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Abstract Integer-valued time series models make use of thinning operators for
coherency in the nature of count data. However, the thinning operators make residuals
unobservable and are the main difficulty in developing diagnostic tools for autocor-
related count data. In this regard, we introduce a new residual, which takes the form
of predictive distribution functions, to assess probabilistic forecasts, and this new
residual is supplemented by a modified usual residuals. Under integer-valued auto-
regressive (INAR) models, the properties of these two residuals are investigated and
used to evaluate the predictive performance and model adequacy of the INAR models.
We compare our residuals with the existing residuals through simulation studies and
apply our method to select an appropriate INAR model for an over-dispersed real data.

Keywords Integer-valued AR(p) · Residuals · Probability integral transformation ·
Over-dispersion · Thinning parameter
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1 Introduction

When the counts are of low-frequency and depend on their past observations, it is
not appropriate to approximate their dynamic structure by continuous time series
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models such as the autoregressive-moving average (ARMA) processes. To obtain
such an ARMA-like autoregressive structure, many integer-valued time series mod-
els make use of thinning operations in place of the multiplication of ARMA model
for coherency in the nature of count data. Integer-valued time series models were
surveyed by Kedem and Fokianos (2002) and McKenzie (2003). In particular, Weiß
(2008a) summarized a broad variety of thinning operations and showed how they are
applied to integer-valued ARMA (INARMA) models. Recently many new models
on integer valued time series have been proposed; generalized-INAR models (Latour
1998; Brännäs and Hellström 2001), threshold-INAR models (Thyregod et al. 1999;
Brännäs and Hellström 2001), geometric INAR(1) model (Ristić et al. 2009), and
random coefficient INAR models (Zheng et al. 2006, 2007, 2008). Most researches
have generally been limited to various integer-valued autoregressive processes because
of the complicated form of the likelihood of the full INARMA models.

Although there have been many studies of integer-valued time series models, they
have largely been focused on model building and parameter estimation. In addition,
the main focus has been on evaluating point forecasts, not probabilistic forecasts.
Recent contribution to the theory of probabilistic forecasts for integer-valued time
series models can be found in Freeland and McCabe (2004b), Jung and Tremayne
(2006), and McCabe et al. (2009). Jung and Tremayne (2003) presented test statistics
for serial correlations using i.i.d. Poisson or negative binomial counts under the null
against INAR(1) or INAR(2) under the alternative. Their method thus has a limitation
if the null is a correlated sequence of counts or if the alternative is a general INAR(p)

with unknown p. To circumvent this limitation, Bu and McCabe (2008) proposed
p +1 sets of residuals in a Poisson INAR(p) model. The existence of any dependence
structure in these p + 1 sets of residuals would suggest the need for a more general
specification. The idea behind our approach is basically the same as Bu and McCabe
(2008) in that both approaches create new sets of residuals: two sets of residuals for
ours and p + 1 sets of residuals for Bu and McCabe.

Another important issue is the evaluation of predictive performance by comparing
a probabilistic forecast, which is in the form of a predictive distribution, with the
true data-generating distribution. For the case of continuous time series data, this
comparison has been achieved by the uniformity of probability integral transform
(PIT) values, which are supplemented by tests for independence because PIT values
are i.i.d. samples from U (0, 1) when the predictive distribution of one-step-ahead
forecasts agrees with the true data generating distribution (Frühwirth-Schnatter 1996;
Diebold et al. 1998). For the case of discrete data, randomized PIT values can be
used for predictive performance (Frühwirth-Schnatter 1996; Liesenfeld et al. 2006)
for i.i.d. underlying PIT values. The randomized PIT values are defined by adding
some random noises to the discrete-valued PIT values so that they are i.i.d. continuous
U (0, 1) values.

In the case of serially correlated counts modelled by thinning operators, however,
the predictive distribution is a convolution of discrete random variables because of
thinning operators. For example, a one-step-ahead forecast is expressed by the sum
of p + 1 integer-valued random variables in the Poisson INAR(p) model suggested
by Du and Li (1991): the first p variables are independent binomial random vari-
ables depending on the past counts from lag one to lag p, and the remaining one is a
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Poisson error term. This makes residuals unobservable, and the predictive distribution
of the one-step-ahead forecast varies with time, implying that the PIT values calculated
from one-step-ahead forecasts can be neither identically distributed nor converted into
randomized PIT values.

To overcome such non-homogenous and non-uniformly distributed PIT values, we
introduce, so called, expected residuals to evaluate predictive performance and to
examine serial correlations. The expected residuals are regarded as the estimates of
the error term. Thus, by investigating their empirical distribution and correlation, one
can check whether a hypothesized predictive distribution is the true data generating
process (DGP).

One type of expected residuals is obtained from a conditional predictive distribu-
tion given in previous observations, and the PIT values calculated from the expected
residuals are used as diagnostic tools: a S-shaped empirical cumulative distribution
function (ECDF) of the PIT values indicates an overdispersed or underdispersed pre-
dictive distribution, and a U-shaped or humped-shaped ECDF points at underesti-
mated or overestimated thinning parameter, or an underestimated or overestimated
error mean. These informal diagnostics are supplemented by independent test of PIT
values to specify the order p in the INAR(p) model of Du and Li (1991). However,
the expected residuals turn out not to work well for the independent test. Thus, we
consider modified usual residuals as a second type of expected residuals for better
independent test and investigate their properties useful for parameter estimation and
model specification.

Using both types of expected residuals, we first determine an appropriate order p in
INAR(p), and then investigate whether the time series of counts under consideration
is over-dispersed or underdispersed by examining the shape of ECDF of the first type
of residuals. Finally, the correlations of both expected residuals will be used to identify
if an estimated parameter is overestimated or underestimated.

In this article, we only consider the Poisson INAR(p) of Du and Li (1991) because
it has not only the same autocorrelation structure as the continuous AR(p) mod-
els but also our method developed for the INAR(p) model can be easily extended
to other integer-valued time series models such as Negative Binomial INAR(1)
(McKenzie 1987), Random Coefficient INAR(p) (Zheng et al. 2006), General Poisson
INAR(p) (Alzaid and Al-Osh 1993), and a hybrid model like the CINAR(p) model
of Weiß (2008b) whenever their conditional distributions given past counts are
available. Furthermore, since most applications in the practice of integer-valued
time series modelling are focused on INAR(1) models, and most INAR(1) models
appeared in literature have the same autocorrelation structure as that of the Poisson
INAR(1), such INAR(1) models share the same properties with the Poisson INAR(l)
model.

The remainder of this article proceeds as follows. Section 2 provides a theoretical
framework for the distribution of discrete PIT values. After a brief review of the Poisson
INAR(p) model, two expected residuals are defined and their properties are discussed.
Section 3 assesses the predictive performance of the residuals in a graphical sense by
plotting the ECDF of their PIT values. Simulation studies are performed to compare
the two expected residuals with the residuals of Freeland and McCabe (2004a) and
Bu and McCabe (2008). Section 4 includes an over-dispersed real data analysis for
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which we apply one i.i.d. Poisson model and four INAR(l) models. Section 5 con-
cludes.

2 Probability integral transforms and expected residuals

2.1 The distribution of the PIT

Let y1, y2, . . . , yT be a time series of count data, which are the realizations from
the conditional probability mass functions (PMF) { ft (yt |Ft−1 )}T

t=1 , where Ft is a
sigma-field generated by y1, . . . , yt . We denote by pt (yt |Ft−1 ) the predictive model
chosen by the data analyst corresponding to the true model ft (yt |Ft−1 ) and define a
random variable Zt by Zt = ∑Yt

y=0 pt (y |Ft−1 ). Then we have the following results.

Lemma 2.1 Let Qt (zt ) =P (Zt ≤ zt |Ft−1 ) be the conditional distribution of Zt with
the support defined by Jt ≡ {gt (u) |u ∈ [0, 1]} , where gt (u) = in f

{
zt
∣
∣u ≤ Qt

(
zt
)}

.

(a) If zt ∈ Jt and pt (yt |Ft−1 ) = ft (yt |Ft−1 ) , then Qt (zt ) = zt .

(b) Additionally, if Jt is invariant over time t = 1, 2, . . . , T, then Z1, Z2, . . . , ZT

are i.i.d. with Qt (z) = z for all t = 1, 2, . . . , T where z ∈ J ≡ Jt .

Proofs are given in Appendix A. Lemma 2.1-(a) implicitly implies that Qt1 (z) �=
Qt2 (z) if t1 �= t2, contrary to the continuous case for which Qt1 (z) = Qt2 (z) regard-
less of t1 and t2 because Jt is invariant over time t and takes real values from [0, 1].
Thus, for continuous case, Lemma 2.1-(b) is automatically met, and Lemma 2.1 is
reduced to Rosenblatt (1952), Diebold et al. (1998), and Clements (2006). As each
PIT at time t (i.e., Zt ) has jumps only at zt included in Jt by 2.1-(a), the PIT’s,
Z1, . . . , ZT , are i.i.d., by 2.1-(b), only when Jt ’s are all the same. This implies that
the ECDF of the observed PIT z1, z2, . . . , zT should be a straight line with the slope
1. We note that a histogram of the PIT values used in continuous random variables
is useless in evaluating the predictive distribution because our PIT values are discrete
and no longer uniformly distributed.

2.2 INAR(p) process and expected residuals

For a time series of count data, integer-valued analogues of the usual ARIMA models
have been suggested (McKenzie 1985; Al-Osh and Alzaid 1987; Alzaid and Al-Osh
1990; Du and Li 1991; Kim and Park 2008). These integer-valued time series models
possess many features in common with the ARMA models. Both can express their
dynamics in the form of difference equations and share a common behavior in corre-
lation structures. A primary difference between them is that the integer-valued time
series models use thinning operators in place of the multiplication in the ARMA mod-
els. Weiß (2008a) summarized variety of thinning operators and their roles in defining
integer-valued time series models.

We only consider the integer-valued autoregressive process with order p (INAR(p))
provided by Du and Li (1991) to avoid the complexity arising in model description
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Diagnostic checks for integer-valued autoregressive models 955

because our approach remains the same for other INARMA models whenever their
conditional distributions are given.

Du and Li (1991) defined their INAR(p) model:

yt = θ1 ◦ yt−1 + θ2 ◦ yt−2 + · · · + θp ◦ yt−p + εt , t = 1, 2, . . . , T (1)

where θk ◦ yt−k ∼ Binomial (yt−k, θk) and {θk ◦ yt−k, k = 1, 2, . . . , p} are inde-
pendent when yt−1, . . . , yt−p are conditioned, and {εt } are i.i.d. sequence of counts.
The conditional probability P

(
yt |yt−1, . . . , yt−p

)
is easily obtained as given by

P
(
yt
∣
∣yt−1, . . . , yt−p

)

=
min(yt ,yt−1)∑

i1=0

(
yt−1
i1

)

θ
i1
1 (1−θ1)

yt−1−i1

×
min(yt−2,yt −i1)∑

i2=0

(
yt−2
i2

)

θ
i2
2 (1−θ2)

yt−2−i2

· · ·
min

(
yt−p,yt −∑p−1

k=1 ik

)

∑

i p=0

(
yt−p

i p

)

θ
i p
p
(
1 − θp

)yt−p−i p

×P

(

εt = yt −
p∑

k=1

ik

)

(2)

(Also see Bu et al. 2008).
This shows that the conditional distribution is a convolution of p binomial random

variables and one error term, which are independent. Thus, the probability integral
transform (PIT) Zt = ∑Yt

y=0 P
(
y
∣
∣yt−1, . . . , yt−p

)
has the support depending on

yt−1, . . . , yt−p as binomial parameters, implying that each Zt has a different support
Jt , and thus Z1, . . . , ZT are not identically distributed.

This requires another measurement that produces an i.i.d. sequence of PIT values
and a natural candidate is ε̂t = yt −∑p

k=1 θ̂k ◦ yt−k, where θ̂k is an estimate of θk . If
p is correctly specified and θ̂k is a good estimate in some sense, then the residual ε̂t

behaves like εt , and the PIT calculated from ε̂t can in turn be treated as the realization
of an i.i.d. sequence. However, ε̂t is random and unobservable because of the binomial
thinning operator ‘o’ (even when yt−1, . . . , yt−p are known). This leads us to make
estimates of ε̂t .

We propose the conditional expectation, E
(
εt
∣
∣yt , yt−1, . . . , yt−p

)
, as an estimate

ε̂t and denote it by ε̃1t . Then, using the conditional distribution given in (2), we have
the following explicit form of ε̃1t .
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Proposition 2.2 For the stationary INAR(p) process given in (1),

ε̃1t := E
(
εt |yt , . . . , yt−p

)

=
min(yt ,yt−1)∑

i1=0

min(yt−2,yt −i1)∑

i2=0

· · ·
min(yt−p ,yt−

∑p−1
k=1 ik )∑

i p=0

⎧
⎪⎪⎨

⎪⎪⎩

(

yt −
p∑

k=1

ik

)

×

(
yt−1

i1

)

θ
i1
1 (1 − θ1)

yt−1−i1 · · ·
(

yt−p

i p

)

θ
i p
p (1 − θp)

yt−p−i p P
(
εt = yt −∑p

k=1 ik
)

P
(
yt |yt−1, . . . , yt−p

)

⎫
⎪⎪⎬

⎪⎪⎭

(3)

where P(yt
∣
∣yt−1, . . . , yt−p ) is given in (2).

The proof is given in Appendix B. When p = 1, in particular,

ε̃1t =
min(yt ,yt−1)∑

i=0

⎧
⎪⎪⎨

⎪⎪⎩
(yt − i) ×

(
yt−1

i

)

θ i
1(1 − θ1)

yt−1−i P(εt = yt − i)

P(yt |yt−1 )

⎫
⎪⎪⎬

⎪⎪⎭

where

P(yt |yt−1 ) =
min(yt ,yt−1)∑

i=0

(
yt−1

i

)

θ i
1(1 − θ1)

yt−1−i P(εt = yt − i).

As shown in the proof, ε̃1t is obtained whenever the two conditional probabili-
ties, P

(
yt
∣
∣yt−1, . . . , yt−p

)
and P

(
εt , yt

∣
∣yt−1, . . . , yt−p

)
, are specified. This is also

true for other integer-valued time series models. For example, ε̃1t for the combined
INAR(p) (CINAR(p)) independent thinning model provided by Weiß (2008b) is

ε̃1t = E(εt
∣
∣yt , . . . , yt−p )

=
yt∑

k=0

⎧
⎪⎪⎨

⎪⎪⎩

(yt − k)

P(εt = yt − k)
∑p

i=1 φi

(
yt−i

k

)

αk(1 − α)yt−i −k

P(yt
∣
∣yt−1, . . . yt−p )

⎫
⎪⎪⎬

⎪⎪⎭

and

P(yt
∣
∣yt−1, . . . , yt−p ) =

yt∑

k=0

P(εt = yt − k)

p∑

i=1

φi

(
yt−i

k

)

αk(1 − α)yt−i −k

where φi is a probability with
∑p

i=1 φi = 1 and α is a thinning parameter.
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As the expected residual ε̃1t is nonnegative, we can define the PIT of ε̃1t :

Z̃t =
[ε̃1t ]∑

ε=0

pt (ε) (4)

where [x] is the nearest integer to x and pt (ε) is a predictive probability mass function
(PMF) of εt in Model (1). Thus, when this pt (ε) equals the true data generating PMF
of εt , denoted by ft (ε), and ε̃1t accurately represents ε̂t , Lemma 2.1 implies that the
CDF of Z̃t is an identity function of its observation.

To check the correlation arising from the incorrect specification of the order p or
underestimation (or overestimation) of the parameters involved in the INAR(p), we
propose another expected residual ε̃2t defined by

ε̃2t := yt − E(θ1 ◦ yt−1 − · · · − θp ◦ yt−p
∣
∣yt−1, . . . , yt−p )

= yt − θ1 yt−1 − · · · − θp yt−p. (5)

Note that this residual ε̃2t is not the same as the usual residual yt − E(yt |yt−1, . . . ,

yt−p ), and hence calculation of E (εt ) is not required. However, as this modified resid-
ual can be negative, it can not be used to define a PIT. Nevertheless, as we show in
the next section, ε̃2t is better than Z̃t (or equivalently, ε̃1t ) in detecting misspecified
models and incorrectly estimated parameters through its time correlations with the
following property.

Lemma 2.3 Suppose that the INAR(p) process, yt = θ1 ◦ yt−1 +· · ·+ θp ◦ yt−p + εt ,

is stationary. Then {ε̃2t , t = 1, . . . , T } are uncorrelated if θ1, . . . , θp are correctly
estimated, and Corr (ε̃2t , ε̃2,t−k) has a negative (positive) value if θk is overestimated
(underestimated) for k = 1, . . . , p.

The proof is given in Appendix C. Lemma 2.3 states that a positive (negative)
lag correlation of ε̃2t with sufficiently large (small) value (e.g., greater (smaller) than
1.645/

√
(T ) (−1.645/

√
(T )) implies a good indication of underestimation (overesti-

mation) of the corresponding thinning parameter. In this regard, although the residual
ε̃2t is exactly the same as that in the continuous counterpart of AR(p) with a zero
mean error term, the signs of correlations of ε̃2t provide much more information
for determining the order p and estimating thinning parameters, unlike correlations
from the continuous AR(p) model. It is easy to show that using Weiß (2008b), ε̃2t in
CINAR(p) is

ε̃2t = yt − α

p∑

i=1

φi yt−i .

At this point of time, it is necessary to describe the relationship between
our expected residuals and other residuals appeared in literature. Freeland and
McCabe (2004a) and Bu and McCabe (2008) defined p + 1 residuals by rkt

= E(θk◦yt−k
∣
∣yt , yt−1, . . . , yt−p )−θk yt−k for k = 1, . . . , p and r0t = E (εt |yt , . . . ,

yt−p
) − E(εt ) in a INAR(p) process and showed that the sum of p + 1 residuals is
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equal to yt −∑p
i=1 θi yt−i − E(εt ). As defined in (3), ε̃1t is E(εt

∣
∣yt , . . . , yt−p ) and

hence ε̃1t = r0t + E(εt ). As shown in Bu and McCabe (2008), the sum of
∑p

k=0 rkt is
yt −∑p

i=1 θi yt−i −E(εt ) and thus we have the relationship of ε̃2t = ∑p
k=0 rkt + E(εt ).

Therefore, ε̃1t and ε̃2t are directly obtained without an estimate of E(εt ), while
r0t , . . . , rpt need E(εt ).

3 Simulation studies

The two expected residuals, ε̃1t and ε̃2t , have a complementary relationship. The PIT
values of ε̃1t are mainly used for evaluating a predictive distribution of the INAR(p)

model, including overdispersion or underdispersion problem, whereas ε̃2t is used to
test if any time lag correlation remains for a specified INAR(p) model and to check
under or overestimation of model parameters.

3.1 Evaluation of predictive distribution

The ε̃1t is likely to have an abnormal value of εt when model parameters are not
correctly estimated. The predictive distribution of εt in INAR(p), using ε̃1t , can be
evaluated by plotting an observed PIT value (i.e., z̃t in (4)) on its cumulative relative
frequency (i.e., the number of observations less than or equal to z̃t divided by the total
number of observations). As the CDF of PIT is an identity function by Lemma 2.1
when the predictive distribution of ε̃1t coincides with the true data generating function
of εt , the plot should be a straight line with intercept = 0 and slope = 1 only if all
parameters including order p and the distribution of εt are correctly specified and
estimated.

We consider yt = 0.5 ◦ yt−1 + εt , εt ∼ Poisson(5) as the true data generating
process (DGP) to generate y1, . . . , y100 and apply these 100 counts to the same
model as the DGP, to yt = 0.3 ◦ yt−1 + εt with pt (ε) equal to Poisson(5), and
to yt = 0.5 ◦ yt−1 + εt with pt (ε) equal to Poisson(3) as three predictive processes.
The ECDF plots for PIT values of the respective ε̃1t are displayed in Fig. 1a, b,
and c. Figure 1a shows the ECDF that is a straight line with slope = 1 as expected
because the DGP equals the predictive process, whereas Fig. 1b and c show a
U-shaped ECDF. Thus, a U-shaped ECDF indicates underestimation of θ or λ in
model yt = θ ◦ yt−1 + εt , εt ∼ Poisson(λ), from which we easily infer that a
humped-shaped ECDF indicates an overestimation of θ and λ.

In practice, however, the estimates of θ and λ are connected in such a way that
λ̂ = (1 − θ̂ )ȳ, where ȳ is the sample mean of yt and θ̂ is the first-order sample
autocorrelation as an estimate of θ. Accordingly, when we let yt = θ̂ ◦ yt−1 +
εt and εt ∼ Poisson(ȳ(1 − θ̂ )) (i.e.,pt (ε) = Poisson(ȳ(1 − θ̂ ))) as a predictive
process, we have a straight line as in Fig. 1a even for incorrect estimate of θ̂ . For
example, for DGP with yt = 0.5 ◦ yt−1 + εt and εt ∼ Poisson(5), we still have
a straight ECDF plot even for εt ∼ Poisson(ȳ(1 − θ̂ )) with incorrect θ̂ = 0.1 as
a predictive process. This implies that the PIT of ε̃1t may be useless unless a good
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Fig. 1 ECDF plots of the PIT values for the expected residual ε̃1t . The DGP is yt = 0.5 ◦ yt−1 + εt , εt ∼
Poisson(5) for (a)–(c), and yt = 0.5 ◦ yt−1 + εt , εt ∼ Negative Binomial random variable with mean
E(εt ) = 5, V ar(εt ) 	 13.33 for (d). The predicted processes are (a) yt = 0.5 ◦ yt−1 + εt , εt ∼
Poisson(5), (b) yt = 0.3 ◦ yt−1 + εt , εt ∼ Poisson(5), (c) yt = 0.5 ◦ yt−1 + εt , εt ∼ Poisson(3), and
(d) yt = 0.5 ◦ yt−1 + εt , εt ∼ Poisson(5)

estimate of θ is secured before evaluating the predictive process. This is done by ε̃2t

in the following subsection.
The Poisson distribution is one of most important distributions in the analysis of

count data but one frequently encounters the count data with a larger variance than
its mean, called as the overdispersion problem. To examine such overdispersed data
in a INAR(p) process, we apply the predictive process of yt = 0.5 ◦ yt−1 + εt , εt ∼
Poisson(5) to a sequence of counts generated from yt = 0.5 ◦ yt−1 + εt , εt ∼
Negative Binomial random variable with mean 5 and variance 13.33. That is, the DGP
and the predictive process have the same thinning process and the same mean of the
error term, but the variance in the DGP is 2.67 times larger than that in the predictive
process. This case is illustrated by Fig. 1d, showing a reversed S-shaped plot for such
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overdispersed count data and leading to a S-shaped plot for underdispersed count data
(not presented here to save space).

3.2 Correlations

We consider two correlations calculated from the PIT values of ε̃1t and from those of
ε̃2t for the model specification of INAR(p) processes. To compare the correlations of
ε̃1t , ε̃2t , and Bu and McCabe’s p + 1 residuals r0t , . . . , rpt defined in Sect. 2.2, we
computed the probability rejecting the predictive process with a misspecified order p,

an underestimated or overestimated thinning parameter, or an incorrect distribution
of the error term, εt . Here, the mean of εt was set to be ȳ(1 − ∑p

i=1 θ̂i ) when the
DGP does not coincide with a predictive process and the distribution of εt is not spec-
ified. In such a case, recall that ECDF of the PIT calculated by ε̃1t fails to detect an
underestimated or overestimated thinning parameter as discussed in Sect. 3.1.

Simulation studies were performed on the INAR(l) and INAR(2) processes, and
each scenario simulation was repeated 1,000 times to calculate rejection probabil-
ities. We used the Ljung and Box statistic (Ljung and Box 1978), defined by Q =
T (T +2)

∑6
i=1 ρ2

i /(T − i), where T is the number of observations, and ρi is the lag-i
correlation calculated from ε̃1t , ε̃2t , rit , or r0t . This statistic follows a χ2 distribution
with the degree of freedom 6 when the DGP and predictive processes are the same,
and with the degree of freedom 5 when they are not the same because of the estimate
ȳ(1 −∑p

i=1 θ̂i ) for E(εt ).

Table 1 shows the probabilities rejecting the predictive processes when the true
DGP’s are yt = θ ◦ yt−1 + εt , εt ∼ Poisson(5) and the predictive processes are
yt = θ̂ ◦ yt−1 + εt , εt ∼ Poisson(5), where θ varies from 0.0 to 0.8 with increment
0.2 and θ̂ also varies from 0.0 to 0.8 for each θ. As r1t = 0 when θ̂ = 0.0, the rejection
probabilities of r1t are not available.

All four residuals satisfied the nominal significant level α = 0.05, and ε̃2t had the
highest rejection probabilities for most cases. We note that the rejection probabilities
of r0t and r1t decreased as θ̂ moved from 0.6 to 0.8 when θ = 0.0, suggesting that
their power may not be a monotonic function of |θ̂ − θ |. The DD in Table 1 stands
for the percentage of different decisions among the cases in which r0t or r1t rejected
the null hypothesis of θ = θ̂ . The percentage ranged from 0.00 to 58.5%. Namely, the
percentage that r0t rejected a predictive process but r1t did not reject it or vice versa
ranged from 0.00 to 58.5%. Thus, we chose one of them, and our choice was r0t as
discussed below.

We examined the influence of overdispersion on the four residuals by letting the
DGP: yt = 0.5◦yt−1+εt , εt ∼ Negative Binomial vs. the predictive: yt = 0.5◦yt−1+
εt , εt ∼ Poisson(5). Therefore, in contrast to the previous simulation study, this sim-
ulation had the same thinning parameter but different distributions of εt . In setting the
DGP, we considered three distributions of εt , εt ∼ NEG(10, 2/3), NEG(5, 1/2), and
NEG(3, 3/8) whose means are all 5, which are equal to the mean of εt in the predictive
distribution, but variances are 1.5, 2, and 2.67 times larger than the variance of the
predictive distribution (i.e., 5), respectively. The results are summarized in Table 2
and indicated that ε̃2t persisted with the nominal level α = 0.05, whereas ε̃1t , r0t , and
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Table 1 Probabilities rejecting the predictive processes given by yt = θ̂ ◦ yt−1 + εt , εt ∼ Poisson(5)

when the data generating process (DGP) is yt = θ ◦ yt−1 + εt , εt ∼ Poisson(5)

θ θ̂

0.0 0.2 0.4

ε̃1t ε̃2t r0t r1t ε̃1t ε̃2t r0t r1t DD (%) ε̃1t ε̃2t r0t r1t DD (%)

0.0 .053 .058 .058 – .290 .329 .288 .325 30.8 .723 .856 .668 .797 17.1
0.2 .307 .306 .306 – .058 .053 .057 .058 53.0 .289 .338 .276 .312 33.3
0.4 .868 .889 .889 – .379 .378 .361 .374 22.4 .054 .051 .059 .052 49.5
0.6 1 1 1 – .917 .933 .916 .932 2.71 .473 .451 .450 .457 16.0
0.8 1 1 1 – .999 .999 .999 .999 0.00 .970 .974 .973 .973 0.3

θ θ̂

0.6 0.8

ε̃1t ε̃2t r0t r1t DD (%) ε̃1t ε̃2t r0t r1t DD (%)

0.0 .942 .991 .839 .961 9.3 .945 1 .800 .917 11.9
0.2 .634 .818 .567 .684 27.1 .813 .987 .666 .759 23.6
0.4 .275 .324 .253 .276 41.4 .544 .760 .443 .466 42.4
0.6 .062 .051 .064 .048 57.1 .266 .308 .221 .232 58.5
0.8 .629 .629 .620 .627 6.7 .054 .046 .040 .049 50.6

Table 2 Significant levels for yt = 0.5 ◦ yt−1 + εt where DGP: εt ∼ NEG(r, p) vs. predictive : εt ∼
Poisson(5) when the nominal level α = 0.05

DGP: εt ∼NEG (10, 2/3) DGP: εt ∼NEG (5, 1/2) DGP: εt ∼NEG (3, 3/8)

ε̃1t ε̃2t r0t r1t ε̃1t ε̃2t r0t r1t ε̃1t ε̃2t r0t r1t

.234 .069 .248 .850 .095 .057 .168 .655 .073 .062 .107 .473

r1t did not satisfy the nominal level. In particular, r1t was substantially influenced by
the overdispersed data, making it difficult to identify whether the high correlation of
r1t was a result of overdispersed data or a bad estimation of thinning parameters. In
this sense, together with the results in Table 1, r0t was a better choice than r1t. Thus,
we only consider r0t among p + 1 residuals of Bu and McCabe (2008) from now on.
One of main reasons resulted in Table 2 is that ε̃2t depends only on the autocorrelation
structure of the INAR(p) model, whereas ε̃1t , r0t , and r1t depend on the conditional
distribution of the time series.

Finally, we investigated the lag-one and lag-two correlations and their signs when
thinning parameters were overestimated or underestimated for the DGP: yt = 0.3 ◦
yt−1 +0.3◦ yt−2 + εt , εt ∼ Poisson(5). Thus, we fixed θ1 = 0.3 and θ2 = 0.3 in the
DGP. Note that by Lemma 2.3, the sign of the lag-one or lag-two correlation of ε̃2t is
positive (negative) if θ1 or θ2 is underestimated (overestimated). Denote the predictive
processes by yt = θ̂1 ◦ yt−1 + θ̂2 ◦ yt−2 + εt , εt ∼ Poissson(5), from which we
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Table 3 Numbers of positive or negative correlations and probabilities rejecting the predictive processes
for DGP: yt = 0.3 ◦ yt−1 + 0.3 ◦ yt−2 + εt , εt ∼ Poisson(5) (+(−): positive (negative) correlation)

θ̂1 = 0.3 θ̂2 = 0.0 θ̂1 = 0.3 θ̂2 = 0.1 θ̂1 = 0.3 θ̂2 = 0.2 θ̂1 = 0.3 θ̂2 = 0.4 θ̂1 = 0.3 θ̂2 = 0.5

lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power

ε̃1t +565 +997 .671 +537 +918 .424 +486 +822 .182 −466 −799 .121 −392 −934 .249
ε̃2t +533 +997 .706 +537 +965 .438 +467 +810 .167 −506 −860 .170 −404 −964 .344
r0t +535 +997 .677 +525 +965 .419 +463 +799 .159 −518 −851 .147 −446 −960 .306

θ̂1 = 0.0 θ̂2 = 0.3 θ̂1 = 0.1 θ̂2 = 0.3 θ̂1 = 0.2 θ̂2 = 0.3 θ̂1 = 0.4 θ̂2 = 0.3 θ̂1 = 0.5 θ̂2 = 0.3

lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power

ε̃1t +993 +795 .673 +953 +693 .370 +796 +632 .166 −793 −562 .130 −927 −598 .248
ε̃2t +995 +786 .682 +957 +682 .370 +795 +582 .145 −844 −611 .165 −958 −644 .324
r0t +994 +784 .670 +957 +677 .362 +787 +591 .141 −840 −631 .158 −952 −672 .276

θ̂1 = 0.1 θ̂2 = 0.1 θ̂1 = 0.1 θ̂2 = 0.2 θ̂1 = 0.4 θ̂2 = 0.4 θ̂1 = 0.2 θ̂2 = 0.4 θ̂1 = 0.4 θ̂2 = 0.2

lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power lag-1 lag-2 power

ε̃1t +976 +991 .780 +963 +911 .588 −726 −796 .158 +821 −746 .155 −810 +747 .193
ε̃2t +974 +995 .804 +958 +908 .604 −766 −844 .208 +815 −774 .166 −853 +732 .225
r0t +972 +994 .796 +959 +906 .587 −760 −858 .167 +800 −773 .159 −858 +717 .211

considered three scenarios: θ̂1 = 0.3 with varying θ̂2 from 0.0 to 0.5, θ̂2 = 0.3 with
varying θ̂1 from 0.0 to 0.5, and θ̂1 and θ̂2, both varying from 0.1 to 0.4.

Table 3 shows the numbers of positive or negative correlations of ε̃1t , ε̃2t , and r0t

and the probabilities rejecting hypothesized predictive processes. The ‘+’ or ‘−’ before
each number in Table 3 indicates the sign of a correlation. For example, −799 means
that 799 correlations were negative among 1,000 correlations. The number of positive
(negative) lag-one or lag-two correlations of ε̃2t were much more than 500 when
the first or second thinning parameter was underestimated (overestimated). The same
results were found in the correlations of ε̃1t and r0t .

For θ̂1 = 0.3 and θ̂2 �= θ2, ε̃2t had the highest number of negative lag-two correla-
tions when θ̂2 > θ2 (i.e., overestimated) and of positive lag-two correlations when θ2
is underestimated, except when θ̂2 = 0.2, in which case ε̃1t had the highest number.
Similar patterns were observed for lag-one correlations when θ̂1 �= θ1 and θ̂2 = 0.3.

However, no general pattern was observed for lag-one and lag-two correlations when
θ̂1 �= θ1 and θ̂2 �= θ2.

Further, ε̃2t had the highest rejection probabilities, except when θ̂1 = 0.2 and
θ̂2 = 0.3 and when θ̂1 = 0.3 and θ̂2 = 0.2 (i.e., slightly underestimated), in which
cases ε̃1t rejected the predictive processes with the highest probabilities. These results
are consistent with those in Table 1 for the INAR(l) processes. Therefore, according to
Lemma 2.3, a positive (negative) lag correlation of ε̃2t with sufficiently large (small)
value (e.g., greater (smaller) than 1.645/

√
T (−1.645/

√
T )) provided a good indica-

tion of underestimation (overestimation) of the corresponding thinning parameter.
Note that an incorrectly estimated thinning parameter affected not only the corre-

sponding lag correlation but also other lag correlations. For θ̂1 = 0.3 and θ̂2 �= 0.3,
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the number of negative lag-one correlations increased as θ2 was more seriously over-
estimated, whereas the number of positive lag-one correlations increased as θ2 was
more seriously underestimated. For θ̂1 �= 0.3 and θ̂2 = 0.3, the number of positive
lag-two correlations increased as θ1 was more seriously underestimated. For θ̂1 �= θ1
and θ̂2 �= θ2, the numbers of positive lag-one and lag-two correlations increased as θ1
and θ2 were both underestimated. This leads us to use an autocorrelation diagnostics
such as the Ljung and Box statistic to measure lack of fit in integer-valued time series
models.

4 Application

We apply our methods to select a INAR(p) model fitted well to 267 counts that are the
numbers of downloads of a free TeX editor, called CWß TeXpert, during 267 days.
The counts are between 0 and 14 and exhibit a serially correlated stationary series of
counts as discussed in Weiß (2008a).

Figure 2 shows the autocorrelation function for the download counts and their
ECDF plot drawn under an i.i.d. assumption of the download counts. It reveals a clear
first-order autocorrelation as shown in Fig. 2a and the over-dispersion problem from
the reversed S-shaped PIT plot as shown in Fig. 2b. Based on the first-order auto-
correlation, we applied a Poisson INAR(l) model, yt = θ ◦ yt−1 + εt with moment
estimates, λ̂ = 1.813 and θ̂ = 0.2448 as provided in Table 4. Figure 3 shows no auto-
correlation of ε̃2t but still a reversed S-shaped PIT plot of ε̃1t whose PIT values are
calculated from pt (ε) equal to Poisson(1.813), implying that a INAR(l) model well
reflects the autocorrelation structure of the download counts but a Poisson marginal
does not fit well for variation of the counts. Thus, another INAR(l) with other than a
Poisson marginal is needed.

We consider the following three alternative INAR(l) models.

(a) (b)

Fig. 2 Analysis of download counts. a autocorrelation of download counts and b ECDF plot of the PIT
values for download counts
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Table 4 Estimates and model diagnosis

Model Estimates Correlations Q-statistic

ε̃1t ε̃2t ε̃1t ε̃2t

i.i.d. Poisson λ = 2.40 0.298* 0.245* 34.79* 24.85*
Poisson INAR (1)† (λ, θ) = (1.813, 0.2448) 0.097 0.008 5.57 3.71
NBINAR (1) (r, p, θ ) = (1.1227, 0.3186, 0.2448) 0.030 0.008 3.66 3.71
NBRINAR (1) (r, p, θ ) = (1.1227, 0.3186, 0.2448) 0.146* 0.008 11.05* 3.71
GPINAR (1) (λ, ρ, θ) = (1.3552, 0.4355, 0.2448) 0.150* 0.008 11.26* 3.71

† Bu and McCabe’s correlations: r0t = .051 and r1t = −0.174∗
* Significantly different from zero under α = 0.05

Fig. 3 Analysis of residuals from Poisson yt = 0.2448 ◦ yt−1 + εt . a autocorrelation of ε̃2t and b ECDF
plot of the PIT values for ε̃1t

NBINAR(l): yt = θ ◦ yt−1 +εt where the marginal of yt follows a negative binomial
distribution with parameters r and p (NB(r,p)) (see, McKenzie 1987 for details)
NBRINAR(l): yt = βr,t ◦ yt−1 + εt where yt ∼ NB(r, p) and βr,t ∼ i.i.d. Beta
(rθ, r(1 − θ)) (see, Zheng et al. 2007)
GPINAR(l): yt = θ ◦ yt−1 +εt where yt follows a general Poisson distribution with
parameters λ and p (see Alzaid and Al-Osh 1993)

For all these models, we used moment (MM) estimates provided by Weiß (2008a)
which are listed in the second column of Table 4. Since these three INAR(l) models
have the same autocorrelation function (i.e., corr(yt , yt−k) = θk) and the same resid-
ual ε̃2t = yt −θyt−1 as those of Poisson INAR(l) model, the moment estimates of thin-
ning parameter θ and the autocorrelations of ε̃2t for all four INAR(l) models including
Poisson INAR(l) should be the same (i.e., θ̂ = 0.2448 and corr(ε̃2t , ε̃2,t−1) = 0.008)

as provided in Table 4. This table also provides the two correlations suggested by
Bu and McCabe (2008), r0t and r1t where r0t = 0.051 and r1t = −0.174. The non-
significant r0t supported a INAR(l) model but the significant r1t required a INAR(p)

model with p > 1.
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Fig. 4 ECDF plots of the PIT values for ε̃1t for three INAR (1) models. a NBINAR(1), b NBRINAR(1)
and c GPINAR(1)

To select an appropriate model from the three models, two different aspects should
be considered. First, we examine which model produces the ECDF plot closest to a
straight line with slope 1. The ECDF plots in Fig. 4 look like almost identical straight
lines and hence the three INAR(l) models seem to well reflect the overdispersed char-
acter of the download data. Secondly, we should check the autocorrelation for residuals
ε̃1t and ε̃2t . By using Ljung and Box statistic (Q-statistic), we can examine if there is
any remaining autocorrelation. Here, the Q-statistic was calculated using from lag-one
to lag-six correlations of the residuals. Table 4 clearly shows that a serial dependence
in the download data should be considered from the i.i.d. Poisson with the large cor-
relations of ε̃1t and ε̃2t . Although the Poisson INAR(l) model revealed no correlation,
it suffered from the overdispersion problem as observed in Fig. 3. Except NBINAR(l)
model, all models appeared to have autocorrelated residuals of at least ε̃1t or ε̃2t . Thus,
the NBINAR(l) is most reasonable for CWß TeXpert data.

5 Conclusion

We presented two expected residuals for integer-valued time series models. These
two residuals are easily obtained whenever the conditional distribution given in past
observations is explicitly defined for integer-valued time series models. One residual
is useful for examining the overdispersion (underdispersion) problem, and the other is
useful for the independent test, parameter estimation, and model selection. As Du and
Li’s INAR(p) (Du and Li 1991) model has great appeal for modeling count data and
our method can be easily extended to other integer-valued time series models when
their conditional distributions are available, we conclude our work by presenting a
general rule on how the two residuals diagnose the Du and Li’s INAR(p) process. For
a temporarily selected order p, we first examine lag-k correlations calculated from
the PIT values of ε̃1t and from those of ε̃2t where k ≥ p + 1. If order p is not enough,
some lag-k correlations for k ≥ p + 1 might be significantly positive. Second, after
selecting the order p, the ECDF of PIT values of ε̃1t should be drawn. If it is S-shaped
or reversed S-shaped, the data may be underdispersed or overdispersed, respectively,
implying that the assumption of a Poisson error does not provide a good fit to the
data. A U-shaped (humped-shaped) ECDF indicates underestimated (overestimated)
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thinning parameters or underestimated (overestimated) mean of the error term. The
ECDF often appears to be a straight line with slope = 1 even when the parameters in
INAR(p) are incorrectly estimated. For this case, we finally test lag-k correlations of
ε̃1t and ε̃2t where 1 ≤ k ≤ p + m for some positive integer m. A significant positive
(negative) lag-k correlation for 1 ≤ k ≤ p means that the k-th thinning parameter is
underestimated (overestimated).

Appendix A

Proof of Lemma 2.1 (a). Denote ft (yt |Ft−1) and pt (yt |Ft−1) by ft (yt ) and pt (yt ) ,

respectively, for simple notation. For real number zt , note that

P (Zt ≤ zt |Yt = yt ) = P

⎛

⎝
Yt∑

y=0

pt (y) ≤ zt |Yt = yt

⎞

⎠

= P

⎛

⎝
yt∑

y=0

pt (y) ≤ zt |Yt = yt

⎞

⎠

= 1[∑yt
y=0 pt (y),∞)(zt ),

where 1A(z) is an indicator function with 1 if z ∈ A and zero otherwise. From this
expression, we have

Qt (zt ) ≡ P (Zt ≤ zt |Ft−1) =
∞∑

yt =0

P (Zt ≤ zt |Yt = yt ) P (Yt = yt |Ft−1)

=
∞∑

yt =0

1[∑yt
y=0 pt (y),∞)(zt )P (Yt = yt |Ft−1) =

∞∑

yt =0

1[∑yt
y=0 pt (y),∞)(zt ) ft (yt ),

or, equivalently,

Qt (zt ) =
⎧
⎨

⎩

0 if zt < pt (0),

∑l−1
i=0 ft (i) if

∑l−1
i=0 pt (i) ≤ zt <

∑l
i=0 pt (i), l ≥ 1

. (6)

Since gt (u) = in f {zt |u ≤ Qt (zt )} , using (6), one can observe that

gt (u) =
⎧
⎨

⎩

pt (0) if u ≤ ft (0),

∑l
i=0 pt (i) if

∑l−1
i=0 ft (i) < u ≤ ∑l

i=0 ft (i), l ≥ 1,
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implying that Jt =
{∑l

i=0 pt (i), l = 0, 1, . . .
}

. Since we only consider zt ∈ Jt , the

Eq. 6 is reduced to

Qt (zt ) =
⎧
⎨

⎩

0 if zt < pt (0),

∑l−1
i=0 ft (i) if

∑l−1
i=0 pt (i) = zt , l ≥ 1.

(7)

Finally, the assumption of pt (yt ) = ft (yt ) and (7) give the result.

Proof of Lemma 2.1 (b). Note from Lemma 2.1-(a) that

P (Z1 ≤ z1, Z2 ≤ z2, . . . , ZT ≤ zT )

=
T∏

t=1

P (Zt ≤ zt |Ft−1) =
T∏

t=1

zt I (zt ∈ Jt ) (8)

where I (A) = 1 if A holds and 0 if not. Since Jt =
{∑l

i=0 pt (i), l = 0, 1, . . .
}

from

Lemma 2.1-(a), the assumption of Jt being invariant over time t(i.e., Jt = J ) implies
that p1(i) = p2(i) = · · · = pT (i) for each fixed i = 0, 1, . . . . Thus, the PMF pt (i)
does not depend on time t and (8) can be rewritten as

T∏

t=1

zt I (zt ∈ Jt ) =
T∏

t=1

zt I (zt ∈ J ) =
T∏

t=1

P (Zt ≤ zt ).

Finally, since we assumed pt (i) = ft (i) for i = 0, 1, 2, . . . , the distribution of Zt

should be identical over time t.

Appendix B

Proof of Proposition 2.2 From the INAR(p) model defined in (1), it is easy to show
that

P
(
εt , yt |yt−1, . . . , yt−p

) =
(

yt−1
i1

)

θ
i1
1 (1 − θ1)

yt−1−i1

· · ·
(

yt−p

i p

)

θ
i p
p
(
1 − θp

)yt−p−i p P

(

εt = yt −
p∑

k=1

ik

)

,

where 0 ≤ i1 ≤ min (yt , yt−1) , 0 ≤ i2 ≤ min (yt−2, yt − i1) , . . . , 0 ≤ i p ≤
min

(
yt−p, yt −∑p−1

k=1 ik

)
.

Since P
(
εt |yt , . . . , yt−p

) = P(εt ,yt |yt−1...,yt−p)
P(yt |yt−1,...,yt−p)

, the claim is immediate.
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Appendix C

Proof of Lemma 2.3 Due to the stationary assumption, we can let Cov (yt , yt±i ) = γi

for i = 1, 2, . . . . Denote θ∗
k be an estimate of θk for k = 1, . . . , p. Then

Cov
(
ε̃2t , ε̃2,t−k

)

= Cov
(
yt − θ1 yt−1 − · · · − θ∗

k yt−k − · · · − θp yt−p, yt−k

− · · · − θ∗
k yt−2k − · · · − θp yt−p−k

)

= γk − θ1γk+1 − · · · − θ∗
k γ2k − · · · − θpγp+k

−θ1
(
γk−1 − θ1γk − · · · − θ∗

k γ2k−1 − · · · − θpγp+k−1
)

...

−θ∗
k

(
γ0 − θ1γ1 − · · · − θ∗

k γk − · · · − θpγp
)

...

−θp
(
γ−p+k − θ1γ−p+k−1 − · · · − θ∗

k γ−p+2k − · · · − θpγk
)
.

After some algebraic calculation, Cov
(
ε̃2t , ε̃2,t−k

)
can be rewritten by

Cov(ε̃2t , ε̃2,t−k) = γk −
p∑

j=1

θ jγ|k− j | − θ1

⎛

⎝γk+1 −
p∑

j=1

θ jγ|k+1− j |

⎞

⎠

+ · · · − θ∗
k

⎛

⎝γ2k −
p∑

j=1

θ jγ|2k− j |

⎞

⎠

− · · · − θp

⎛

⎝γp+k −
p∑

j=1

θ jγ|p+k− j |

⎞

⎠

+ (
θk − θ∗

k

)

⎛

⎜
⎜
⎝γ0 −

p∑

j=1
�=k

θ jγ j − θ∗
k γk

⎞

⎟
⎟
⎠ .

The first p+1 terms of this equation are all zero by the stationarity of INAR(p) model
as proved in Du and Li (1991). Thus, we have
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Cov(ε̃2t , ε̃2,t−k) = (θk − θ∗
k )

⎛

⎜
⎜
⎝γ0 −

p∑

j=1
�=k

θ jγ j − θ∗
k γk

⎞

⎟
⎟
⎠ (9)

=
(
θk − θ∗

k

)

γ0

⎛

⎜
⎜
⎝1 −

p∑

j=1
�=k

θ jρ j − θ∗
k ρk

⎞

⎟
⎟
⎠

where ρ j = γ j
/
γ0 is the correlation between yt and yt− j As shown in Du and Li

(1991) and Kim and Park (2008), we have 0 ≤ ρ j ≤ 1, j ≥ 1 due to the non-negative
thinning parameters θ1, . . . , θp. Therefore

1 −
p∑

j=1
�=k

θ jρ j − θ∗
k ρk ≥ 1 −

p∑

j=1
�=k

θ j − θ∗
k > 0

where the last inequality is from the stationary condition. Thus, Cov(ε̃2t , ε̃2,t−k) = 0
when θk = θ∗

k , Cov(ε̃2t , ε̃2,t−k) > 0 when θk > θ∗
k , and Cov(ε̃2t , ε̃2,t−k) < 0 when

θk < θ∗
k .
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