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Abstract In this paper, we discuss the extension of some diagnostic procedures to
multivariate measurement error models with scale mixtures of skew-normal distribu-
tions (Lachos et al., Statistics 44:541–556, 2010c). This class provides a useful gen-
eralization of normal (and skew-normal) measurement error models since the random
term distributions cover symmetric, asymmetric and heavy-tailed distributions, such
as skew-t, skew-slash and skew-contaminated normal, among others. Inspired by the
EM algorithm proposed by Lachos et al. (Statistics 44:541–556, 2010c), we develop
a local influence analysis for measurement error models, following Zhu and Lee’s
(J R Stat Soc B 63:111–126, 2001) approach. This is because the observed data log-
likelihood function associated with the proposed model is somewhat complex and
Cook’s well-known approach can be very difficult to apply to achieve local influence
measures. Some useful perturbation schemes are also discussed. In addition, a score
test for assessing the homogeneity of the skewness parameter vector is presented.
Finally, the methodology is exemplified through a real data set, illustrating the useful-
ness of the proposed methodology.
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666 C. B. Zeller et al.

1 Introduction

Multivariate measurement error models (MEM) are useful concepts in many disci-
plines, including linear and nonlinear errors-in-variables regression models, factor
analysis models, latent structural models and simultaneous equations models, among
others. MEM have also been extensively used in the problem of comparing measure-
ment devices (Vilca-Labra et al. 2010) for which the random terms are assumed to
follow a normal distribution. However, normal MEM (N-MEM) suffers from the same
lack of robustness against departures from distributional assumptions as other statis-
tical models based on the Gaussian distribution and may be too restrictive to provide
an accurate representation of the structure that is present in the data. To overcome
this deficiency, some proposals have been made in the literature involving replacing
the assumption of normality by more flexible classes of distributions. For instance,
Montenegro et al. (2010) showed the advantage of using the skew-normal distribution
in the context of the MEM; Lachos et al. (2010a) proposed using scale mixtures of
normal in the context of MEM (SMN-MEM) and showed that it performed well in
the presence of outliers; Patriota and Bolfarine (2010) adopted a general class of error
distribution in MEM. They proposed a simple method for obtaining consistent estima-
tors, based on the corrected score approach. More recently, Lachos et al. (2010c) have
introduced MEM with scale mixtures of skew-normal distributions (SMSN-MEM) and
presented a complete likelihood based analysis, including an efficient EM algorithm
for maximum likelihood estimation.

The assessment of robustness aspects of the parameter estimates in statistical mod-
els has been an important concern of various researchers in recent decades. The dele-
tion method, which consists of studying the impact on the parameter estimates after
dropping individual observations, is probably the most employed technique to detect
influential observations (see Cook and Weisberg 1982). Nevertheless, research on the
influence of small perturbations in the model/data on the parameter estimates has re-
ceived increasing attention in recent years. This can be achieved by performing local
influence analysis (Cook 1986), a general statistical technique used to assess the sta-
bility of the estimation outputs with respect to the model inputs. On the other hand,
it is a standard assumption for MEM that all the observations have equal variances.
The violation of this assumption can have adverse consequences for the efficiency
of estimators (Cook and Weisberg 1982), so it is important to detect the variance
heterogeneity in MEM. Motived by the work of Lachos et al. (2010c), in this pa-
per we discuss the local influence analysis and a score test statistic for assessing
homogeneity of the skewness parameter, which is a parameter included in the vari-
ance, in SMSN-MEM. Since the observed log-likelihood function of SMSN models
involves some integrals, a direct application of Cook’s (1986) local influence ap-
proach can be very difficult to apply, because these measures involve the first and
second partial derivatives of the log-likelihood function. Instead, we discuss the lo-
cal influence analysis for SMSN-MEM based on Zhu and Lee’s (2001) approach,
by working with a Q-displacement function, which is closely related to the condi-
tional expectation of the complete-data log-likelihood at the E-step of the EM algo-
rithm. The results of this paper are a necessary supplement to those presented in
Lachos et al. (2010c).
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On diagnostics in SMSN-MEM 667

This paper is organized as follows. In Sect. 2, we present the SMSN-MEM intro-
duced by Lachos et al. (2010c), including the EM algorithm for maximum likelihood
(ML) estimation. In Sect. 3, we introduce the local influence approach for models
with incomplete-data and develop the methodology required for the SMSN-MEM.
Four different perturbation schemes are considered. In Sect. 4, we develop a score
test statistic for assessing the homogeneity of skewness parameter in SMSN-MEM.
The methodology is illustrated in Sect. 5 using the famous data set of Chipkevitch
et al. (1996), in which MEM under skew-normal and asymmetric heavy-tailed distri-
butions are compared according to the robustness aspects of the maximum likelihood
estimates. Finally, we give some concluding remarks in Sect. 6.

2 The SMSN-MEM

In order to introduce some notations, we start with the definition of SMSM distribu-
tions. Details of this section are provided in Lachos et al. (2010c). A p × 1 random
vector Y follows a SMSN distribution with a p ×1 location vector μ, a p × p positive
definite dispersion matrix �, and a p × 1 skewness parameter vector λ, denoted by
Y ∼ SM SNp(μ,�,λ; H), if its probability density function (pdf) is given by

f (y) = 2

∞∫

0

φp(y|μ, κ(u)�)�(κ−1/2(u)A)d H(u; ν), y ∈ R
p, (1)

where A = λ��−1/2(y − μ), φp(·|μ,�) stands for the pdf of the p-variate normal
distribution with mean vector μ and covariate matrix �, Np(μ,�) say, �(·) rep-
resents the cumulative distribution function (cdf) of the standard univariate normal
distribution, κ(·) is a positive weight function and U is a positive random variable
with a cdf H(u; ν), where ν is a scalar or parameter vector indexing the distribution
of U . One particular case of this distribution is the skew-normal distribution (Azzalini
and Dalla-Valle 1996), for which H is degenerate, with κ(u) = 1, u > 0. Also, when
λ = 0, the SMSN distribution reduces to the scale mixtures of normal distribution
(SMN) (Andrews and Mallows 1974). The asymmetrical class of SMSN distributions
includes many distributions such as the skew-normal, the skew-t , the skew-slash and
the skew-contaminated normal, as special cases. Note that the term φp(·) in (1) depend
on the Mahalanobis distance d = (y − μ)��−1(y − μ) and in practice it provides
useful diagnostic statistics for identifying sample units with outlying observations, as
pointed by Pinheiro et al. (2001). We refer readers to Lachos et al. (2010b) for details
and additional properties related to this class of distributions.

Following Lachos et al. (2010c), we write the MEM as

Zi = a + bxi + εi , (2)

where Zi = (Xi , Y�
i )�, a = (0,α�)�, b = (1,β�)� and εi = (ui , e�

i )� are p × 1
vectors, with Yi = (yi1, . . . , yir )

� the vector of responses for the i-th experimental
unit, Xi the observed value of the covariate xi , ei = (ei1, . . . , eir )

� a random vector
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668 C. B. Zeller et al.

of measurement errors of dimension r and α = (α1, . . ., αr )
� and β = (β1, . . ., βr )

�
parameter vectors of dimension r = p−1. The structural SMSN-MEM are defined as

[
xi

εi

]
iid∼ SMSNp+1

((
μx

0

)
, D(φx ,φ),

(
λx

0

)
; H

)
, i = 1, . . . , n, (3)

where D(φx ,φ) = diag(φx , φ1, . . . , φp), with φ = (φ1, . . . , φp). From Proposition
1 of Lachos et al. (2010c), it can be shown that

Zi
iid∼ SMSNp(μ,�, λ̄x ; H), i = 1, . . . , n, (4)

where μ = a + bμx ,� = φx bb� + D(φ) and λ̄x = λx φx�
−1/2b√

φx +λ2
x �x

, with �x = φx/c

and c = 1 + φx b� D−1(φ)b.
As the observed log-likelihood function 	(θ |z) involves complex expressions, it

is very difficult to work directly with 	(θ |z), either using ML estimation or in the
context of local influence analysis. For the SMSM-MEM, an EM algorithm has been
developed by Lachos et al. (2010c) to perform the ML estimation. In their estimation
procedure x, u and t are treated as hypothetical missing data and the vector of complete
data are given by zc = (z, x, t, u), where z = (z�

1 , . . . , z�
n )� corresponding to the

vector of observable response for the n units, x = (x1, . . . , xn)�, u = (u1, . . . , un)�
and t = (t1, . . . , tn)�. The EM algorithm is applied to the complete-data log-likeli-
hood function 	c(θ |zc) (see Lachos et al. 2010c), where θ = (θ�

1 , θ�
2 )�, with θ1 =

(α�,β�,φ�)� and θ2 = (μx , φx , λx )
�. Let θ̂

(k)
denote the estimates of θ at the

k-th iteration. Given the current estimate θ̂
(k)

, the E-step calculates Q(θ |̂θ (k)
) =∑n

i=1 Q1i (θ1 |̂θ (k)
) + ∑n

i=1 Q2i (θ2 |̂θ (k)
), with

Q1i (θ1 |̂θ (k)
) = −1

2
log(|D(φ)|) − 1

2

[
û(k)

i (zi − a)� D−1(φ)(zi − a)

−2ûx (k)
i (zi − a)� D−1(φ)b + ûx2(k)

i b� D−1(φ)b
]
, (5)

Q2i (θ2 |̂θ (k)
) = −1

2
log(ν2

x ) − 1

2ν2
x

[
ûx2(k)

i + μ2
x û(k)

i + τ 2
x ût2(k)

i

−2ûx (k)
i μx − 2ût x (k)

i τx + 2μxτx ût (k)
i

]
, (6)

where ν2
x = φx (1 − δ2

x ), τx = φ
1/2
x δx , with δx = λx/(1 + λ2

x )
1/2 and û(k)

i , ût (k)
i ,

ût2
i

(k)
, ûx (k)

i , ûx2(k)

i and ût x (k)
i are all as given in Lachos et al. (2010c). As recom-

mended by Lucas (1997), who pointed out difficulties in estimating ν due to problems
of unbounded and local maxima the likelihood function, we consider the value of ν

to be known. The motivation for employing the EM algorithm is that it can be used
advantageously to obtain closed-form equations for the M-step. As our main focus
is not on ML estimation, we refer the interested reader to see Lachos et al. (2010c)
for a detailed discussion of the EM algorithm. They also considered empirical Bayes
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On diagnostics in SMSN-MEM 669

estimates for the latent variable (see Lachos et al. 2010c, Eq. 16). Hence, replacing
θ e xi with their current estimates, we obtain the following decomposition for the
Mahalanobis distance, di = di (θ) = (zi −μ)��−1(zi −μ), under the class of SMSN
distributions

d̂i = di (̂θ) = (zi − μ̂)��̂
−1

(zi − μ̂) = d̂ei + d̂xi , (7)

where d̂ei = ê�
i D−1(φ̂)̂ei , d̂xi = 1

φ̂x
μ̂2

xi and êi = zi −μ̂− b̂μ̂xi is the estimated resid-

ual, with μ̂xi = �̂x âi and âi = (zi −μ̂)� D−1(φ̂)̂b. Equation 7 provides a simple way
to compute the Mahalanobis distance. The estimated distances di , dxi and dei provide
useful diagnostic statistics for identifying sample units with outlying observations.
Thus, the SMSN-MEM given in (2)–(3) considers two sources of variation, one due
to an error component and the other due to a latent variable, which may be sensitive
to outliers (Zeller et al. 2011).

From Branco and Dey (2001), we have that di ∼ χ2
p (the chi-square with p degrees

of freedom), for the skew-normal (SN) case and thus, we can use as cutoff points the
quantile υ = χ2

p(ξ), where 0 < ξ < 1, to identify outliers. Also, it can be shown that
the distribution of di is the same as that under SMN distributions (see Branco and Dey
2001; Proposition 5.2). From Zeller et al. (2011), we have di ∼ pF(p, ν) for skew-t
(ST) case, consequently Pr(di ≤ υ) = Pr(χ2

p ≤ υ)− 2ν�(ν+p/2)
υν�(p/2)

Pr(χ2
2ν+p ≤ υ) for

skew-slash (SSL) and Pr(di ≤ υ) = ν Pr(χ2
p ≤ γ υ)+(1−ν)Pr(χ2

p ≤ υ) for skew-
contaminated normal (SCN). In the next section, we discuss influence diagnostics with
emphasis on the local influence approach proposed by Zhu and Lee (2001).

3 Influence diagnostics

Cook (1986) proposed a unified approach for assessment of local influence in minor
perturbations of a statistical model, which can be viewed as a generalization of the
robustness concept to study and detect the influential subsets of data. Since a direct
application of this approach involves extensive algebraic manipulation for SMSN-
MEM, in this article we will apply the general approach of Zhu and Lee (2001) to
achieve diagnostic measures for local influence analysis.

3.1 Local influence

Consider a perturbation vector ω = (ω1, . . ., ωg)
� varying in an open region � ⊂ R

g .
Let 	c(θ ,ω|zc), θ ∈ R

h , be the complete-data log-likelihood of the perturbed model.
We assume there is a ω0 such that 	c(θ ,ω0|zc) = 	c(θ |zc) for all θ . Let θ̂(ω) denote
the maximum of the function Q(θ ,ω|̂θ) = E[	c(θ ,ω|zc)|z, θ̂ ]. The influence graph
is defined as α(ω) = (ω�, fQ(ω))�, where fQ(ω) is the Q-displacement function,
defined as fQ(ω) = 2

[
Q

(̂
θ |̂θ) − Q

(̂
θ(ω)|̂θ)]

. Following the approach developed
in Cook (1986) and Zhu and Lee (2001), the normal curvature C fQ ,d of α(ω) at ω0
in the direction of some unit vector d can be used to summarize the local behavior
of the Q-displacement function. It can be shown that (Zhu and Lee 2001) C fQ ,d =
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670 C. B. Zeller et al.

−2d� Q̈ωo d and − Q̈ω0 = ��
ωo

{−Q̈(̂θ)
}−1

�ω0 , where Q̈(̂θ) = ∂2 Q(θ |θ̂ )

∂θ∂θ
� |

θ=θ̂

and �ω = ∂2 Q(θ ,ω|θ̂ )

∂θ∂ω� |
θ=θ̂ (ω)

.

As in Cook (1986), the quantity −Q̈ω0 is fundamental to detect influential obser-
vations. The assessment of influential cases is based on visual inspection of the
{M(0)l = B fQ ,ul , l = 1, . . . , g} plotted against the index l, where B fQ ,u(θ) =
C fQ ,u(θ)/tr [−2Q̈ω0 ] and ul is a basic perturbation vector with lth entry 1 and zero
elsewhere. So far there is not a general rule to judge the largeness of the influence of a
specific case in the data. Recently, Lee and Xu (2004) proposed using M(0)+c∗SM(0),
where c∗ is a selected constant. Depending on the real application, c∗ may be taken as
any positive value, as discussed by Montenegro et al. (2009). In this paper, we consider
c∗ = 3 unless stated otherwise.

In the following subsections, we derive the normal curvature for the proposed
SMSN-MEM. We compute Q̈(θ) and �ω by using the results of matrix differentiation
described in Magnus and Neudecker (1988).

3.2 The Hessian matrix Q̈(̂θ)

To obtain the diagnostic measures for local influence of a particular perturbation

scheme, it is necessary to compute Q̈(̂θ) = ∂2 Q(θ |θ̂ )

∂θ∂θ
� , where θ = (θ�

1 , θ�
2 )� is the

parameter vector. Hence, the Hessian matrix is given by Q̈(̂θ) = ∑n
i=1 Q̈i (θ) with

Q̈i (θ) = −∂2 Qi (θ |̂θ)

∂θ∂θ� =
(

Q̈11,i (θ1) 0
0 Q̈22,i (θ2)

)
,

where Q̈11,i (θ1)= − ∂2 Q1i (θ1 |̂θ)/∂θ1∂θ�
1 and Q̈22,i (θ2)= − ∂2 Q2i (θ2 |̂θ)/∂θ2∂θ�

2
are given in Appendix A.

3.3 Perturbation schemes

In this subsection, some special perturbation are considered, which are inherent to
the multivariate measurement error models. We consider three different perturbation
schemes for the baseline model defined in (2)–(3). We evaluate in the sequel the matrix
�ω under the following perturbation schemes for SMSN-MEM: perturbation of case
weights for detecting observations with outstanding contribution on the log-likelihood
function and that may exercise high influence on the maximum likelihood estimates;
perturbation of the measurement for one instrument made on the observed values from
the instruments used in the study, which may indicate observations with large influence
on their own predicted values; and perturbation of the variance through perturbation
of the scale matrix �, which may reveal individuals that are most influential, in the
sense of the likelihood displacement on the scale structure and consequently on the
estimates of φx and φ. Before we derive the appropriate matrices for assessing the local
influence for perturbation schemes, we note that the matrix Q̈(̂θ) is block-diagonal
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On diagnostics in SMSN-MEM 671

with block Q̈11(̂θ1) and Q̈22(̂θ2), so that for any unit vector d,

C fQ ,d = C fQ ,d(θ1) + C fQ ,d(θ2),

where

C fQ ,d(θ1) = 2d���
1ωo

(−Q̈11)
−1�1ωo d

and

C fQ ,d(θ2) = 2d���
2ωo

(−Q̈22)
−1�2ωo d,

with �1ω0 = (�11ω0 , . . .,�1nω0)
� and �2ω0 = (�21ω0 , . . .,�2nω0)

�, respectively,

where �1iω0 = ∂2 Q1i (θ 1,ω|θ̂ )

∂θ 1∂ωi
|ω=ω0 and �2iω0 = ∂2 Q2i (θ 2,ω|θ̂ )

∂θ 2∂ωi
|ω=ω0 , i = 1, . . . , n.

3.3.1 Perturbation of case weights

First, consider the following arbitrary allocation of weights for the expected value of
the complete-data log-likelihood function (perturbed Q-function), which may capture
departures in general directions, given by

Q(θ ,ω|̂θ) =
n∑

i=1

ωi E[	i (θ |zc)] =
n∑

i=1

Q1i (θ1, ωi |̂θ) +
n∑

i=1

Q2i (θ2, ωi |̂θ),

where ω = (ω1, . . . , ωn)� is an n × 1 vector with 0 ≤ ωi ≤ 1 for i = 1, . . . , n, such
that ω0 = 1n, Q1i (θ1, ωi |̂θ) = wi Q1i (θ1 |̂θ) and Q2i (θ2, ωi |̂θ) = wi Q2i (θ2 |̂θ),
where Q1i (θ1 |̂θ) and Q2i (θ2 |̂θ) are as presented in (5)–(6) and represent the con-
tribution from the i th experimental unity to the Q-function. Note that, for ωi = 0
and ω j = 1, j 
= i, the i th experimental unit is dropped from the log-likelihood
function for complete data. It is possible to show that the local influence for this
perturbation scheme is equivalent to deletion method (see Osorio et al. 2009). Alter-
natively we may think on two other sub-perturbations, defined by (i) Q(θ,ω|̂θ) =∑n

i=1 Q1i (θ1, ωi |̂θ) + ∑n
i=1 Q2i (θ2 |̂θ) and (i i) Q(θ,ω|̂θ) = ∑n

i=1 Q1i (θ1 |̂θ) +∑n
i=1 Q2i (θ2, ωi |̂θ), which are assessed based on C fQ ,d(θ1) and C fQ ,d(θ2), respec-

tively. Under this perturbation scheme the components of the matrices �1ω0 and �2ω0

are given in Appendix B.

3.3.2 Perturbation of the measurement for one instrument

In this case the measurements are obtained when one instrument is modified consider-
ing additive and multiplicative perturbation schemes. Let Zmi (ωi ) denote the perturbed
measurement of the mth instrument for the i th experimental unit, with m = 1, . . . , p
and ω = (ω1, . . . , ωn)�. The following perturbation schemes will be evaluated:

123



672 C. B. Zeller et al.

(1) Additive perturbation: Zmi (ωi ) = Zi +ωi em, where em is a p−dimensional null
vector with one in the mth position. In this case ω0 = 0.

(2) Multiplicative perturbation: Zmi (ωi ) = Zi � 1m(ωi ), where 1m(ωi ) of dimen-
sion p denoting a vector of ones having the mth component replaced by ωi and
� denotes the Hadamard (elementwise) product. Here ω0 = 1.

For both cases, the perturbed log-likelihood function for the complete data is given
by

Q(θ,ω|̂θ) =
n∑

i=1

Q1i (θ1, ωi |̂θ) +
n∑

i=1

Q2i (θ2 |̂θ),

where Q1i (θ1, ωi |̂θ) is as given in equation (5), switching zmi (ωi ) with zi . Under this
perturbation scheme, the procedure of local influence is based on C fQ ,d(θ1) and the
components of the matrix �1ω0 are given in Appendix B.

3.3.3 Perturbation of the scale matrix �

Note that the model defined in (2)–(3) is assumed to be homoskedastic. So, in order
to study the effects of departures from the homogeneity assumption, we propose to
analyze the sensitivity of the MLE regarding the scale matrix �. Indeed, we consider
that the scale matrix of the Zi is given by �(ωi ) = φ

(ωi )
x bb� + D(ωi )(φ), which cor-

responds to considering that the distribution of Zi is heteroscedastic (Xie et al. 2009).
In this case, we have that

Zi ∼ SM SNp

(
μ,�(ωi ),λx ; H

)
, i = 1, . . . , n,

where �(ωi ) = �/ωi ,μ,� and λx are as in (4). Thus, note that we consider a simul-
taneous perturbation D(φ)(ωi ) = D(φ)/ωi and φ

(ωi )
x = φx/ωi since these terms

are involved linearly in the scale matrix �. Under this perturbation scheme, the
non-perturbed model is obtained when ωo = (1, . . . , 1)�. Moreover, the perturbed
Q-function has the form

Q(θ ,ω|̂θ) =
n∑

i=1

Q1i (θ1, ωi |̂θ) +
n∑

i=1

Q2i (θ2, ωi |̂θ).

Clearly, the perturbed Q-function is as in (5)–(6), switching D(φ)(ωi ) and φ
(ωi )
x

with D(φ) and φx , respectively. Using the perturbation scheme above, one can
evaluate the homoskedasticity only of errors based on the perturbed Q-function∑n

i=1 Q1i (θ1, ωi |̂θ). To evaluate the homoskedasticity of latent variable xi we use
the perturbed Q-function

∑n
i=1 Q2i (θ2, ωi |̂θ). The components of the matrix �1ω0

and �2ω0 under this perturbation scheme are given in Appendix B.
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On diagnostics in SMSN-MEM 673

Note that it is not possible to give details for all the perturbation schemes that are
of interest. However, as long as we can find an appropriate ω, and as long as the
perturbed complete data log-likelihood function 	c(θ,ω|zc) is smooth enough, so that
the required derivatives in the diagnostic measures are well defined, we can conduct
the local influence analysis without much difficulty. Recently, Zhu et al. (2007) pro-
posed to use a metric tensor to select an appropriate perturbation to a statistical model.
However, there are many issues related to this method, such as the calculation of the
influence measures and metric tensor under different situations. An extension of this
method to MEM is of great interest but is beyond the scope of this paper.

In the next section, for simplicity we consider the diagnostics for the marginal skew-
ness parameter in SMSN-MEM. However, the method proposed here can be used to
test for homogeneity of any parameter involved in the variance, as discussed by Xie
et al. (2009).

4 Score test for homogeneity in SMSN-MEM

In the SMSN-MEM, the variance of the i th observation is V ar{Zi } = E2�−E2
1���,

where Em = E{κ−m/2(U )}, m = 1, 2,� = �1/2δx and δx = λ̄x/(1 + λ̄
�
x λ̄x )

1/2,
with � and λ̄x as in (4), in which the skewness parameter λ̄x is constant. However,
the actual skewness parameter may be related to the i th observation zi and thus its
variance is nonconstant. Then, one cannot make any inference for the model without
further assumptions, since there are too many unknown parameters involved. In view
of that, it is necessary to test homogeneity of skewness parameters. This section con-
centrates on this problem in SMSN-MEM. Following Xie et al. (2009), we suppose
that the skewness parameter can be modeled by

λ̄i = λ̄x m(υi , γ ) = λ̄x mi ,

for i = 1, . . . , n, where λ̄x is an unknown parameter, γ is a q × 1 unknown vec-
tor which introduces heterogeneity in the skewness parameter, υi ’s are covariates of
appropriates dimension, and m is a known differentiable weight function of skew-
ness parameter in γ . It is assumed that there is a unique value γ 0 of γ such that
m(υi , γ 0) = 1 for all i . Hence the test for homogeneity of skewness parameter is
equivalent to testing the following hypothesis:

H0 : γ = γ 0 vs. H1 : γ 
= γ 0. (8)

Let ξ2 denote (γ �, θ�)�. Then for the hypothesis (8), γ is the parameter of inter-
est and θ is a nuisance parameter. The log-likelihood l(ξ2|z) = l(ξ2) is obtained by
switching K ∗∗

i with Ki (see Lachos et al. 2010c, Eq. 11), where

K ∗∗
i =

∞∫

0

κ−p/2(ui ) exp

(
−1

2
κ−1(ui )di

)
�1(κ

−1/2(ui )A
∗∗
i )d H(ui ; ν),
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674 C. B. Zeller et al.

with A∗∗
i = mi λ̄

�
x �−1/2(zi − μ) = mi Ai . Based on log-likelihood, the second-order

derivatives of l(ξ2) with respect to the parameter γ and θ can be easily obtained. Thus,
the observed information matrix of Z for ξ2 under H0 is given by

JZ(ξ2)|ξ 2=ξ̂
0

2

=
(

Jγ γ Jγ θ
J�
γ θ

Jθθ

)
|
ξ 2=ξ̂

0

2

,

with elements given in Appendix C, and ξ̂
0
2 = (γ �

0 , θ̂
�
)� denotes the ML estimate of

ξ2 under the null hypothesis H0. The first-order derivative of l(ξ2) with respect to γ

is

∂l(ξ2)

∂γ
=

n∑
i=1

1

K ∗∗
i

I φ
i

(
p + 1

2

)
Ai

∂mi

∂γ
,

where I F
i (w) = ∫ ∞

0 κ−w(ui ) exp{− 1
2κ−1(ui )di }F(κ−1/2(ui )Ai )d H(ui ; ν), where

F(·) is the function �(·) or φ(·). Moreover, the explicit expressions of I φ
i (w) and

I �
i (w) for the skew-t, the skew-slash and the skew-contaminated normal distribu-

tions are given in Lachos et al. (2010c). Then, the score function of hypothesis (8)
is S(ξ2)|ξ 2=ξ̂

0

2

= M�h|
ξ 2=ξ̂

0

2

, where M� = (M�
1 , . . . , M�

n ), Mi = ∂mi
∂γ � , h =

(h1, . . . , hn), hi = 1
K ∗∗

i
I φ
i

(
p+1

2

)
Ai . Furthermore, the score test statistic for H0 is

SC =
{

S�(ξ2)J
−1
Z (ξ2)S(ξ2)

}
|
ξ 2=ξ̂

0

2

.

When H0 is true, the statistic SC is asymptotically distributed as χ2
q . In the next sec-

tion, a real example is presented to illustrate the performance of the methodology
developed.

5 Application

We illustrate our proposed methods with a data set from Chipkevitch et al. (1996). The
data measure the testicular volume of 42 adolescents in a certain sequence by using five
different techniques. Recently, Lachos et al. (2010c) have analyzed the Chipkevitch
data set with the aim of providing additional inferences by using SMSN-MEM. As
our main focus is not on ML estimation, we refer the interested reader to see Table 1 in
Lachos et al. (2010c), which contains the ML estimates of the parameters from the SN,
ST, SCN and SSL models, together with their corresponding standard errors calculated
via the observed information matrix. In this section, we revisit this data set with the
aim of applying Zhu and Lee’s (2001) local influence approach to SMSN-MEM.

In order to detect outlying observations, the Mahalanobis distance has been consid-
ered (Zeller et al. 2011). Figure 1 (first row) displays such distances for the SN and ST
fitted models. The cutoff lines corresponds to the quantile υ = χ2

p(ξ), where ξ = 0.95.
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Fig. 1 Chipkevitch data set. In the first row the index plots of the Mahalanobis distances for the SN and
ST fitted models. The horizontal lines corresponds to the quantile υ = χ2

p(0.95). The estimated dei (error)
and dxi (latent) to the skew-normal fit are given at the bottom

We can see from these figures that observations 11, 22, 31 and 32 are detected as pos-
sible outliers in the ST case, and further that observations 10, 13 and 36 are detected as
possible outliers in the SN case. For the SSL and SCN cases, the results are the same
as for the ST and SN cases, respectively, so they are not shown here to save space. The
estimated distances dei (Error) and dxi (Latent), defined in (7), provide useful diagnos-
tic statistics for identifying subjects with outlying observations—see also Ho and Lin
(2010). Figure 1 (second row) presents those diagnostic statistics to the SN-MEM.
It can be seen that individuals 10, 11, 13, 22, 31, 32 and 36 present large values of
d̂ei , suggesting they are e-outliers. Moreover, observations 13, 15, 16, 31, 32 and
38 present large values of d̂xi , suggesting they are x-outliers. For cases ST-MEM,
SSL-MEM and SCN-MEM, the results are the same as for SN-MEM.

From the EM-algorithm, the estimated weights ûi , i = 1, . . . , 42, under ST and
SSL distributions, are depicted in Figure 2 (first row). Notice that when we use
distributions with tails heavier than the skew-normal ones, the EM algorithm al-
lows accommodating such observations by attributing small weights to them in the
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Fig. 2 Chipkevitch data set. The estimated weights ûi for the ST and SSL models are in the first row. The
index plots of M(0) under case weights perturbation for the SN and ST fitted models are given at the bottom

estimation procedure. The weights for the SN distribution (̂ui ) are indicated in Fig-
ure 2 (first row) as a continuous line. Therefore, this rich class of distributions may
naturally attribute different weights to each observation and consequently control the
influence of a single observation on the parameter estimates. These results agree with
the results presented in Osorio et al. (2009), in a symmetric context. Next we identify
influential observations for the Chipkevitch data set using M(0) from the conformal
curvature B fQ ,ui . The perturbation schemes described in Sect. 3.3 are considered and
in all cases we consider the Lee and Xu (2004) benchmark for M(0) with c∗ = 3.

5.1 Case weights perturbation

From Figure 2 (second row) it can be seen that observations 31 and 32 are detected as
outliers in Figure 1, but no observation is detected as influential under the ST-MEM
and also under the SSL-MEM and SCN-MEM (not shown here).
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5.2 Perturbation of the measurement for one instrument

We now examine the effects of perturbing the measurements taken by instruments II
and V. Instruments II and V were chosen because they present the largest C fQ ,dmax
values. The values of C fQ ,dmax for additive perturbations of the measurements taken
by instrument II, for instance, are 2.2437 (SN), 2.6489 (ST), 2.3749 (SSL) and 2.6056
(SCN), whereas for multiplicative perturbations taken the instrument V, the C fQ ,dmax
values are 758.8672 (SN), 564.2995 (ST), 626.0935 (SSL) and 563.8614 (SCN).
Figure 3 illustrates the index plot for perturbation of the measurement for one instru-
ment. Using this perturbation scheme, we can examine the influence on the mea-
surements taken by instruments II and V, under the additive and multiplicative cases,
respectively. Figure 3 (first row) indicates some influence when the measurement of
item 36 for instrument II is perturbed under SN-MEM. For cases SSL-MEM and
SCN-MEM, the results are the same as for ST-MEM. In Figure 3 (second row) we
see some influences when the measurement of item 32 for instrument V is perturbed
under SN-MEM and SSL-MEM (not shown here). Moreover, in this perturbation case,
observation 16 is only slightly prominent under SCN-MEM (not shown here). We note
that for this data set, the ST model accommodates the influential observations slightly
better. As expected, the influence of such observations are reduced when we consider
distributions with heavier tails than the skew-normal.

5.3 Perturbation of variances

To assess the assumption of homoscedasticity of the model, we obtain Figure 4. It can
be seen that observations 31 and 32 are identified as influential only under SN-MEM
when compared with ST-MEM. For the SSL-MEM and SCN-MEM cases, the results
are the same as for ST-MEM. Using this perturbation scheme we also can evaluate
the homoscedasticity of the latent variable x . Under the SN, SSL and SCN models,
observations 15 and 38 are detected as influential (not shown here). This fact is in
accordance with Figure 1 (second row), where those observations were identified as
x-outliers.

To test the homogeneity of skewness parameter, we assume that the weight function
mi = exp (γ υi ). It is easily seen that when γ = 0, then mi = 1 and λ̄x,i = λ̄x ,∀i.
Hence, the test for the homogeneity of skewness parameter becomes the test of hypoth-
esis H0 : γ = 0. Using the statistic given in Sect. 4 and with a little computation,
we have that the SC = 1.4066 (p-value = 0.2356) for SN-MEM, SC = 0.5898
(p-value = 0.4425) for ST-MEM, SC = 0.9223 (p-value = 0.3369) for SSL-MEM
and SC = 0.5836 (p-value = 0.4449) for SCN-MEM, which indicate there is no sig-
nificant evidence of a varying skewness parameter and consequently of heterogeneity
in the Chipkevitch’s data set.

Now we use the quantities TRC and MRC to reveal the impact of the influen-
tial observations detected. These quantities are defined, respectively, by T RC =∑n p

j=1 | θ̂ j −θ̂ [i] j

θ̂ j

| and M RC = max j=1,...,n p | θ̂ j −θ̂ [i] j

θ̂ j

|, where n p is the dimension

of θ and the subscript [i] means the ML estimator of θ with the i-th observation, zi ,
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Fig. 3 Chipkevitch data set. First row—the index plots of M(0) under additive perturbation of the mea-
surements taken by instrument II. Second row—the index plots of M(0) under multiplicative perturbation
of the measurements taken by instrument V

deleted. The comparison of these measures, based on the different models, with the
most influential observations 31 and 32 deleted, are given in Table 1. Notice that the
greatest changes take place under the SN distribution. As expected, the results indicate
that the ML estimators are less sensitive in the presence of influential observations
when we use distributions with heavier tails than the SN one.

6 Final conclusion

We have presented strategies to perform influence diagnostics in multivariate mea-
surement error models under SMSN distributions. We used the results of Lachos et al.
(2010c) for obtaining parameter estimation via maximum likelihood, based on the
EM algorithm, which yields closed form expressions for the equations in the M-step.
Local influence methods were implemented for the SMSN-MEM in order to evaluate
the consequences of model perturbations in situations where different perturbation
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Fig. 4 Chipkevitch data set. Index plots of M(0) under scale matrix perturbation of random effects for the
SN and ST fitted models

Table 1 Chipkevitch data set.
Comparison of the relative
changes in the ML estimators in
terms of TRC and MRC for the
four selected SMSN models

Observations Distribution TRC MRC

31 and 32 SN 53.6917 49.7396

ST 2.1341 1.1589

SSL 3.1918 2.0303

SCN 2.5972 1.6614

schemes are investigated. However, other perturbation schemes can be considered in
an analogous way. The Chipkevitch et al. (1996) data set favors the use of SMSN
distributions with heavy tails, specifically the use of the skew-t one. As in the sym-
metric case, it is important to emphasize the capacity of such models to attenuate
outlying observations, by means of attributing a small weight to these observations in
the estimation process.

To examine the performances and properties of the score test, formal simulations
studies under several situations need to be carried out, as discussed in Xie et al. (2009),
which will be reported in a follow-up paper. Due to recent advances in computational
technology, it is worthwhile also to carry out Bayesian treatments via Markov chain
Monte Carlo (MCMC) sampling methods in the context of SMSN-MEM. The basic
idea is to explore the joint posterior distributions of the model parameters together
with latent variables xi and ui , when informative priors are employed. Bayesian influ-
ence diagnostics can be treated via the Kullback–Leibler divergence, as proposed by
Cancho et al. (2010).
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Appendix A: The Hessian matrix Q̈(̂θ)

In this appendix, we use the following notation: Q̈1i,τπ = ∂2 Q1i (θ 1|θ̂ )
∂τ∂π

, with τ, π =
α,β or φ and Q̈2i,τπ = ∂2 Q2(θ 2|θ̂ )

∂τ∂π
, with τ, π = μx φx or λx . The matrix Hessian

has elements given by (see Magnus and Neudecker 1988)

Q̈1i,αα = −ûi I(p) D−1(φ)I�(p),

Q̈1i,αβ = −ûxi I(p) D−1(φ)I�(p), Q̈1i,ββ = −̂ux2
i I(p) D−1(φ)I�(p),

Q̈1i,φα = (−ûi D(zi − a) + ûxi D(b)) D−2(φ)I�(p),

Q̈1i,φβ =
(
−ûxi D(zi − a) +̂ux2

i D(b)
)

D−2(φ)I�(p),

Q̈1i,φφ =
[

1

2
D(φ) − ûi D2(zi − a) + 2ûxi D(zi − a)D(b) −̂ux2

i D2(b)

]
D−3(φ),

Q̈2i,μx μx = − 1

ν2
x

ûi , Q̈2i,μx φx = λx (1 + λ2
x )1/2

2φ
3/2
x

ût i + (1 + λ2
x )

φ2
x

B1i ,

Q̈2i,μx λx = − 2λx

φx
B1i − (1 + 2λ2

x )

φ
1/2
x (1 + λ2

x )1/2
ût i , Q̈2i,λx φx = (1 + 2λ2

x )

2φ
3/2
x (1 + λ2

x )1/2
B2i + λx

φ2
x

B3i ,

Q̈2i,φx φx = 1

2φ2
x

− 3λx (1 + λ2
x )1/2

4φ
5/2
x

B2i − (1 + λ2
x )

φ3
x

B3i ,

Q̈2i,λx λx = (1 − λ2
x )

(1 + λ2
x )2

− 1

φx
B3i − ût2

i − λx (3 + 2λ2
x )

φ
1/2
x (1 + λ2

x )3/2
B2i ,

where I(p) = [0q , Iq ], such that 0q = (0, . . . , 0)� is a q × 1 vector, Iq is a q × q identity matrix,

B1i = ûi μx − ûxi , B2i = ût i μx − ût xi and B3i =̂ux2
i + ûi μ

2
x − 2ûxi μx .

Appendix B: Derivatives with respect to the perturbation schemes

In this appendix, we use the following notation: Q̈1i,τωi = ∂2 Q1i (θ 1,ω|θ̂ )
∂τ∂ωi

|ω=ωo , with

τ = α,β or φ and Q̈2i,τωi = ∂2 Q2i (θ 2,ω|θ̂ )
∂τ∂ωi

|ω=ωo , with τ = μx , phix or λx .
1. Case weights perturbation

Q̈1i,αωi = I(p) D−1(φ)(̂ui (zi−a)−ûxi b),

Q̈1i,βωi = I(p) D−1(φ)(ûxi (zi−a)−ûx2
i b),

Q̈1i,φωi = 1

2

[
−D(φ) + ûi D2(zi − a) − 2ûxi D(zi − a)D(b)

]
D−2(φ)1p

+1

2
ûx2

i D2(b)D−2(φ)1p, Q̈2i,μx ωi = − 1

ν2
x
(B1i + ût iτx ),

Q̈2i,φx ωi = − 1

2φx
+ λx (1 + λ2

x )
1/2

2φ
3/2
x

B2i + 1 + λ2
x

2φ2
x

B3i ,
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Q̈2i,λx ωi = λx

(1 + λ2
x )

− λx

φx
B3i − λx ût2

i − (1 + 2λ2
x )

φ
1/2
x (1 + λ2

x )
1/2

B2i ,

where I(p) = [0q , Iq ], such that 0q = (0, . . . , 0)� is a q ×1 vector, Iq is a q ×q iden-

tity matrix, B1i = ûiμx − ûxi , B2i = ût iμx − ût xi and B3i = ûx2
i + ûiμ

2
x −2ûx iμx .

2. Perturbation of the measurement for one instrument

Q̈1i,αωi = ûi I(p) D−1(φ)pm, Q̈1i,βωi = ûxi I(p) D−1(φ)pm,

Q̈1i,φωi = (̂ui D(zi − a) − ûxi D(b)) D−2(φ)pm,

where pm = em under the additive case and pm = 0m(zim) under the multiplicative
case, with 0m(zim) a p−dimensional null vector with zmi in the mth position.

3. Perturbation of the scale matrix �

Q̈1i,αωi = I(p) D−1(φ)(̂ui (zi − a) − ûxi b),

Q̈1i,βωi = I(p) D−1(φ)(ûxi (zi − a) − ûx2
i b),

Q̈1i,φωi = 1

2

[
ûi D2(zi − a) − 2ûxi D(zi − a)D(b) + ûx2

i D2(b
]

D−2(φ)1p,

Q̈2i,μx ωi = − 1

ν2
x
(B1i + 1

2
ût iτx ), Q̈2i,φx ωi = (1 + λ2

x )

2φ2
x

B3i + λx (1 + λ2
x )

1/2

4φ
3/2
x

B2i ,

Q̈2i,λx ωi = −λx

φx
B3i − (1 + 2λ2

x )

2φ
1/2
x (1 + λ2

x )
1/2

B2i .

Appendix C: Derivation of score statistic in the SMSN-MEM case

The observed information matrix JZ(ξ2) = −L, where L =
(

Lγ γ Lγ θ
L�

γ θ
Lθθ

)
denotes

the matrix of second derivatives with respect to ξ2 = (γ �, θ�)� given by

L =
n∑

i=1

∂2	i (ξ2)

∂ϕ∂ϕ� = −n

2

∂2 log |�|
∂ϕ∂ϕ� −

n∑
i=1

1

K ∗∗2
i

∂K ∗∗
i

∂ϕ

∂K ∗∗
i

∂ϕ� +
n∑

i=1

1

K ∗∗
i

∂2 K ∗∗
i

∂ϕ∂ϕ� ,

where ϕ = γ or θ . Thus, Lθθ denotes the matrix of second derivatives with respect
to θ and under H0 : γ = γ 0 and is given in (Lachos et al. 2010c, Appendix). On the
other hand, Lγ γ denotes the matrix of second derivatives with respect to γ and is
given by

Lγ γ = −
n∑

i=1

1

K ∗∗2
i

∂K ∗∗
i

∂γ

∂K ∗∗
i

∂γ � +
n∑

i=1

1

K ∗∗
i

∂2 K ∗∗
i

∂γ ∂γ � ,
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where
∂K ∗∗

i
∂γ = I φ

i (
p+1

2 )
∂ A∗∗

i
∂γ ,

∂2 Ki
∂γ ∂γ � = −I φ

i (
p+3

2 )A∗∗
i

∂ A∗∗
i

∂γ
∂ A∗∗

i
∂γ � + I φ

i (
p+1

2 )
∂2 A∗∗

i
∂γ ∂γ � ,

with
∂ A∗∗

i
∂γ = ∂mi

∂γ Ai and
∂2 A∗∗

i
∂γ ∂γ � = ∂2mi

∂γ ∂γ � Ai . In addition, Lγ θ denotes the matrix of

second derivatives with respect to γ and θ , and it is given by

Lγ θ = −
n∑

i=1

1

K ∗∗2
i

∂K ∗∗
i

∂γ

∂K ∗∗
i

∂θ� +
n∑

i=1

1

K ∗∗
i

∂2 K ∗∗
i

∂γ ∂θ� ,

where ∂2 Ki

∂γ ∂θ
� = − 1

2 I φ
i (

p+3
2 )

∂ A∗∗
i

∂γ
∂di

∂θ
� − I φ

i (
p+3

2 )A∗∗
i

∂ A∗∗
i

∂γ
∂ A∗∗

i

∂θ
� + I φ

i (
p+1

2 )
∂2 A∗∗

i

∂γ ∂θ
� ,

∂K ∗∗
i

∂θ
= I φ

i (
p+1

2 )
∂ A∗∗

i

∂θ
− 1

2 I �
i (

p+2
2 )

∂di

∂θ
,

∂ A∗∗
i

∂θ
= mi

∂ Ai

∂θ
,

∂2 A∗∗
i

∂γ ∂θ
� = ∂mi

∂γ
∂ Ai

∂θ
� , with ∂ Ai

∂θ

and ∂di

∂θ
� given in Lachos et al. (2010c).
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