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Abstract We study the properties of the called log-beta Weibull distribution defined
by the logarithm of the beta Weibull random variable (Famoye et al. in J Stat Theory
Appl 4:121–136, 2005; Lee et al. in J Mod Appl Stat Methods 6:173–186, 2007). An
advantage of the new distribution is that it includes as special sub-models classical
distributions reported in the lifetime literature. We obtain formal expressions for the
moments, moment generating function, quantile function and mean deviations. We
construct a regression model based on the new distribution to predict recurrence of
prostate cancer for patients with clinically localized prostate cancer treated by open
radical prostatectomy. It can be applied to censored data since it represents a parametric
family of models that includes as special sub-models several widely-known regression
models. The regression model was fitted to a data set of 1,324 eligible prostate cancer
patients. We can predict recurrence free probability after the radical prostatectomy in
terms of highly significant clinical and pathological explanatory variables associated
with the recurrence of the disease. The predicted probabilities of remaining free of
cancer progression are calculated under two nested models.
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1 Introduction

Standard lifetime distributions usually present very strong restrictions to produce bath-
tub curves, and thus appear to be inappropriate for interpreting data with this character-
istic. Some distributions were introduced to model this kind of data, as the generalized
gamma distribution (Stacy 1962), the exponential power family (Smith and Bain 1975),
the beta integrated model (Hjorth 1980), and the generalized log-gamma distribu-
tion (Lawless 2003), among others. A good review of these models is described, for
instance, in Rajarshi and Rajarshi (1988). In the last decade, new classes of distribu-
tions for modeling this type of data based on extensions of the Weibull distribution
were developed. See, for example, the exponentiated Weibull (EW) (Mudholkar et al.
1995), the additive Weibull (Xie and Lai 1995), the modified Weibull (Lai et al. 2003),
the beta Weibull (BW) (Famoye et al. 2005; Lee et al. 2007) and the generalized
modified Weibull (Carrasco et al. 2008) distributions. Further, Cordeiro et al. (2011)
investigated several mathematical properties of the BW geometric distribution, which
is a highly flexible lifetime model to cope with different degrees of kurtosis and asym-
metry. The BW distribution, due to its flexibility in accommodating the four types of
the risk function (i.e. increasing, decreasing, unimodal and bathtub) depending on its
parameters, can be used in a variety of problems in modeling survival data. The main
motivation for the use of the BW model is that it contains as special sub-models several
distributions such as the EW, exponentiated exponential (EE) (Gupta and Kundu 1999)
and generalized Rayleigh (GR) (Kundu and Raqab 2005) distributions, among others.

Prostate cancer is the second most common cancer in American men and also
the second leading cause of cancer death. The American Cancer Society estimates
(in 2010) 217,730 new cases, 32,050 deaths per year and a ten year relative survival
rate of 91% for all stages combined. A man with a localized prostate cancer may
have a high probability of full recovery if he receives a radical prostatectomy (surgical
removal of the prostate gland). Radical prostatectomy provides excellent control of
prostate cancer confined to the prostate gland. However, when the cancer breaches the
capsule, the cancer recurrence after this surgery is quite higher.

Accurate models to predict cancer recurrence after radical prostatectomy for clini-
cally localized prostate patients are important for the rational application of adjuvant
therapy and patient counseling. Previous studies by Kattan et al. (1999) and Stephenson
et al. (2005) indicate that some individual patient characteristics such as the PSA value
before surgery, biopsy Gleason sum, extracapsular extension, surgical margins, sem-
inal vesicle invasion, lymph node involvement, neo-adjuvant hormone, experience of
the surgeon, year of the surgery, among others variables, are very important to pre-
dict the risk of prostate cancer recurrence after open radical prostatectomy. Patient
follow-up was conducted according to accepted clinical practice, and prostate cancer
recurrence is defined as a PSA level > 0.4 ng/ml.

For the first time, we propose a log-beta Weibull (LBW) regression model to predict
the t months biochemical recurrence free probability after radical prostatectomy in

123
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terms of highly significant clinical and pathologic variables associated with disease
recurrence after surgery. The study cohort comprises 1,324 patients with clinically
localized prostate cancer treated by open radical prostatectomy between 1987 and
2003. Patient data were obtained from the Cleveland Clinic from a single surgeon.
Patients with clinical stage T1a or T1b disease, who received neoadjuvant therapy,
adjuvant therapy or who had missing data for prostate specific antigen were excluded.
All information was obtained with appropriate Institutional Review Board waivers.

In this article, we propose a location-scale regression model based on the LBW
distribution, referred to as the LBW regression model, which is a feasible alternative
for modeling the four existing types of failure rate functions. Some inferential issues
were carried out using the asymptotic distribution of the maximum likelihood estima-
tors (MLEs). The sections are organized as follows. In Sect. 2, we define the LBW
distribution. Mathematical properties of this distribution are investigate in Sect. 3.
In Sect. 4, we obtain the order statistics. We propose a LBW regression model for
censored data and discuss inferential issues in Sect. 5. In Sect. 6, a prostate cancer
data set is analyzed to show the flexibility, practical relevance and applicability of our
regression model. Section 7 ends with some concluding remarks.

2 The log-beta Weibull distribution

Most generalized Weibull distributions have been proposed in reliability literature to
provide better fitting of certain data sets than the traditional two and three parameter
Weibull models. The BW density function (Famoye et al. 2005) with four parameters
a > 0, b > 0, c > 0 and λ > 0 is given by (for t > 0)

f (t) = c

λc B(a, b)
tc−1 exp

{
−b

(
t

λ

)c} [
1 − exp

{
−
(

t

λ

)c}]a−1

, (1)

where B(a, b) = [�(a)�(b)]/�(a + b) is the beta function and �(·) is the gamma
function. Here, a and b are two additional shape parameters to the Weibull distribution
to model the skewness and kurtosis of the data.

The important characteristic of the BW distribution is that it contains, as special
sub-models, the EE (Gupta and Kundu 1999), EW (Mudholkar et al. 1995) and GR
(Kundu and Raqab 2005) distributions, and some other distributions (see, for example,
Cordeiro et al. 2011). The survival and hazard rate functions corresponding to (1) are

S(t) = 1 − 1

B(a, b)

1−exp{−(t/λ)c}∫
0

wa−1(1 − w)b−1dw = 1 − I1−exp{−(t/λ)c}(a, b)

and

h(t) = c(1/λ)ctc−1exp{−b(t/λ)c}[1 − exp{−(t/λ)c}]a−1

B(a, b)[1 − I1−exp{−(t/λ)c}(a, b)] ,
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respectively, where Iy(a, b)= B(a, b)−1
∫ y

0 w
a−1 (1 − w)b−1dw is the incomplete

beta function ratio.
Let T be a random variable having the BW density function (1). We study the mathe-

matical properties of the LBW distribution defined by the random variable Y = log(T ).
The density function of Y, parameterized in terms of σ = c−1 and μ = log(λ), can
be expressed as

f (y; a, b, σ, μ) = 1

σ B(a, b)
exp

{(
y − μ

σ

)

−b exp

(
y − μ

σ

)}{
1 − exp

[
− exp

(
y − μ

σ

)]}a−1

, (2)

where −∞ < y < ∞, σ > 0 and −∞ < μ < ∞. We refer to the new model (2)
as the LBW distribution, say Y ∼ LBW(μ, σ, a, b), where μ is a location parameter,
σ is a dispersion parameter and a and b are shape parameters. The following results
holds

if T ∼ BW(λ, a, b, c) then Y = log(T ) ∼ LBW(μ, σ, a, b).

We emphasize that the LBW distribution could also be called the beta extreme value
(BEV) distribution, since they are identical. The survival function corresponding to
(2) is

S(y) = 1 − 1

B(a, b)

1−exp
[
− exp

(
y−μ
σ

)]
∫
0

wa−1(1 − w)b−1dw

= 1 − I
1−exp

[
− exp

(
y−μ
σ

)](a, b). (3)

3 Properties of the LBW distribution

Here, we study some properties of the standardized LBW random variable defined by
Z = (Y − μ)/σ . The density function of Z reduces to

π(z; a, b) = 1

B(a, b)
exp[z − b exp(z)] {1 − exp[− exp(z)]}a−1, −∞ < z < ∞.

(4)

The associated cumulative distribution function (cdf) is FZ (z) = I1−exp[− exp(z)](a, b).
The basic exemplar a = b = 1 corresponds to the standard extreme-value distribution.

3.1 Linear combination

By expanding the binomial term in (4), we can write
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π(z; a, b) = 1

B(a, b)

∞∑
j=0

(−1) j
(

a − 1
j

)
exp[z − (b + j) exp(z)]. (5)

The density function hb = b exp[z − b exp(z)] (for b > 0) gives the Kumaraswamy
extreme value (KumEV) distribution (Cordeiro and Castro 2011) with parameters one
and b. Its associated cumulative function is Ha(x) = 1 − [1 − exp(−ez)]a. Thus,

π(z; a, b) =
∞∑
j=0

w j hb+ j (z),

where the coefficients are

w j =
(−1) j

(
a − 1

j

)

(b + j)B(a, b)
.

So, the LBW density function can be expressed as a linear combination of KumEV
densities. For a = 1, the LBW distribution reduces to the KumEV distribution with
parameters one and b. For b = 1, it becomes the log exponentiated Weibull, which
is a new model defined here. The LBW random variable Z can be generated directly
from the beta variate V with parameters a > 0 and b > 0 by Z = log[− log(1 − V )].

3.2 Moments

The sth ordinary moment of the LBW distribution (4) is

μ′
s = E(Zs) = 1

B(a, b)

∞∫
−∞

zs exp[z − b exp(z)]{1 − exp[− exp(z)]}a−1dz.

By expanding the binomial term and setting w = ez, we obtain

μ′
s = 1

B(a, b)

∞∑
j=0

(
a − 1

j

)
(−1) j

∞∫
0

log(w)s exp[−(b + j)w]dw.

The above integral can be calculated from Prudnikov et al. (1986, Vol. 1, Eq. 2.6.21.1)
as

I (s, j) =
(
∂

∂p

)s [
(b + j)−p �(p)

] ∣∣∣∣
p=1

and then
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Fig. 1 Skewness of the LBW distribution. a Function of a for some values of b. b Function of b for some
values of a
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Fig. 2 Kurtosis of the LBW distribution. a Function of a for some values of b. b Function of b for some
values of a

μ′
s = 1

B(a, b)

∞∑
j=0

(−1) j
(

a − 1
j

)
I (s, j). (6)

Equation 6 gives the moments of the LBW distribution. The skewness and kurtosis
measures can be calculated from the ordinary moments using well-known relation-
ships. These measures are controlled mainly by the parameters a and b. Plots of the
skewness and kurtosis for selected values of b as function of a, and for selected values
of a as function of b, for μ = 0 and σ = 1, are shown in Figs. 1 and 2, respectively.
These plots reveal that the skewness for fixed b (a), as function of a (b) decreases and
then increases (decreases), whereas the kurtosis for fixed b (a) as function of a (b)
decreases, increases and then decreases (decreases and then increases).
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3.3 Moment generating function

The moment generating function (mgf) of Z , say M(t) = E(et Z ), follows from (4)
as

M(t) = 1

B(a, b)

∞∑
j=0

(−1) j (a − 1 j
) ∞∫

0

wt exp[−(b + j)w]dw

and then

M(t) = �(t + 1)

B(a, b)

∞∑
j=0

(−1) j
(

a − 1
j

)
(b + j)−(t+1). (7)

Clearly, the moments (6) can be obtained from (7) by simple differentiation.

3.4 Quantile function

We now give an expansion for the quantile function q = F−1(p) (given p) of the LBW
distribution. First, we have p = F(q) = Is(a, b), where s = 1 − exp[− exp(q)]. It is
possible to obtain s as function of p from some expansions for the inverse of the beta
incomplete function s = I −1

p (a, b). One of them can be found in Wolfram website1

as

s = I −1
p (a, b) = w + b−1

a+1w
2 + (b−1)(a2+3ba−a+5b−4)

2(a+1)2(a+2)
w3

+ (b−1)[a4+(6b−1)a3+(b+2)(8b−5)a2+(33b2−30b+4)a+b(31b−47)+18]
3(a+1)3(a+2)(a+3)

w4 + O(p5/a),

where w = [a p B(a, b)]1/a for a > 0. Hence, q = log[− log(1 − s)] and the above
expansion defines the LBW quantile function.

3.5 Mean deviations

The amount of scatter in Z is evidently measured to some extent by the totality of
deviations from the mean μ′

1 and median m. These are known as the mean deviations
about the mean and the median—defined by

δ1(Z) =
∞∫

−∞
|x − μ|π(z; a, b)dz and δ2(Z) =

∞∫
−∞

|x − m|π(z; a, b)dz,

respectively. From (6) with s = 1, we obtain

1 http://functions.wolfram.com/06.23.06.0004.01.
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μ′
1 = E(Z) = 1

B(a, b)

∞∑
j=0

(−1) j+1
(

a − 1
j

)

(b + j)
[γ + log(b + j)],

where γ is Euler’s constant. The median m is calculated from the nonlinear equation
I1−exp[− exp(m)](a, b) = 1/2. The measures δ1(Z) and δ2(Z) can be expressed as

δ1(Z) = 2μ′
1[FZ (μ

′
1)− 1] + 2T (μ′

1) and δ2(Z) = 2T (m)− μ′
1,

where T (q) = ∫∞
q z π(z; a, b)dz. We obtain T (q) as

T (q) = 1

B(a, b)

∞∫
q

z exp[z − b exp(z)] {1 − exp[− exp(z)]}a−1

= 1

B(a, b)

∞∑
j=0

(−1) j (a − 1 j
) ∞∫

eq

log(w) exp[−(b + j)w]dw.

For b > 0 and p > 0, using a result in Prudnikov et al. (1986, Vol. 1, Eq. 1.6.10.3),
namely

K (p, a) =
∞∫

p

log(x) e−bxdx = b−1 [e−bp log(p)− Ei(−bp)],

where Ei (x) = ∫ x
−∞ t−1 etdt is the exponential integral, we obtain

T (q) = 1

B(a, b)

∞∑
j=0

(−1) j
(

a − 1
j

)

(b + j)
[q e−(b+j)eq − Ei(−(b + j)eq)].

This equation for T (q) can be used to determine Bonferroni and Lorenz curves that
have applications in economics to study income and poverty, reliability, demography,
insurance and medicine and other fields. They are defined by

B(p) = μ′
1 − T (q)

pμ′
1

and L(p) = μ′
1 − T (q)

μ′
1

,

respectively, where q = F−1(p) can be calculated for given p from the quantile func-
tion.
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4 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
The density fi :n(x) of the i th order statistic (Zi :n) for i = 1, . . . , n from i.i.d. LBW
random variables Z1, . . . , Zn is simply given by

fi :n(z) = π(z; a, b)

B(i, n − i + 1)

n−i∑
j=0

(−1) j
(

n − i
j

)
I1−exp[− exp(z)](a, b)i+ j−1. (8)

We now obtain an expansion for the density function of the LBW order statistics. First,
we use the incomplete beta function expansion for b > 0 real non-integer

I1−exp[− exp(z)](a, b) = 1

B(a, b)

∞∑
m=0

(1 − b)m {1 − exp[− exp(z)]}a+m

(a + m)m! ,

where ( f )k = �( f + k)/�( f ) is the ascending factorial. We have

I1−exp[− exp(z)](a, b) =
∞∑

k=0

dk exp[−k exp(z)], (9)

where the coefficients dk (for k = 0, 1, . . .) are

dk = (−1)k

B(a, b)

∞∑
m=0

(1 − b)m

(
a + m

k

)

(a + m)m! .

Using the identity
(∑∞

k=0 ak xk
)n = ∑∞

j=0 cn,k xk for n positive integer (see Grad-

shteyn and Ryzhik 2000) in I1−exp[− exp(z)](a, b)i+ j−1, we readily obtain

I1−exp[− exp(z)](a, b)i+ j−1 =
∞∑

k=0

ci+ j−1,k exp[−k exp(z)], (10)

where ci+ j−1,0 = di+ j−1
0 and, for k = 1, 2, . . . ,

ci+ j−1,k = (k d0)
−1

k∑
r=1

[(i + j)r − k] di ci+ j−1,k−r . (11)

Substituting (5) and (10) in Eq. 8, we have

fi :n(z) =
∞∑

m,k=0

(−1)m
(

a − 1
m

)
vk exp[z − (b + m + k) exp(z)], (12)
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where

vk =
∑n−i

j=0(−1) j
(

n − i
j

)
ci+ j−1,k

B(i, n − i + 1) B(a, b)
.

The moments, mgf, mean deviations of the LBW order statistics are easily obtained
from (12) using the same calculations for those quantities of the LBW distribution.
For example, the sth ordinary moment of Zi :n is expressed as

E(Xs
i :n) =

∞∑
m,k=0

(−1)m
(

a − 1
m

)
vk I (s,m + k),

where I (s,m + k) is defined just before (6).

5 The log-beta Weibull regression model

In many practical applications, the lifetimes are affected by explanatory variables such
as the cholesterol level, blood pressure, weight and many others. Parametric models
to estimate univariate survival functions and for censored data regression problems
are widely used. A parametric model that provides a good fit to lifetime data tends to
yield more precise estimates of the quantities of interest. Based on the LBW density
function, we propose a linear location-scale regression model linking the response
variable yi and the explanatory variable vector xT

i = (xi1, . . . , xip) as follows

yi = xT
i β + σ zi , i = 1, . . . , n, (13)

where the random error zi has density function (4), β = (β1, . . . , βp)
T , σ > 0, a > 0

and b > 0 are unknown parameters. The parameter μi = xT
i β is the location of yi .

The location parameter vector μ = (μ1, . . . , μn)
T is represented by a linear model

μ = Xβ, where X = (x1, . . . , xn)
T is a known model matrix. The LBW model (13)

opens new possibilities for fitting many different types of data. It contains as special
sub-models the following well-known regression models. For a = b = 1, we obtain
the classical Weibull regression model (see, Lawless 2003). If σ = 1 and σ = 0.5,
in addition to a = b = 1, it coincides with the exponential and Rayleigh regression
models, respectively. For b = 1, it reduces to the log-exponentiated Weibull regres-
sion model (Cancho et al. 1999, 2009; Ortega et al. 2006; Hashimoto et al. 2010). If
σ = 1, in addition to b = 1, the LBW model yields the log-exponentiated exponential
regression. If σ = 0.5, in addition to b = 1, it becomes the log-generalized Rayleigh
regression model. For σ = 1, we have a new model called the log-beta exponential
regression model.

Consider a sample (y1, x1), . . . , (yn, xn) of n independent observations, where
each random response is defined by yi = min{log(ti ), log(ci )}. We assume non-infor-
mative censoring such that the observed lifetimes and censoring times are indepen-
dent. Let F and C be the sets of individuals for which yi is the log-lifetime and
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log-censoring, respectively. The log-likelihood function for the vector of parame-
ters θ = (a, b, σ,βT )T from model (13) has the form l(θ) = ∑

i∈F log[ f (yi )] +∑
i∈C log[S(yi )], where f (yi ) is the density function (2) and S(yi ) is the survival

function (3) of Yi . The log-likelihood function for θ reduces to

l(θ) = −r log {log(σ )+ log[B(a, b)]} +
∑
i∈F

zi − b
∑
i∈F

exp(zi )

+ (a − 1)
∑
i∈F

log
{
1 − exp

[− exp(zi )
]}+

∑
i∈C

log
{
1 − I1−exp[− exp(zi )](a, b)

}
,

(14)

where r is the number of uncensored observations (failures) and zi = (yi − xT
i β)/σ .

The MLE θ̂ of the vector θ of unknown parameters can be calculated by maximizing
the log-likelihood (14). We use the subroutine NLMixed in SAS to calculate θ̂ . Initial
values for σ and β can be taken from the fit of the log-Weibull (LW) regression model
with a = b = 1. The fitted LBW model gives the estimated survival function of Y for
any individual with explanatory vector x

S(y; â, b̂, σ̂ , β̂
T
) = 1 − I

1−exp

[
− exp

(
y−xT β̂

σ̂

)](â, b̂). (15)

The invariance property of the MLEs yields the survival function for T = exp(Y )

S(t; â, b̂, ĉ, λ̂) = 1 − I1−exp{−(t/λ̂)ĉ}(â, b̂), (16)

where ĉ = 1/σ̂ and λ̂ = exp(xT β̂).
Under conditions that are fulfilled for the parameter vector θ in the interior of the

parameter space but not on the boundary, the asymptotic distribution of
√

n(̂θ − θ)

is multivariate normal Np+3(0, K (θ)−1), where K (θ) is the information matrix. The
asymptotic covariance matrix K (θ)−1 of θ̂ can be approximated by the inverse of the
(p + 3)× (p + 3) observed information matrix −L̈(θ) = {Lr,s},whose elements Lr,s

are given in Appendix A.
The approximate multivariate normal distribution Np+3(0,−L̈(θ)−1) for θ̂ can be

used in the classical way to construct approximate confidence regions for some param-
eters in θ . We can use the likelihood ratio (LR) statistic for comparing some special
sub-models with the LBW model. We consider the partition θ = (θT

1 , θ
T
2 )

T , where
θ1 is a subset of parameters of interest and θ2 is a subset of remaining parameters.
The LR statistic for testing the null hypothesis H0 : θ1 = θ

(0)
1 versus the alternative

hypothesis H1 : θ1 �= θ
(0)
1 is given by w = 2{
(̂θ) − 
(̃θ)}, where θ̃ and θ̂ are the

estimates under the null and alternative hypotheses, respectively. The statistic w is
asymptotically (as n → ∞) distributed as χ2

k , where k is the dimension of the subset
θ1 of parameters of interest.
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6 Application: prostate cancer recurrence data

In this section, we develop an application of the LBW regression model to a prostate
cancer data. The study cohort comprises 1,324 patients with clinically localized pros-
tate cancer treated by open radical prostatectomy between 1987 and 2003. Patient data
were obtained from the Cleveland Clinic from a single surgeon. The data consist of
the random response variable given by the number of months (yi ) without detectable
disease after prostatectomy. Uncensored observations correspond to patients having
cancer recurrent time computed. Censored observations correspond to patients who
were not observed to have cancer recurrence at the time the data were collected. The
numbers of censored and uncensored observations are 1,096 and 228, respectively, of
the total of 1,324 patients. The following explanatory variables were associated with
each patient (for i = 1, . . . , 1,324):

• δi : is the event indicator where 1 represents the event and 0 is censored;
• neoadi : is whether the patient received neo-adjuvant hormones, i.e., treated with

hormone therapy prior to radical prostatectomy (yes=1 and no=0);
• psai : is the PSA value (in ng/mL) from the laboratory report before receiving

prostatectomy;
• ece ti : is the extracapsular extension on path report (yes=1, no=0);
• svi ti : is the seminal vesicle invasion on path report (yes=1, no=0);
• pgx : is the pathology report Gleason sum 4–7, 7, 8–10. We construct two dummy

random variables: (pgx t1: [4,7) versus 7 and pgx t2: [4,7) versus [8,10]);
• lni ti : is the lymph node involvement on path report (neg=1, pos=0);
• sm ti : is surgical margin status (yes=1, no=0).

Now, we present results by fitting the model

yi = β0 + β1 neoadi + β2 psai + β3 ece ti + β4 svi ti
+β5 lni ti + β6 pgx t1i + β7 pgx t2i + β8 sm ti + σ zi ,

where the dependent variable yi follows the LBW density function (2) for i =
1, . . . , 1,324. The MLEs of the model parameters are calculated using the procedure
NLMixed in SAS. Iterative maximization of the logarithm of the likelihood function
(14) starts with initial values for β and σ taken from the fit of the LW regression model
with a = b = 1.

Table 1 lists the MLEs of the parameters for the LBW and LW regression models
fitted to the current data. The LR statistic for testing the hypotheses H0: a = b = 1
versus H1: H0 is not true, i.e., to compare the LW and LBW regression models, is
w = 2{−716.45 − (−730.80)} = 28.70 (p-value < 0.0001), which gives favorable
indications toward to the LBW model. The LBW model involves two extra parame-
ters which gives it more flexibility to fit the data. The fitted LBW regression model
indicates that all explanatory variables are significant at 5%.

Cox (1972) proposed a very useful regression model for analyzing censoring failure
times, where the random variable of interest represents failure time and the failures
times are assumed identically distributed in some specified form. He noted that if the
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Table 1 MLEs of the parameters for the LBW and LW regression models fitted to the recurrence prostate
cancer data

θ LBW regression model LW regression model

Estimate S.E p-value 95%CI Estimate S.E p-value 95%CI

a 267.08 0.11 – (266.85; 267.30) 1 − – −
b 21.63 0.12 – (21.40; 21.86) 1 − – −
σ 24.12 1.21 – (21.74; 26.50) 1.24 0.07 – (1.11; 1.37)
β0 −16.00 1.04 <0.0001 (−18.05;−13.96) 7.40 0.42 <0.0001 (6.56; 8.23)
β1 −0.59 0.23 0.0085 (−1.04;−0.15) −0.72 0.21 0.0006 (−1.13;−0.31)
β2 −0.02 0.007 0.0017 (−0.04;−0.01) −0.01 0.004 0.0040 (−0.02;−0.003)
β3 −0.84 0.20 <0.0001 (−1.23;−0.45) −0.93 0.21 <0.0001 (−1.35;−0.51)
β4 −1.01 0.27 0.0002 (−1.54;−0.48) −0.76 0.23 0.0013 (−1.22;−0.30)
β5 0.67 0.25 0.0075 (0.18; 1.16) 0.67 0.29 0.0227 (0.09; 1.25)
β6 −0.90 0.19 <0.0001 (−1.27;−0.52) −1.01 0.23 <0.0001 (−1.46;−0.56)
β7 −2.09 0.30 <0.0001 (−2.68;−1.51) −2.00 0.30 <0.0001 (−2.59;−1.42)
β8 −1.09 0.18 <0.0001 (−1.46;−0.74) −0.88 0.19 <0.0001 (−1.25;−0.51)

proportional hazards assumption holds (or, is assumed to hold) then it is possible to
estimate the effect parameter(s) without any consideration of the hazard function (non-
parametric approach). This approach to survival data is called proportional hazards
model. The Cox model may be specialized if a reason exists to assume that the baseline
hazard follows a parametric form. In this case, the baseline hazard can be replaced
by a parametric density. Typically, we can then maximize the full likelihood which
greatly simplifies model-fitting and provides interpretability at the cost of flexibility.

Let R(ti ) be the set of individuals at risk at time ti . Conditionally on the risk sets,
the required likelihood L(β) can be expressed as

L(β) =
n∏

i=1

[
exp(xT

i β)∑
j∈R(ti ) exp(xT

i β)

]δi

, (17)

where δi is the censoring indicator.
The MLE β̂ of β can be calculated by maximizing the likelihood function (17) using

the matrix programming language SAS. Table 2 provides the estimates, correspond-
ing standard errors and p-values for the fitted Cox regression model. All explanatory

Table 2 Estimates for the Cox
regression model fitted to the
recurrence prostate cancer data

Parameter Estimate SE p-value 95% CI

β1 0.558 0.168 0.0009 (0.228, 0.887)
β2 0.008 0.003 0.0122 (0.002, 0.014)
β3 0.755 0.167 <.0001 (0.428, 1.082)
β4 0.618 0.186 0.0009 (0.253, 0.982)
β5 −0.539 0.239 0.0240 (−1.007,−0.071)
β6 0.797 0.183 <.0001 (0.439, 1.155)
β7 1.598 0.237 <.0001 (1.134, 2.062)
β8 0.703 0.147 <.0001 (0.419, 0.986)
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Table 3 AIC, BIC and GD
statistics for comparing the
LBW and LW models

Model AIC BIC GD

LBW 1456.9 1519.1 1432.9
LW 1481.6 1533.5 1461.6
Cox proportional hazards 2742.4 2742.4 2726.4

variables are marginally significant at the 5% significance level. For a prostate can-
cer patient with explanatory vector x, the recurrence free probability, say P(T ≥
t;β, x) = S(t;β, x), can be predicted from Cox regression model by

S(t; β̂, x) = [Ŝ0(t)]exp(xT β̂), (18)

where Ŝ0(t)= exp[−�̂0(T )], �̂0(T ) = ∑
j :t j<t

[
d j∑

l∈R j
exp(xT

l β̂)

]
and d j is the num-

ber of failures in t j .
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Fig. 3 Kaplan–Meier curves stratified by explanatory variable and estimated survival functions to the recur-
rence prostate cancer data: a neoad explanatory variable. b ecet explanatory variable. c svi t explanatory
variable. d lni t explanatory variable
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Fig. 4 Kaplan–Meier curves stratified by explanatory variable and estimated survival functions to the recur-
rence prostate cancer data: a pgxt1 explanatory variable. b pgxt2 explanatory variable. c smt explanatory
variable

Further, Table 3 lists the Akaike Information Criterion (AIC), Bayesian Informa-
tion Criterion (BIC) and the global deviance (GD) given by −2 log{Lβ̂}, to compare
the LBW, LW and Cox proportional hazard regression models. The LBW regression
model outperforms the other models irrespective of the criteria and it can be used
effectively in the analysis of these data. So, the proposed model is a great alternative
to model survival data.

In order to assess if the model is appropriate, we fit the LBW and LW regression
models for each explanatory variable. In Figs. 3a, b, c, d and 4a, b, c, we plot the
empirical survival function and the estimated survival function (16) for each explana-
tory variable. We conclude that the LBW regression model provides a good fit to these
data.

6.1 Prediction

For a prostate cancer patient treated by open radical prostatectomy with explanatory
vector x,we can estimate the recurrence free probability, say P(T ≥ t; a, b, σ,β, x) =
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Table 4 Recurrence free probability under the BW regression model

Patient neoad psa ece t svi t lni t pgx t1 pgx t2 sm t

A 0 5 1 0 1 1 0 1
B 0 25 1 0 1 1 0 1
C 1 30 0 1 0 0 1 0
D 1 60 0 1 0 0 1 0
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Fig. 5 Estimated recurrence free probability curves for patients A, B, C and D

S(t; a, b, σ,β, x), by using (16). Evidently, the recurrence free probability converges
to zero when the linear predictor μi = xT

i β tends to −∞ and converges to one when
the linear predictor goes to +∞. In other words, the recurrence for patients with clini-
cally localized prostate cancer treated by open radical prostatectomy for a fixing time
t after the surgery, approaches one (zero) when the linear predictor μ increases to a
very large negative (positive) number.

We can use (16) to predict the recurrence free probability S(t; x) = S(t; â, b̂, σ̂ ,
β̂, x) of prostate cancer at t months. As an illustration, we consider four hypothetical
patients A, B,C and D who underwent radical prostatectomy having fixed values
for the explanatory variables given in Table 4. In Fig. 5, we provide the plots of the
estimated recurrence free probabilities for these four patients.

7 Concluding remarks

We introduce the called log-beta Weibull (LBW) distribution whose hazard rate func-
tion accommodates four types of shape forms, namely increasing, decreasing, bathtub
and unimodal. We derive expressions for its moments, moment generating function,
quantile function, mean deviations and order statistics. Based on this new distribu-
tion, we propose a LBW regression model very suitable for modeling censored and
uncensored lifetime data. We provide an application to predict cure of prostate cancer.
The new regression model allows to perform goodness of fit tests for some known
regression models as special cases. Hence, the proposed regression model serves as a
good alternative for lifetime data analysis. Further, the new regression model is much
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more flexible than the exponentiated Weibull, Weibull and generalized Rayleigh sub-
models. In one application to real prostate cancer data, we show that the LBW model
can produce better fit than its sub-models. We compare three fitted models using the
AIC, BIC and global deviance criterions to give evidence that the LBW regression
model outperforms the other two models.

Acknowledgements This work was supported by CNPq and CAPES.

Appendix A: Matrix of second derivatives −L̈(θ)

Here, we give the formulas to obtain the second-order partial derivatives of the log-
likelihood function. After some algebraic manipulations, we obtain

Laa =
∑
i∈F

[
ψ

′
(a + b)− ψ

′
(a)
]

−
∑
i∈C

{
v−2

i

([ İG(zi )(a, b)]a
)2

+ v−1
i

[
[ψ(a)− ψ(a + b)]2

B(a, b)
− ψ

′
(a)− ψ

′
(a + b)

B(a, b)
+ M(a)

]}
,

Lab =
∑
i∈F

ψ
′
(a + b)−

∑
i∈C

{
v−2

i [ İG(zi )(a, b)]a[ İG(zi )(a, b)]b

+ v−1
i

[
[ψ(a)− ψ(a + b)][ψ(b)− ψ(a + b)]

B(a, b)
+ ψ

′
(a + b)

B(a, b)
+ M(ab)

]}
,

Laσ = −σ−1
∑
i∈F

zi oi −
∑
i∈C

{
v−2

i [ İG(zi )(a, b)]a[ İG(zi )(a, b)]σ − v−1
i zi qi log[G(zi )]

}
,

Laβ j =− σ−1
∑
i∈F

xi j oi−
∑
i∈C

{
v−2

i [ İG(zi )(a, b)]a[ İG(zi )(a, b)]β j −v−1
i xi j qi log[G(zi )]

}
,

Lbb =
∑
i∈F

[
ψ

′
(a + b)− ψ

′
(b)
]

−
∑
i∈C

{
v−2

i

([ İG(zi )(a, b)]b
)2

+ v−1
i

[
[ψ(b)− ψ(a + b)]2

B(a, b)
− ψ

′
(b)− ψ

′
(a + b)

B(a, b)
+ M(b)

]}
,

Lbσ = σ−1
∑
i∈F

zi exp(zi )−
∑
i∈C

{
v−2

i [ İG(zi )(a, b)]b[ İG(zi )(a, b)]σ−v−1
i zi qi exp(zi )

}
,

Lbβ j =σ−1
∑
i∈F

xi j exp(zi )−
∑
i∈C

{
v−2

i [ İG(zi )(a, b)]b[ İG(zi )(a, b)]β j −v−1
i xi j qi exp(zi )

}
,
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Lσσ =
∑
i∈F

{
σ−2(1 + 2zi )− bσ−2zi exp(zi )+ zi ui

[
2 + zi (1 − exp(zi ))− oi

]}

−
∑
i∈C

{
v−2

i

([ İG(zi )(a, b)]σ
)2 + v−1

i zi di

[
zi (b exp(zi )− 1)− σ 2zi ui − 2

]}
,

Lσβ j =
∑
i∈F

{
σ−2xi j − bσ−2xi j exp(zi )(1 + zi )+xi j ui

[
1+zi (1− exp(zi ))−zi oi

]}

−
∑
i∈C

{
v−2

i [ İG(zi )(a, b)]σ [ İG(zi )(a, b)]β j +v−1
i xi j di

×
[
zi (b exp(zi )− 1)−σ 2zi ui − 1

]}

and

Lβ jβs = −
∑
i∈F

{
bσ−2xi j xis exp(zi )− xi j xisui

[
1 − exp(zi )− oi

]}

−
∑
i∈C

{
v−2

i [ İG(zi )(a, b)]β j [ İG(zi )(a, b)]βs

+v−1
i xi j xisdi

[
b exp(zi )− 1 − σ 2ui

] }
,

where

zi = (yi − xT
i β)/σ, G(zi ) = 1 − exp[− exp(z)],

vi = 1 − IG(zi )(a, b), oi = [G(zi )]−1 exp[zi − exp(zi )],

M(a) =
G(zi )∫
0

wa−1(1 − w)b−1[log(w)]2dw,

M(b) =
G(zi )∫
0

wa−1(1 − w)b−1[log(1 − w)]2dw,

M(ab) =
G(zi )∫
0

wa−1(1 − w)b−1 log(w) log(1 − w)dw,

qi = σ−1[G(zi )]a−1 exp[zi − b exp(zi )],
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ui = σ−2[G(zi )]−1(a − 1) exp[zi − exp(zi )],
di = σ−2[G(zi )]a−1 exp[zi − b exp(zi )],

[ İG(zi )(a, b)]a = [ψ(a + b)− ψ(a)]/B(a, b)+
G(zi )∫
0

wa−1(1 − w)b−1 log(w)dw,

[ İG(zi )(a, b)]b=[ψ(a + b)− ψ(b)]/B(a, b)+
G(zi )∫
0

wa−1(1 − w)b−1 log(1 − w)dw,

[ İG(zi )(a, b)]σ = −σ−1zi [G(zi )]a−1 exp[zi − exp(zi )]

and

[ İG(zi )(a, b)]β j = −σ−1xi j [G(zi )]a−1 exp[zi − exp(zi )].
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