Zhang
2008; Navarro et al. 2005; Navarro et al. 2010; Tavangar and Asadi 2010; Zhang
2010a,b; Eryilmaz 2011).

In the present article we study the residual lifetime of a coherent system after the
r th failure, i.e. the time elapsed from the r th failure until the system failure given that
the system operates at the time of the r th failure. If r < kφ then the system functions
with probability 1 at the time r th failure. Thus the residual lifetime of the system after
the r th component failure is given by {T − Xr :n | T > Xr :n} for r = 1, . . . , zφ. This
conditional random variable is potentially useful to determine replacement and main-
tenance strategies before the system failure. Obviously, the inspection of component
failures is important for this purpose. A physical mechanism can be setup to realize
the failures occur in the system.

In Sect. 2 of the article we provide a signature based mixture representation for
the residual lifetime defined as {T − Xr :n | T > Xr :n} and via this mixture represen-
tation we obtain some stochastic comparison results for two systems having different
structures. Some examples are also presented for illustrating the theoretical results.

2 The results

The following result is a mixture representation for the survival function of the con-
ditional random variable {T − Xr :n | T > Xr :n}.
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Theorem 1 Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system consisting
of iid component lifetimes X1, . . . , Xn . Then for r ≤ zφ,

P{T − Xr :n > t | T > Xr :n} =
n∑

i=r+1

pi (r)P{Xi :n − Xr :n > t}, (2)

where p(r) = (0, . . . , 0, pr+1(r), . . . , pzφ+1(r), 0, . . . , 0) with

pi (r) = pi
∑zφ+1

i=r+1 pi

.

Proof By the total probability law

P {T − Xr :n > t | T > Xr :n}

= 1

P {T > Xr :n}
n∑

i=r+1

P {T − Xr :n > t, T > Xr :n, T = Xi :n}

= 1

P {T > Xr :n}
n∑

i=r+1

P {Xi :n − Xr :n > t | T = Xi :n} P {T = Xi :n}.

Using the independence of the order statistics with their ranks (see, e.g. Kochar et al.
(1999, Theorem 1)) one obtains

P {T − Xr :n > t | T > Xr :n} =
n∑

i=r+1

pi

P {T > Xr :n} P {Xi :n − Xr :n > t}.

The proof is completed by noting that P {T > Xr :n} = ∑zφ+1
i=r+1 pi . ��

The expression 2 is a mixture representation for the residual lifetime of a coherent
system after the r th failure. We call the vector p(r) as a truncated signature vector
because

zφ+1∑

i=r+1

pi (r) = 1.

The signature vector p(r) is closely related to the dynamic signature defined in
Samaniego et al. (2009, p. 580). The only difference between two vectors is that the
first zeros are deleted in dynamic signature vector.

It should also be noted that the survival function 2 is a mixture of residual lifetimes
of i-out-of-n:F systems (the system which fails if and only if at least i of n components
fail) since for i > r, Xi :n − Xr :n is the residual lifetime of i-out-of-n:F systems after
the r th failure.
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Note that {T − Xr :n | T > Xr :n} is not the usual residual lifetime defined by
{T −t | T > t}. A mixture representation for the usual residual lifetime {T −t | T > t}
was presented in Navarro et al. (2008).

Example 1 A consecutive k-out-of-n:G system is a system that consists of n compo-
nents and functions if and only if at least k consecutive components function (see, e.g.
Eryilmaz 2010). Let n = 5 and k = 3. Then the lifetime of consecutive 3-out-of-5:G
system can be represented as

T = max(min(X1, X2, X3), min(X2, X3, X4), min(X3, X4, X5)).

For this structure we have kφ = 1, zφ = 2 and

p =
(

2

10
,

5

10
,

3

10
, 0, 0

)
.

Thus we obtain

p(1) =
(

0,
5

8
,

3

8
, 0, 0

)
,

p(2) = (0, 0, 1, 0, 0).

Then for r = 1 and r = 2 we respectively have

P {T − X1:5 > t | T > X1:5} = 5

8
P {X2:5 − X1:5 > t} + 3

8
P {X3:5 − X1:5 > t},

P {T − X2:5 > t | T > X2:5} = P {X3:5 − X2:5 > t}.

Theorem 2 (Gather 1988) A continuous cdf F(t), strictly increasing for t > 0, is
exponential if and only if X j :n − Xi :n and X j−i :n−i have identical distribution for
some i, n, j, 1 ≤ i < j ≤ n.

The following corollary is a direct consequence of Theorem 2.

Corollary 1 Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system consisting
of iid exponential components with P {Xi > t} = e−λt , i = 1, . . . , n. Then

P {T − Xr :n > t | T > Xr :n} =
n−r∑

m=1

pm+r (r)P {Xm:n−r > t}.

It is worth mentioning that the expression given in Corollary 1 is similar to that
obtained from expression (2.5) in Samaniego et al. (2009) in the case of exponential
components.

Corollary 2 Under the conditions of Theorem 1,

{
T − Xzφ :n | T > Xzφ :n

} d= X ′
1:n−zφ

,
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where X ′
1:n−zφ

= min(X ′
1, . . . , X ′

n−zφ
) and X ′

1, . . . , X ′
n−zφ

are the residual lifetimes
of the remaining components after the zφ th failure in the system.

Corollary 2 can be explained as follows. Since zφ is the maximum number of failed
components such that the system can still operate successfully, after the zφ th failure
in the system there are still n − zφ functioning components. Thus the system will fail
if at least one of these components fail and hence the residual lifetime of the system
after the zφ th failure is equal to the minimum lifetime of the remaining components.

In view of Theorem 2 we have the following result.

Corollary 3 Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system con-
sisting of iid components with common continuous strictly increasing cdf F(t) =
P {Xi ≤ t} , i = 1, . . . , n, t > 0.F(t) is exponential if and only if

{
T − Xzφ :n | T > Xzφ :n

} d= X1:n−zφ .

In the following we present some stochastic ordering results for residual lifetimes
of two systems having different structures. Before the results we summarize the defi-
nitions of various stochastic orderings. Let X and Y be two lifetime random variables
with respective survival functions F̄(t) and Ḡ(t).X is said to be smaller than Y in the

(a) Usual stochastic order (denoted by X ≤st Y ) if F̄(t) ≤ Ḡ(t) for all t.
(b) Hazard rate order (denoted by X ≤hr Y ) if F̄(t)/Ḡ(t) is decreasing in t.
(c) Likelihood ratio order (denoted by X ≤lr Y ) if f (t)/g(t) is decreasing for all t,

where f (t) and g(t) represent respectively the density functions of X and Y.

For two discrete distributions p = (p1, . . . , pn) and q = (q1, . . . , qn),

(a) p ≤st q if
∑n

j=i p j ≤ ∑n
j=i q j for all i = 1, 2, . . . , n,

(b) p ≤hr q if
∑n

j=i p j/
∑n

j=i q j is decreasing in i,
(c) p ≤lr q if pi/qi is decreasing in i, when pi , qi > 0.

The proof of the next Theorem is immediate from representation 2 and the mixture
preservation results included in Shaked and Shanthikumar (2007).

Theorem 3 Let p and q be the signatures of two coherent systems T1 =φ1(X1, . . . , Xn)

and T2 = φ2(X1, . . . , Xn) with common component distribution. For r ≤
min(zφ1 , zφ2),

(a) If p(r) ≤st q(r) then {T1 − Xr :n | T1 > Xr :n} ≤st {T2 − Xr :n | T2 > Xr :n}.
(b) If p(r) ≤hr q(r) and Xi :n − Xr :n ≤hr Xi+1:n − Xr :n, i = r + 1, . . . , n − 1 then

{T1 − Xr :n | T1 > Xr :n} ≤hr {T2 − Xr :n | T2 > Xr :n}.
(c) If p(r) ≤lr q(r) and Xi :n − Xr :n ≤lr Xi+1:n − Xr :n, i = r + 1, . . . , n − 1 then

{T1 − Xr :n | T1 > Xr :n} ≤lr {T2 − Xr :n | T2 > Xr :n}.
Example 2 Let T1 and T2 denote respectively the lifetimes of consecutive
3-out-of-5:G and consecutive 2-out-of-5:G systems with respective signatures p =
( 2

10 , 5
10 , 3

10 , 0, 0) and q = (0, 1
10 , 5

10 , 4
10 , 0). Let r = 2, then
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p(2) = (0, 0, 1, 0, 0),

q(2) =
(

0, 0,
5

9
,

4

9
, 0

)
.

It is clear that p(2) ≤lr q(2) and hence p(2) ≤hr q(2), p(2) ≤st q(2). Thus
{T1 − X2:5 | T1 > X2:5} ≤st {T2 − X2:5 | T2 > X2:5}. If Xi :5 − X2:5 ≤lr Xi+1:5 −
X2:5, i = 3, 4 then {T1 − X2:5 | T1 > X2:5} ≤hr {T2 − X2:5 | T2 > X2:5} and
{T1 − X2:5 | T1 > X2:5} ≤lr {T2 − X2:5 | T2 > X2:5}.
Corollary 4 Let p, q,T1 and T2 be defined as in Theorem 3 and X1, . . . , Xn be iid
exponential components.

(a) If p(r) ≤hr q(r) then {T1 − Xr :n | T1 > Xr :n} ≤hr {T2 − Xr :n | T2 > Xr :n}.
(b) If p(r) ≤lr q(r) then {T1 − Xr :n | T1 > Xr :n} ≤lr {T2 − Xr :n | T2 > Xr :n}.
Proof It is well known that for a sequence of iid random variables we have Xi :n ≤lr

Xi+1:n and hence Xi :n ≤hr Xi+1:n . Thus the proof follows from Theorem 2 since

Xi :n − Xr :n
d= Xi−r :n−r ≤lr Xi−r+1:n−r

d= Xi+1:n − Xr :n .

��
The mean residual lifetime (MRL) of a coherent system after the r th failure can be

computed from

ϕr,n = E(T − Xr :n | T > Xr :n)

=
n∑

i=r+1

pi (r) [E(Xi :n) − E(Xr :n)] . (3)

Let X and Y be random variables with respective distribution functions F and G.X
is smaller than a random variable Y in dispersion (denoted by F ≤disp G) if

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α)

for all 0 < α ≤ β < 1.

Proposition 1 Let T1 = φ(X1, . . . , Xn) and T2 = φ(Y1, . . . , Yn) be the lifetimes of
two coherent systems with the same structure but different kind of components, where
F(t) = P {Xi ≤ t} and G(t) = P {Yi ≤ t} , i = 1, . . . , n. If F ≤disp G then

E(T1 − Xr :n | T1 > Xr :n) ≤ E(T2 − Yr :n | T2 > Yr :n).

Proof If F ≤disp G then Xi :n − Xr :n ≤st Yi :n − Yr :n for i = r + 1, . . . , n (see, e.g.
David and Nagaraja (2003, p.78)). Thus the proof follows from the definition of ϕr,n .

��
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Example 3 For the system described in Example 1, using 3 the MRL functions are
found to be

ϕ1,5 = E(T − X1:5 | T > X1:5) = 3

8
E(X3:5) + 5

8
E(X2:5) − E(X1:5),

ϕ2,5 = E(T − X2:5 | T > X2:5) = E(X3:5) − E(X2:5).

If the common component distribution is exponential, then using Corollary 2 we can
also obtain the following alternative expressions.

ϕ1,5 = 5

8
E(X1:4) + 3

8
E(X2:4),

ϕ2,5 = E(X1:3).

It is well known that if the common component distribution is exponential with mean
1/λ, then

E(Xi :n) = 1

λ

i∑

j=1

1

n − j + 1
,

for i = 1, . . . , n. Thus, under the assumption of exponential distribution

ϕ1,5 = 3

8λ
, ϕ2,5 = 1

3λ
.
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