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Abstract Let Z1, Z2, . . . be a sequence of independent Bernoulli trials with
constant success and failure probabilities p = Pr(Zt = 1) and q = Pr(Zt =
0) = 1 − p, respectively, t = 1, 2, . . . . For any given integer k ≥ 2 we consider the
patterns E1: two successes are separated by at most k − 2 failures, E2: two successes
are separated by exactly k − 2 failures, and E3: two successes are separated by at
least k − 2 failures. Denote by N (i)

n,k (respectively M (i)
n,k) the number of occurrences of

the pattern Ei , i = 1, 2, 3, in Z1, Z2, . . . , Zn when the non-overlapping (respectively
overlapping) counting scheme for runs and patterns is employed. Also, let T (i)

r,k (resp.

W (i)
r,k ) be the waiting time for the r − th occurrence of the pattern Ei , i = 1, 2, 3, in

Z1, Z2, . . . according to the non-overlapping (resp. overlapping) counting scheme. In
this article we conduct a systematic study of N (i)

n,k , M (i)
n,k , T (i)

r,k and W (i)
r,k (i = 1, 2, 3)

obtaining exact formulae, explicit or recursive, for their probability generating func-
tions, probability mass functions and moments. An application is given.
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324 S. D. Dafnis et al.

1 Introduction

Let Z1, Z2, . . . be a sequence of independent Bernoulli trials with constant success
and failure probabilities p = Pr(Zt = 1), q = Pr(Zt = 0) = 1 − p, respectively,
t = 1, 2, . . . . In a recent paper, Dafnis et al. (2010) studied distributions related to the
(k1, k2) events: at least (exactly, at most) k1 consecutive 0’s are followed by at least
(exactly, at most) k2 consecutive 1’s. Presently, for k ≥ 1, we define the pattern

E0: there are k consecutive successes

and for k ≥ 2, we define the patterns

E1: two successes are separated by at most k − 2 failures,
E2: two successes are separated by exactly k − 2 failures,
E3: two successes are separated by at least k − 2 failures.

Hence,

E0 = {11 . . . 1
︸ ︷︷ ︸

k

}, E1 = {11, 101, . . . , 100 . . . 0
︸ ︷︷ ︸

k−2

1},

E2 = {100 . . . 0
︸ ︷︷ ︸

k−2

1}, E3 = {100 . . . 0
︸ ︷︷ ︸

k−2

1, 100 . . . 0
︸ ︷︷ ︸

k−1

1, . . .}.

In Z1, Z2, . . . , Zn (n ≥ 1), denote by N (i)
n,k the number of occurrences of the

pattern Ei (i = 0, 1, 2, 3) when the patterns do not overlap, and by M (i)
n,k the number

of occurrences of the pattern Ei when the patterns may overlap. In Z1, Z2, . . ., denote
the waiting time for the r − th occurrence of the pattern Ei (i = 0, 1, 2, 3) when the
patterns do not overlap by T (i)

r,k , and by W (i)
r,k when the patterns may overlap. From the

above definitions and notations it follows that E0 = E1 = E2 for k = 2, and therefore

N (0)
n,2 = N (1)

n,2 = N (2)
n,2, M (0)

n,2 = M (1)
n,2 = M (2)

n,2,

T (0)
r,2 = T (1)

r,2 = T (2)
r,2 , W (0)

r,2 = W (1)
r,2 = W (2)

r,2 .
(1.1)

Philippou et al. (1983), Philippou and Makri (1986), Hirano (1986), and Ling (1989)
studied extensively the random variables N (0)

n,k , M (0)
n,k , T (0)

r,k and W (0)
r,k , naming their dis-

tributions binomial and negative binomial distributions of order k since they reduce
to the respective classical distributions for k = 1 (see also Balakrishnan and Koutras
(2002), Antzoulakos (2003), Inoue and Aki (2003), Makri and Philippou (2005) and
Demir and Eryilmaz (2010)).

The work of the above authors covers the special case k = 2 of the random vari-
ables N (i)

n,k , M (i)
n,k , T (i)

r,k and W (i)
r,k for i = 0, 1, 2, due to (1.1). The general case of

T (1)
r,k for k ≥ 2 was studied by Koutras (1996). Antzoulakos (2001) derived the pgf of

W (1)
r,k (k ≥ 2) for Markov dependent trials. Sen and Goyal (2004) studied the patterns

E1 − {SS}, E2 and E3 for k ≥ 3, deriving exact formulae for the pmf’s of N (i)
n,k , M (i)

n,k ,

T (i)
r,k and W (i)

r,k (i = 2, 3) by combinatorial methods. Sarkar et al. (2004) studied W (i)
r,k

(i = 1, 2) in higher order Markov chains.
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Distributions of patterns of two successes 325

In the present paper we employ the Markov chain embedding technique to study
N (i)

n,k , M (i)
n,k , T (i)

r,k , and W (i)
r,k (i = 1, 2, 3). In Sect. 2, we derive recursive schemes

satisfied by the pgf, the pmf and the m − th moment (m ≥ 1) of N (i)
n,k and M (i)

n,k

(i = 1, 2, 3). In Sect. 3, we derive explicit formulae for the pgf of T (i)
r,k and W (i)

r,k
(i = 1, 2, 3), while for their pmf’s and moments recursive schemes are established.
In Sect. 4, an application is given in reliability. Most of our results are new, while a
few known results are recaptured.

2 Distributions in a fixed number of trials

In the present section we establish recursive schemes for the evaluation of the prob-
ability generating function, probability mass function and moments of N (i)

n,k and

M (i)
n,k , i = 1, 2, 3. For the derivation of the results we will make use of the Markov

chain embedding technique introduced by Fu and Koutras (1994) and subsequently
enriched, among others, by Koutras and Alexandrou (1995), Han and Aki (1999), and
Antzoulakos et al. (2003) (see also Fu and Lou (2003)).

Before advancing to the main part of this section, we deem necessary to recall the
definition of the Markov chain embeddable variable of binomial type (MV B) from
Koutras and Alexandrou (1995), since all the random variables studied here are of
this type.

Let Xn (n a non-negative integer) be a non-negative finite integer-valued random
variable and let �n = sup{x : Pr(Xn = x) > 0} its upper end point.

Definition 2.1 The random variable Xn will be called Markov chain embeddable
variable of binomial type if

(a) there exists a Markov chain {Yt , t ≥ 0} defined on a discrete state space � which
can be partitioned as

� = {C0, C1, C2, . . .},

(b) Pr(Yt ∈ Cy |Yt−1 ∈ Cx ) = 0, for all y �= x, x + 1 and t ≥ 1,

(c) the event Xn = x is equivalent to Yn ∈ Cx , i.e.

Pr(Xn = x) = Pr(Yn ∈ Cx ), n ≥ 0, x ≥ 0.

Without loss of generality we may assume that the state subspaces Cx , x = 0, 1, . . . ,

have the same cardinality s = maxx≥0 |Cx |, that is Cx = {cx,0, cx,1, . . . , cx,s−1}. This
can be done since one can always incorporate into the Cx ’s, with |Cx | < s, a number of
hypothetical states inaccessible to the Markov chain so that its behavior is not affected.

Also, It follows from condition (b) of Definition 2.1 that for {Yt , t ≥ 0} there
are only transitions within the same substate set Cx and transitions from set Cx to
set Cx+1. Those two types of transitions give birth to the next two s × s transition
probability matrices
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326 S. D. Dafnis et al.

At (x) = (Pr(Yt = cx, j |Yt−1 = cx,i )), Bt (x) = (Pr(Yt = cx+1, j |Yt−1 = cx,i )).

For independent Bernoulli trials with constant success and failure probabilities,
matrices At (x) and Bt (x) do not depend on t and x (that is At (x) = A and Bt (x) = B).
In this case the distribution of an MVB is completely determined by matrices A and
B along with the initial probability vector

π0 = (Pr(Y0 = c0,0), Pr(Y0 = c0,1), . . . , Pr(Y0 = c0,s−1)) = (1, 0, 0, . . . , 0).

In the cases to be studied in this paper, the random variable Xn denotes the num-
ber of occurrences of a pattern E in a sequence of n independent Bernoulli trials
Z1, Z2, . . . , Zn . The entrance of the Markov chain in state cx,i at the t-th tran-
sition (t ≤ n, 0 ≤ i ≤ s − 1), implies that in Z1, Z2, . . . , Zt the pattern E
has occurred x times, while i depends mainly on the initial subpattern of E that
matches with the ending block of trials (we refer to Fu and Lou (2003) for further
details).

2.1 Distribution of N (1)
n,k

In order to view the random variable N (1)
n,k as an MVB we set �n = [n/2] and define

Cx = {cx,0, cx,1, . . . , cx,k−1}, x = 0, 1, . . . , �n, where cx,i = (x, i), 0 ≤ i ≤ k − 1.

We introduce a Markov chain {Yt , t ≥ 0} on � = ⋃�n
x=0 Cx according to the following

conditions:

(1) Yt = (0, 0) if Z1 = Z2 = · · · = Zt = 0;
(2) Yt = (x, 0), x ≥ 0, if in the first t, t1 and t1 − 1 outcomes (t1 < t − k + 2) the

pattern E1 has occurred x times, Zt1 = 1 and Zt1+1 = Zt1+2 = · · · = Zt = 0;
(3) Yt = (x, 0), x ≥ 1, if in the first t outcomes the pattern E1 has occurred x

times, the x − th occurrence of E1 occurred at the t1 − th trial (2 ≤ t1 < t) and
Zt1+1 = Zt1+2 = · · · = Zt = 0;

(4) Yt = (x, 0), x ≥ 1, if in the first t outcomes the pattern E1 has occurred x times
and the x −th occurrence of E1 occurred at the t −th trial (consequently Zt = 1);

(5) Yt = (x, 1), x ≥ 0, if in the first t and t −1 outcomes the pattern E1 has occurred
x times and Zt = 1;

(6) Yt = (x, i), x ≥ 0 and 2 ≤ i ≤ k −1, if in the first t, t − i +1 and t − i outcomes
(t ≥ i) the pattern E1 has occurred x times, Zt−i+1 = 1 and Zt−i+2 = Zt−i+3 =
. . . = Zt = 0.

For example, let Z1 = 1, Z2 = 0, Z3 = Z4 = Z5 = 1, Z6 = Z7 = Z8 = 0,

Z9 = 1, Z10 = Z11 = Z12 = 0, Z13 = 1 be a sequence of Bernoulli trials. For k = 4,

the states of the embedded Markov chain are Y1 = (0, 1), Y2 = (0, 2), Y3 = (1, 0),

Y4 = (1, 1), Y5 = (2, 0), Y6 = (2, 0), Y7 = (2, 0), Y8 = (2, 0), Y9 = (2, 1),

Y10 = (2, 2), Y11 = (2, 3),Y12 = (2, 0), Y13 = (2, 1).

With this set up, the random variable N (1)
n,k becomes an MVB with

π0 = (1, 0, 0, . . . , 0)1×k ,
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A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)

q p 0 0 · 0 0
0 0 q 0 · 0 0
0 0 0 q · 0 0
0 0 0 0 · 0 0
· · · · · · ·
0 0 0 0 · 0 q
q 0 0 0 · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

k×k

and matrix B has all its entries 0 except for the entries (i, 1), 2 ≤ i ≤ k, which are all
equal to p.

Since N (1)
n,k is a homogeneous MVB, its double generating function

�(z, w) =
∞
∑

n=0

ϕn(z)wn =
∞
∑

n=0

∞
∑

x=0

P(N (1)
n,k = x)zxwn

is given, due to Koutras and Alexandrou (1995), by

�(z, w) = π0[I − w(A + zB)]−11′. (2.1)

Using some algebra, relation (2.1) yields

∞
∑

n=0

ϕn(z)wn = 1+(p − q)w − pw(qw)k−1

1 − 2qw + w2(q2 − zp2)− pw(qw)k−1+ pw2(q + zp)(qw)k−1

(2.2)

from which we get the following lemma.

Lemma 2.1 The probability generating function ϕn(z) of the random variable N (1)
n,k

satisfies the recursive scheme

ϕn(z) = 2qϕn−1(z)−(q2 − zp2)ϕn−2(z)+ pqk−1(ϕn−k(z)−(q + pz)ϕn−k−1(z)),

n ≥ k + 1,

with initial conditions

ϕn(z) = 2qϕn−1(z) − (q2 − zp2)ϕn−2(z), 2 ≤ n ≤ k,

and ϕ0(z) = ϕ1(z) =1.

We use Lemma 2.1 to derive the following recurrence.

Theorem 2.1 The probability mass function gn(x) of the random variable N (1)
n,k sat-

isfies the recursive scheme
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328 S. D. Dafnis et al.

gn(x) = 2qgn−1(x) − q2gn−2(x) + p2gn−2(x − 1)

+ pqk−1(gn−k(x) − qgn−k−1(x) − pgn−k−1(x − 1)), n ≥ k + 1,

with initial conditions

gn(x) = 2qgn−1(x) − q2gn−2(x) + p2gn−2(x − 1), 2 ≤ n ≤ k,

and

gn(x) = 0, if x < 0 or x >
[ n

2

]

,

gn(x) = δx,0, n = 0, 1.

Proof It suffices to replace ϕn(z), n ≥ 2, in the recursive formulae given in Lemma 2.1
by the power series

ϕn(z) =
∞
∑

x=0

P(N (1)
n,k = x)zx =

∞
∑

x=0

gn(x)zx ,

and then equating the coefficients of zx on both sides of the resulting identities.
Next, denote by μn,m = E[(N (1)

n,k)
m] and M(z), the m − th moment and the

moment generating function of N (1)
n,k , respectively. Using Lemma 2.1 and the well-

known formula

dm

dzm

(

ekz M(z)
)
∣

∣

∣

∣

z=0
=

m
∑

i=0

(

m

i

)

km−iμn,i , (2.3)

the following corollary results. �	
Corollary 2.1 The moments μn,m, m ≥ 1, of the random variable N (1)

n,k satisfy the
recursive scheme

μn,m = 2qμn−1,m − q2μn−2,m + pqk−1(μn−k,m − qμn−k−1,m)

+ p2
m

∑

i=0

(

m

i

)

(μn−2,i − qk−1μn−k−1,i ), n ≥ k + 1,

μn,m = 2qμn−1,m − q2μn−2,m +
m

∑

i=0

(

m

i

)

p2μn−2,i , 2 ≤ n ≤ k,

where μn,0 = 1, and μn,m = 0 for n < 2 and m ≥ 1.

2.2 Distribution of N (2)
n,k

In order to view the random variable N (2)
n,k as an MVB we set �n = [n/k] and define

Cx = {cx,0, cx,1, . . . , cx,k−1}, x = 0, 1, . . . , �n, where cx,i = (x, i), 0 ≤ i ≤ k − 1.
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Distributions of patterns of two successes 329

We introduce a Markov chain {Yt , t ≥ 0} on � = ⋃�n
x=0 Cx according to the con-

ditions (1)–(6) of the previous section (the inequality 2 ≤ t1 < t of condition (3)
becomes now k ≤ t1 < t).

For example, let Z1 = 0, Z2 = 1, Z3 = Z4 = 0, Z5 = 1, Z6 = 0 , Z7 = 1,

Z8 = Z9 = 0, Z10 = Z11 = 1, Z12 = Z13 = Z14 = 0 be a sequence of Bernoulli tri-
als. For k = 4, the states of the embedded Markov chain are Y1 = (0, 0), Y2 = (0, 1),

Y3 = (0, 2), Y4 = (0, 3), Y5 = (1, 0), Y6 = (1, 0), Y7 = (1, 1), Y8 = (1, 2),

Y9 = (1, 3), Y10 = (2, 0),Y11 = (2, 1), Y12 = (2, 2), Y13 = (2, 3), Y14 = (2, 0).

With this set up, the random variable N (2)
n,k becomes an MVB with

π0 = (1, 0, 0, . . . , 0)1×k

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)

q p 0 0 · 0 0
0 p q 0 · 0 0
0 p 0 q · 0 0
0 p 0 0 · 0 0
· · · · · · ·
0 p 0 0 · 0 q
q 0 0 0 · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

k×k

and matrix B has all its entries 0 except for the entry (k, 1) which equals p.

The double generating function of N (2)
n,k is given by

�(z, w) = 1 + pw(qw)k−2

1 − w + pw(qw)k−2(1 − w(q + pz))
. (2.4)

Using relation (2.4) and following the methodology of Sect. 2.1 we derive the follow-
ing results.

Lemma 2.2 The probability generating function ϕn(z) of the random variable N (2)
n,k

satisfies the recursive scheme

ϕn(z) = ϕn−1(z) + pqk−2((q + pz)ϕn−k(z) − ϕn−k+1(z)), n ≥ k,

with initial conditions ϕ0(z) = ϕ1(z) = · · · = ϕk−1(z) = 1.

Theorem 2.2 The probability mass function gn(x) of the random variable N (2)
n,k sat-

isfies the recursive scheme

gn(x) = gn−1(x) + pqk−2(qgn−k(x) + pgn−k(x − 1) − gn−k+1(x)), n ≥ k,

with initial conditions

gn(x) = 0, if x < 0 or x >
[ n

k

]

,

gn(x) = δx,0, 0 ≤ n ≤ k − 1.
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Corollary 2.2 The moments μn,m, m ≥ 1, of the random variable N (2)
n,k satisfy the

recursive scheme

μn,m = μn−1,m + pqk−2

(

qμn−k,m − μn−k+1,m + p
m

∑

i=0

(

m

i

)

μn−k,i

)

, n ≥ k,

with initial conditions μn,0 = 1, and μn,m = 0 for n < k and m ≥ 1.

Remark 2.1 For the special case k = 2, Theorem 2.1 is equivalent to Theorem 2.2,
since N (1)

n,2 = N (2)
n,2. Both MVB’s are sharing common matrices A, B given by

A =
(

q p
q 0

)

, B =
(

0 0
p 0

)

.

2.3 Distribution of N (3)
n,k

In order to view the random variable N (3)
n,k as an MVB we set �n = [n/k] and define

Cx = {cx,0, cx,1, . . . , cx,k−1}, x = 0, 1, . . . , �n, where cx,i = (x, i), 0 ≤ i ≤ k − 1.

We introduce a Markov chain {Yt , t ≥ 0} on � = ⋃�n
x=0 Cx as follows:

(1) Yt = (0, 0) if Z1 = Z2 = · · · = Zt = 0;
(2) Yt = (x, 0), x ≥ 1, if in the first t outcomes the pattern E3 has occurred x

times, the x − th occurrence of E3 occurred at the t1 − th trial (k ≤ t1 < t) and
Zt1+1 = Zt1+2 = · · · = Zt = 0;

(3) Yt = (x, 0), x ≥ 1, if in the first t outcomes the pattern E3 has occurred x times
and the x −th occurrence of E3 occurred at the t −th trial (consequently Zt = 1);

(4) Yt = (x, 1), x ≥ 0, if in the first t and t −1 outcomes the pattern E3 has occurred
x times and Zt = 1;

(5) Yt = (x, i), x ≥ 0 and 2 ≤ i ≤ k −2, if in the first t, t − i +1 and t − i outcomes
(t ≥ i) the pattern E3 has occurred x times, Zt−i+1 = 1 and Zt−i+2 = Zt−i+3 =
· · · = Zt = 0;

(6) Yt = (x, k −1), x ≥ 0, if in the first t, t1 and t1 −1 outcomes (t1 ≤ t −k +2) the
pattern E3 has occurred x times, Zt1 = 1 and Zt1+1 = Zt1+2 = · · · = Zt = 0.

For example, let Z1 = 0, Z2 = 1, Z3 = 0, Z4 = 1, Z5 = Z6 = Z7 = Z8 = 0,

Z9 = 1, Z10 = 0, Z11 = 1, Z12 = Z13 = 0, Z14 = 1 be a sequence of Bernoulli tri-
als. For k = 4, the states of the embedded Markov chain are Y1 = (0, 0), Y2 = (0, 1),

Y3 = (0, 2), Y4 = (0, 1), Y5 = (0, 2), Y6 = (0, 3), Y7 = (0, 3), Y8 = (0, 3),

Y9 = (1, 0), Y10 = (1, 0), Y11 = (1, 1), Y12 = (1, 2), Y13 = (1, 3), Y14 = (2, 0).

With this set up, the random variable N (3)
n,k becomes an MVB with

π0 = (1, 0, 0, . . . , 0)1×k ,
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A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)

q p 0 0 · 0 0
0 p q 0 · 0 0
0 p 0 q · 0 0
0 p 0 0 · 0 0
· · · · · · ·
0 p 0 0 · 0 q
0 0 0 0 · 0 q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

k×k

and matrix B has all its entries 0 except for the entry (k, 1) which is equal to p.

The double generating function of N (3)
n,k is given by

�(z, w) = 1 − qw + pw(qw)k−2

1 − w(1 + q) + qw2 + pw(qw)k−2(1 − w(q + pz))
. (2.5)

Using relation (2.5) and following the methodology of Sect. 2.1 we derive the follow-
ing results.

Lemma 2.3 The probability generating function ϕn(z) of the random variable N (3)
n,k

satisfies the recursive scheme

ϕn(z) = (1 + q)ϕn−1(z) − qϕn−2(z) + pqk−2((q + pz)ϕn−k(z) − ϕn−k+1(z)),

n ≥ k,

with initial conditions ϕ0(z) = ϕ1(z) = · · · = ϕk−1(z) = 1.

Theorem 2.3 The probability mass function gn(x) of the random variable N (3)
n,k sat-

isfies the recursive scheme

gn(x) = (1 + q)gn−1(x) − qgn−2(x)

+ pqk−2(qgn−k(x) + pgn−k(x − 1) − gn−k+1(x)), n ≥ k,

with initial conditions

gn(x) = 0, if x < 0 or x >
[ n

k

]

,

gn(x) = δx,0, 0 ≤ n ≤ k − 1.

Corollary 2.3 The moments μn,m, m ≥ 1, of the random variable N (3)
n,k satisfy the

recursive scheme

μn,m = (1 + q)μn−1,m − qμn−2,m

+ pqk−2

(

qμn−k,m − μn−k+1,m + p
m

∑

i=0

(

m

i

)

μn−k,i

)

, n ≥ k,

with initial conditions μn,0 = 1, and μn,m = 0 for n < k and m ≥ 1.
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2.4 Distribution of M(1)
n,k

In order to view the random variable M (1)
n,k as an MVB we set �n = n − 1 and define

Cx = {cx,0, cx,1, . . . , cx,k−1}, x = 0, 1, . . . , �n, where cx,i = (x, i), 0 ≤ i ≤ k − 1.

We introduce a Markov chain {Yt , t ≥ 0} on � = ⋃�n
x=0 Cx according to the following

conditions:

(1) Yt = (0, 0) if Z1 = Z2 = · · · = Zt = 0;
(2) Yt = (x, 0), x ≥ 0, if in the first t outcomes the pattern E1 has occurred x times,

Zt1 = 1 and Zt1+1 = Zt1+2 = · · · = Zt = 0 (t1 < t − k + 2);
(3) Yt = (x, 1), x ≥ 0, if in the first t outcomes the pattern E1 has occurred x times

and Zt = 1;
(4) Yt = (x, i), x ≥ 0 and 2 ≤ i ≤ k −1, if in the first t outcomes (t ≥ i) the pattern

E1 has occurred x times, Zt−i+1 = 1 and Zt−i+2 = Zt−i+3 = · · · = Zt = 0.

For example, consider the following sequence of Bernoulli trials, Z1 = 1, Z2 =
Z3 = Z4 = 0, Z5 = 1, Z6 = 0, Z7 = Z8 = 1, Z9 = 0, Z10 = 1, Z11 = Z12 = 0 =
Z13 = 0, Z14 = 1. For k = 4 the first fourteen states of the embedded Markov chain
are Y1 = (0, 1), Y2 = (0, 2), Y3 = (0, 3), Y4 = (0, 0), Y5 = (0, 1), Y6 = (0, 2),

Y7 = (1, 1), Y8 = (2, 1), Y9 = (2, 2), Y10 = (3, 1), Y11 = (3, 2), Y12 = (3, 3),

Y13 = (3, 0), Y14 = (3, 1).

With this set up, the random variable M (1)
n,k becomes an MVB with

π0 = (1, 0, 0, . . . , 0)1×k ,

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)

q p 0 0 · 0 0
0 0 q 0 · 0 0
0 0 0 q · 0 0
0 0 0 0 · 0 0
· · · · · · ·
0 0 0 0 · 0 q
q 0 0 0 · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

k×k

and matrix B has all its entries 0 except for the entries (i, 2), 2 ≤ i ≤ k, which are all
equal to p.

The double generating function of M (1)
n,k is given by

�(z, w) = 1 + pw(1 − z)A(w)

1 − qw − pw(z + (qw)k−1(1 − z))
, (2.6)

where A(w) = ∑k−2
i=0 (qw)i = (1 − (qw)k−1)/(1 − qw). Using relation (2.6) and

following the methodology of Sect. 2.1 we derive the following results.

Lemma 2.4 The probability generating function ϕn(z) of the random variable M (1)
n,k

satisfies the recursive scheme

ϕn(z) = (q + pz)ϕn−1(z) + pqk−1(1 − z)ϕn−k(z), n ≥ k,
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with initial conditions

ϕn(z) = (q + pz)ϕn−1(z) + pqn−1(1 − z), 2 ≤ n ≤ k − 1,

and ϕ0(z) = ϕ1(z) =1.

Theorem 2.4 The probability mass function gn(x) of the random variable M (1)
n,k sat-

isfies the recursive scheme

gn(x) = qgn−1(x) + pgn−1(x − 1) + pqk−1(gn−k(x) − gn−k(x − 1)), n ≥ k,

with initial conditions

gn(0) = qgn−1(0) + pqn−1, gn(1) = qgn−1(1) + pgn−1(0) − pqn−1,

gn(x) = qgn−1(x) + pgn−1(x − 1), x ≥ 2,

for 2 ≤ n ≤ k − 1, and

gn(x) = 0, if x < 0 or x > n − 1,

gn(x) = δx,0, n = 0, 1.

Corollary 2.4 The moments μn,m, m ≥ 1, of the random variable M (1)
n,k satisfy the

recursive scheme

μn,m = qμn−1,m + pqk−1μn−k,m + p
m

∑

i=0

(

m

i

)

(μn−1,i − qk−1μn−k,i ), n ≥ k,

with initial conditions

μn,m = qμn−1,m − pqn−1 + p
m

∑

i=0

(

m

i

)

μn−1,i , 2 ≤ n ≤ k − 1,

where μn,0 = 1, and μn,m = 0 for n < 2 and m ≥ 1.

2.5 Distribution of M(2)
n,k

In order to view the random variable M (2)
n,k as an MVB we set �n = [(n − 1)/(k − 1)]

and define Cx = {cx,0, cx,1, . . . , cx,k−1}, x = 0, 1, . . . , �n, where cx,i = (x, i),
0 ≤ i ≤ k − 1. We introduce a Markov chain {Yt , t ≥ 0} on � = ⋃�n

x=0 Cx according
to the conditions (1)-(4) of Sect. 2.4.

For example, consider the following sequence of Bernoulli trials, Z1 = 0, Z2 = 1,

Z3 = Z4 = 0, Z5 = 1, Z6 = Z7 = 0, Z8 = 1, Z9 = Z10 = Z11 = 0, Z12 = Z13 =
1. For k = 4, the states of the embedded Markov chain are Y1 = (0, 0), Y2 = (0, 1),
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Y3 = (0, 2), Y4 = (0, 3), Y5 = (1, 1), Y6 = (1, 2), Y7 = (1, 3), Y8 = (2, 1),

Y9 = (2, 2), Y10 = (2, 3), Y11 = (2, 0), Y12 = (2, 1), Y13 = (2, 1).

With this set up, the random variable M (2)
n,k becomes an MVB with

π0 = (1, 0, 0, . . . , 0)1×k ,

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)

q p 0 0 · 0 0
0 p q 0 · 0 0
0 p 0 q · 0 0
0 p 0 0 · 0 0
· · · · · · ·
0 p 0 0 · 0 q
q 0 0 0 · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

k×k

and matrix B has all its entries 0 except for the entry (k, 2) which equals p.

The double generating function of M (2)
n,k is given by

�(z, w) = 1 + pw(qw)k−2(1 − z)

1 − w + pw(qw)k−2(1 − z)(1 − qw)
. (2.7)

Using relation (2.7) and following the methodology of Sect. 2.1 we derive the follow-
ing results.

Lemma 2.5 The probability generating function ϕn(z) of the random variable M (2)
n,k

satisfies the recursive scheme

ϕn(z) = ϕn−1(z) + pqk−2(1 − z)(qϕn−k(z) − ϕn−k+1(z)), n ≥ k,

with initial conditions ϕ0(z) = ϕ1(z) = · · · = ϕk−1(z) = 1.

Theorem 2.5 The probability mass function gn(x) of the random variable M (2)
n,k sat-

isfies the recursive scheme

gn(x) = gn−1(x)

+ pqk−2(q[gn−k(x)−gn−k(x−1)]+gn−k+1(x−1)−gn−k+1(x)), n ≥k,

with initial conditions

gn(x) = 0, if x < 0 or x >
[

n−1
k−1

]

,

gn(x) = δx,0, 0 ≤ n ≤ k − 1.

Corollary 2.5 The moments μn,m, m ≥ 1, of the random variable M (2)
n,k satisfy the

recursive scheme

μn,m = μn−1,m + pqk−2
m−1
∑

i=0

(

m

i

)

(μn−k+1,i − qμn−k,i ), n ≥ k,
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with initial conditions μn,0 = 1, and μn,m = 0 for n < k and m ≥ 1.

Remark 2.2 For the special case k = 2, Theorem 2.4 is equivalent to Theorem 2.5,
since M (1)

n,2 = M (2)
n,2. Both MVB’s are sharing common matrices A, B, given by

A =
(

q p
q 0

)

, B =
(

0 0
0 p

)

.

2.6 Distribution of M(3)
n,k

In order to view the random variable M (3)
n,k as an MVB we set �n = [(n − 1)/(k − 1)]

and define Cx = {cx,0, cx,1, . . . , cx,k−1}, x = 0, 1, . . . , �n, where cx,i = (x, i),
0 ≤ i ≤ k −1. We introduce a Markov chain {Yt , t ≥ 0} on � = ⋃�n

x=0 Cx as follows:

(1) Yt = (0, 0) if Z1 = Z2 = · · · = Zt = 0;
(2) Yt = (x, 1), x ≥ 0, if in the first t outcomes the pattern E3 has occurred x times

and Zt = 1;
(3) Yt = (x, i), x ≥ 0 and 2 ≤ i ≤ k −2, if in the first t outcomes (t ≥ i) the pattern

E3 has occurred x times, Zt−i+1 = 1 and Zt−i+2 = Zt−i+3 = · · · = Zt = 0;
(4) Yt = (x, k − 1), x ≥ 0, if in the first t outcomes (t1 ≤ t − k + 2) the pattern E3

has occurred x times, Zt1 = 1 and Zt1+1 = Zt1+2 = · · · = Zt = 0.

For example, let Z1 = Z2 = 0, Z3 = 1, Z4 = 0, Z5 = 1, Z6 = Z7 = 0, Z8 = 1,

Z9 = Z10 = Z11 = 0, Z12 = 1, Z13 = 1, Z14 = 0 be a sequence of Bernoulli trials.
For k = 4, the states of the embedded Markov chain are Y1 = (0, 0), Y2 = (0, 0),

Y3 = (0, 1), Y4 = (0, 2), Y5 = (0, 1), Y6 = (0, 2), Y7 = (0, 3), Y8 = (1, 1),

Y9 = (1, 2), Y10 = (1, 3), Y11 = (1, 3), Y12 = (2, 1), Y13 = (2, 1), Y14 = (2, 2).

With this set up, the random variable M (3)
n,k becomes an MVB with

π0 = (1, 0, 0, . . . , 0)1×k ,

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(·, 0) (·, 1) (·, 2) (·, 3) · (·, k − 2) (·, k − 1)

q p 0 0 · 0 0
0 p q 0 · 0 0
0 p 0 q · 0 0
0 p 0 0 · 0 0
· · · · · · ·
0 p 0 0 · 0 q
0 0 0 0 · 0 q

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

k×k

and matrix B has all its entries 0 except for the entry (k, 2) which is equal to p.

The double generating function of M (3)
n,k is given by

�(z, w) = 1 − qw + pw(qw)k−2(1 − z)

(1 − qw)(1 − w + pw(qw)k−2(1 − z))
. (2.8)
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Using relation (2.8) and following the methodology of Sect. 2.1 we derive the follow-
ing results.

Lemma 2.6 The probability generating function ϕn(z) of the random variable M (3)
n,k

satisfies the recursive scheme

ϕn(z)=ϕn−1(z) + q(ϕn−1(z) − ϕn−2(z))+ pqk−2(1 − z)(qϕn−k(z) − ϕn−k+1(z)),

n ≥ k,

with initial conditions ϕ0(z) = ϕ1(z) = · · · = ϕk−1(z) = 1.

Theorem 2.6 The probability mass function gn(x) of the random variable M (3)
n,k sat-

isfies the recursive scheme

gn(x) = gn−1(x) + q(gn−1(x) − gn−2(x)) + pqk−1(gn−k(x) − gn−k(x − 1))

+ pqk−2(gn−k+1(x − 1) − gn−k+1(x)), n ≥ k,

with initial conditions

gn(x) = 0, if x < 0 or x >
[

n−1
k−1

]

,

gn(x) = δx,0, 0 ≤ n < k.

Corollary 2.6 The moments μn,m, m ≥ 1, of the random variable M (3)
n,k satisfy the

recursive scheme

μn,m =μn−1,m + q(μn−1,m − μn−2,m)+ pqk−2
m−1
∑

i=0

(

m

i

)

(μn−k+1,i − qμn−k,i ),

n ≥ k,

with initial conditions μn,0 = 1 and μn,m = 0 for n < k and m ≥ 1.

Remark 2.3 Sen and Goyal (2004) derived alternative formulae for the computation
of the probability mass function gn(x) of N (i)

n,k and M (i)
n,k , i = 2, 3, in terms of multiple

sums involving binomial coefficients.

In ending this section, we employ Theorems 2.2 and 2.5 to calculate the exact distri-
butions of the random variables N (2)

n,k and M (2)
n,k for n = 18, k = 3 and various values

of p (Table 1).

3 Waiting time distributions

In this section we derive the probability generating function and establish recursive
schemes for the evaluation of the probability mass function and moments of T (i)

r,k and
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Table 1 Probability mass functions of N (2)
18,3 and M(2)

18,3 for p = 0.3, 0.5, 0.7

p Pr(N (2)
18,3 = x)

x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

0.3 0.3831 0.4172 0.1675 0.0299 0.0022 0 0

0.5 0.1204 0.3400 0.3506 0.1584 0.0290 0.0015 0

0.7 0.0605 0.2563 0.3834 0.2397 0.0567 0.0034 0

Pr(M(2)
18,3 = x)

p x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8

0.3 0.3831 0.3454 0.1809 0.0670 0.0188 0.0040 0.0007 0 0

0.5 0.1204 0.2646 0.2869 0.1972 0.0929 0.0304 0.0067 0.0009 0

0.7 0.0605 0.2032 0.3009 0.2538 0.1314 0.0418 0.0077 0.0007 0

W (i)
r,k , i = 1, 2, 3. This is accomplished by using the following relation, due to Koutras

(1997),

H(z, w) = w(1 − z)�(w, z) − 1

w − 1
(3.1)

where

�(w, z) =
∞
∑

n=0

∞
∑

x=0

Pr(Xn = x)wx zn, H(z, w) =
∞
∑

r=0

∞
∑

x=0

Pr(Yr = x)zxwr ,

Xn denotes the number of appearances of a pattern E in a sequence of n trials
Z1, Z2, . . . , Zn, and Yr denotes the waiting time for the r -th occurrence of E in
Z1, Z2, . . . .

3.1 Distributions of T (i)
r,k , i = 1, 2, 3

Using relations (2.2) and (3.1) it may be checked that the double generating function
H(z, w) of T (1)

r,k is given by

H(z, w) =
(

1 − w
(pz)2 A(z)

1 − qz − pz(qz)k−1

)−1

. (3.2)

The following lemma follows immediately from relation (3.2).

Lemma 3.1 The probability generating function Hr (z) of T (1)
r,k is given by

Hr (z) =
(

(pz)2 A(z)

1 − qz − pz(qz)k−1

)r

.
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Lemma 3.1 has also been obtained by Koutras (1996) and Leslie (1967) by different
methods.

Theorem 3.1 The probability mass function hr (x) of T (1)
r,k satisfies the recursive

scheme

hr (x) = q(2hr (x − 1) − qhr (x − 2)) + pqk−1(hr (x − k) − qhr (x − k − 1))

+ p2(hr−1(x − 2) − qk−1hr−1(x − k − 1)), x ≥ 2r,

with initial conditions h0(x) = δx,0, and hr (x) = 0 for r ≥ 1 and x < 2r .

Proof It follows from Lemma 3.1 that

Hr (z) = (pz)2(1 − (qz)k−1)

(1 − qz)(1 − qz − pz(qz)k−1)
Hr−1(z). (3.3)

Replacing Hr (z) by the power series Hr (z) = ∑∞
x=0 hr (x)zx into (3.3) we get

[1 − 2qz + (qz)2 − pz(qz)k−1(1 − qz)]
∞
∑

x=0

hr (x)zx

= (pz)2(1 − (qz)k−1)

∞
∑

x=0

hr−1(x)zx .

The result follows by equating coefficients of zx on both sides of the above identity.
An alternative recurrence relation for hr (x) was given by Koutras (1996).
Next, let μr,m= E[(T (1)

r,k )m] be the m − th moment of T (1)
r,k . Using Lemma 3.1 and

applying (2.3) appropriately modified, the following corollary results. �	
Corollary 3.1 The moments μr,m, m ≥ 1, of T (1)

r,k satisfy the recursive scheme

μr,m =
m

∑

i=0

(

m

i

)

(q[2 − q2m−i + pqk−2(km−i − q(k + 1)m−i )]μr,i

+ p2(2m−i − qk−1(k + 1)m−i )μr−1,i ),

where μ0,m = δm,0.

Working as above, we may derive the following results regarding the waiting time
random variables T (2)

r,k and T (3)
r,k .

Lemma 3.2 The probability generating function Hr (z) of T (2)
r,k is given by

Hr (z) =
(

(pz)2(qz)k−2

1 − z + pz(qz)k−2(1 − qz)

)r

.
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Theorem 3.2 The probability mass function hr (x) of T (2)
r,k satisfies the recursive

scheme

hr (x)=hr (x − 1)+ pqk−2(phr−1(x − k)+qhr (x − k)−hr (x − k + 1)), x ≥ rk,

with initial conditions h0(x) = δx,0, and hr (x) = 0 for r ≥ 1 and x < rk.

Corollary 3.2 The moments μr,m, m ≥ 1, of T (2)
r,k satisfy the recursive scheme

μr,m =
m

∑

i=0

(

m

i

)

(μr,i + pqk−2(qkm−iμr,i + pkm−iμr−1,i −(k − 1)m−iμr,i )), r ≥1,

where μ0,m = δm,0.

Lemma 3.3 The probability generating function Hr (z) of T (3)
r,k is given by

Hr (z) =
(

(pz)2(qz)k−2

(1 − qz)(1 − z + pz(qz)k−2)

)r

.

Theorem 3.3 The probability mass function hr (x) of T (3)
r,k satisfies the recursive

scheme

hr (x) = hr (x − 1) − q(hr (x − 2) − hr (x − 1))

+ pqk−2(phr−1(x − k) + qhr (x − k) − hr (x − k + 1)), x ≥ rk,

with initial conditions h0(x) = δx,0, and hr (x) = 0 for r ≥ 1 and x < rk.

Corollary 3.3 The moments μr,m, m ≥ 1, of T (3)
r,k satisfy the recursive scheme

μr,m =
m

∑

i=0

(

m

i

)

[pqk−2((qkm−i − (k − 1)m−i )μr,i + pkm−iμr−1,i )

+ (1 + q(1 − 2m−i ))μr,i ],

where μ0,m = δm,0.

3.2 Distributions of W (i)
r,k , i = 1, 2, 3

Following the same methodology as in the previous subsection, we get the following
results regarding the random variables W (i)

r,k , i = 1, 2, 3.

Lemma 3.4 The probability generating function Hr (z) of W (1)
r,k is given by

Hr (z) = (pz)2(1 − (qz)k−1)

(1 − qz)(1 − qz − pz(qz)k−1)

(

pz(1 − (qz)k−1)

1 − qz − pz(qz)k−1

)r−1

, r ≥ 1.
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Theorem 3.4 The probability mass function hr (x) of W (1)
r,k satisfies the recursive

scheme

hr (x) = qhr (x − 1) + p(hr−1(x − 1) + qk−1(hr (x − k) − hr−1(x − k))),

r ≥ 2, x ≥ r + 1,

with initial conditions

h1(x) = 0, x < 2,

h1(2) = p2,

h1(x) = q(2h1(x − 1) − qh1(x − 2)) − p2qk−1, 3 ≤ x ≤ k,

h1(x) = pqk−1(h1(x−k)−qh1(x − k − 1))−q2h1(x−2)+2qh1(x − 1), x > k,

h0(x) = δx,0, and hr (x) = 0 for r ≥ 1 and x ≤ r .

Corollary 3.4 The moments μr,m, m ≥ 1, of W (1)
r,k satisfy the recursive scheme

μr,m =
m

∑

i=0

(

m

i

)

(qμr,i + pμr−1,i + pqk−1km−i (μr,i − μr−1,i )), r ≥ 2,

with initial conditions

μ1,m = p2(2m − qk−1(k + 1)m)

+
m

∑

i=0

(

m

i

)

μ1,i (2q − q22m−i + pqk−1(km−i − q(k + 1)m−i )),

and μ0,m = δm,0.

Lemma 3.5 The probability generating function Hr (z) of W (2)
r,k is given by

Hr (z) = (pz)2(qz)k−2

1 − z + pz(qz)k−2(1 − qz)

(

pz(qz)k−2(1 − qz)

1 − z + pz(qz)k−2(1 − qz)

)r−1

, r ≥ 1.

Theorem 3.5 The probability mass function hr (x) of W (2)
r,k satisfies the recursive

scheme

hr (x) = hr (x − 1) + pqk−2[hr−1(x − k + 1)

+ q(hr (x − k) − hr−1(x − k)) − hr (x − k + 1)], x ≥ r(k − 1) + 1,

with initial conditions

h1(x) = 0, x < k,

h1(k) = p2qk−2,
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h1(x) = h1(x − 1) + pqk−2(qh1(x − k) − h1(x − k + 1)), x > k,

h0(x) = δx,0, and hr (x) = 0 for r ≥ 1 and x < r(k − 1) + 1.

Corollary 3.5 The moments μr,m, m ≥ 1, of W (2)
r,k satisfy the recursive scheme

μr,m =
m

∑

i=0

(

m

i

)

(μr,i + pqk−2((k − 1)m−i − qkm−i )(μr−1,i − μr,i )), r ≥ 2,

with initial conditions

μ1,m = p2qk−2km +
m

∑

i=0

(

m

i

)

(1 − pqk−2(k − 1)m−i + pqk−1km−i )μ1,i ,

and μ0,m = δm,0.

Lemma 3.6 The probability generating function Hr (z) of W (3)
r,k is given by

Hr (z) = (pz)2(qz)k−2

(1 − qz)(1 − z + pz(qz)k−2)

(

pz(qz)k−2

1 − z + pz(qz)k−2

)r−1

, r ≥ 1.

Theorem 3.6 The probability mass function hr (x) of W (3)
r,k , r ≥ 1, satisfies the recur-

sive scheme

hr (x) = hr (x − 1) + pqk−2(hr−1(x − 1) − hr (x − 1)), x ≥ r(k − 1) + 1,

with initial conditions

h1(x) = 0, x < k,

h1(k) = p2qk−2,

h1(x) = (1 + q)h1(x − 1) − qh1(x − 2)

+ pqk−2(qh1(x − k) − h1(x − k + 1)], x > k,

h0(x) = δx,0 and hr (x) = 0 for r ≥ 1 and x < r(k − 1) + 1.

Corollary 3.6 The moments μr,m, m ≥ 1, of W (3)
r,k satisfy the recursive scheme

μr,m =
m

∑

i=0

(

m

i

)

(μr,i − pqk−2(k − 1)m−i (μr,i − μr−i,i )), r ≥ 2,
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Table 2 Means of T (i)
2,3 and W (i)

2,3, i = 1, 2, 3, for p = 0.20, 0.25, . . . , 0.50

p 0.20 0.25 0.30 0.35 0.40 0.45 0.50

E(T (1)
2,3 ) 37.7778 26.2857 19.7386 15.6092 12.8125 10.8164 9.3333

E(T (2)
2,3 ) 72.5000 50.6667 38.4127 30.8320 25.8333 22.4018 20.0000

E(T (3)
2,3 ) 22.5000 18.6667 16.1905 14.5055 13.3333 12.5253 12.0000

E(W (1)
2,3) 32.7779 22.2857 16.4052 12.7520 10.3125 8.5942 7.3333

E(W (2)
2,3 ) 67.5000 46.6667 35.0794 27.9749 23.3333 20.1796 18.0000

E(W (3)
2,3) 17.5000 14.6667 12.8571 11.6484 10.8333 10.3030 10.0000

with initial conditions

μ1,m =
m

∑

i=0

(

m

i

)

(pqkm−i + q(1 − 2m−i ) − (k − 1)m−i + 1)μ1,i ,

and μ0,m = δm,0.

Remark 3.1 For k = 2, Lemmas 3.1 and 3.2 (resp. Lemmas 3.4 and 3.5) are identical
and provide the pgf of T (0)

r,2 (resp. W (0)
r,2 ). For general k, the pgf of T (0)

r,k (resp. W (0)
r,k )

was established in Feller (1968) and Philippou (1984) (resp. Ling (1989)) by different
methods.

Remark 3.2 Sen and Goyal (2004) derived alternative formulae for the computation
of the probability mass function hr (x) of T (i)

r,k and W (i)
r,k , i = 2, 3, in terms of multiple

sums involving binomial coefficients. Also, Sarkar et al. (2004) studied W (i)
r,k (i = 1, 2)

in higher order Markov chains and derived a system of equations satisfied by its pgf.

In ending this section, we employ Corollaries 3.1–3.3 and 3.4–3.6 to calculate the
means of the random variables T (i)

r,k (i = 1, 2, 3) and W (i)
r,k (i = 1, 2, 3) for r = 2,

k = 3 and various values of p (Table 2).

4 An application in reliability

Consider a system of n independent components ordered on a line. Each compo-
nent may be in a functioning state with probability p or in a non-functioning state
with probability q = 1 − p. We denote by 1 a functioning component and by 0 a
non-functioning one. The occurrence of 2 consecutive non-functioning components
causes a malfunction to the system. However no malfunction occurs if the 2 non-
functioning components are separated by more than k − 2 (k ≥ 2) functioning ones.
In other words, and to be more precise, a malfunction of the system occurs if and
only if 2 non-functioning components are separated by at most k − 2 functioning
ones. The system fails if and only if at least m (m ≥ 1) malfunctions occur. We
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Table 3 Reliability R(k)
50 (m, 0.95) of a k-m-consecutive-2-out-of-50:F system

k\m 1 2 3 4 5 6

2 0.889424 0.994006 0.999795 0.999995 1 1

3 0.804249 0.980893 0.998833 0.999951 0.999998 1

4 0.736768 0.964970 0.997112 0.999838 0.999994 1

Table 4 Reliability R(k)
75 (m, 0.97)

k\m 1 2 3 4 5 6

2 0.937285 0.998068 0.999962 0.999999 1 1

3 0.883745 0.993311 0.999754 0.999994 1 1

4 0.837532 0.986848 0.999326 0.999976 0.999999 1

Table 5 Reliability R(k)
100(m, 0.99)

k\m 1 2 3 4 5 6

2 0.990244 0.999954 1 1 1 1

3 0.980951 0.999825 0.999999 1 1 1

4 0.972091 0.999626 0.999997 1 1 1

name such a system k-m-consecutive-2-out-of-n:F system and denote its reliability by
R(k)

n (m, p), k ≥ 2. For k = 2, this system reduces to the well-known m-consecutive-
2-out-of-n:F system, which further reduces to the consecutive-2-out-of-n:F system
for m = 1 (see e.g. Chiang and Niu (1981), Griffith (1986) and Makri and Philippou
(1996)).

For k ≥ 2, define by ˜N (1)
n,k the number of malfunctions of the system. It readily

follows that

R(k)
n (m, p) = 1 − P(the system fails) = P(˜N (1)

n,k ≤ m − 1), (4.1)

and ˜N (1)
n,k has the same probability mass function as N (1)

n,k with p and q interchanged.
Assume that such a system is composed of n = 50 components and each of them

functions with probability p = 0.95. Using relation (4.1) and Theorem 2.1, we calcu-
late the reliability of the system for various values of k and m and present the results
in Table 3.

For n = 75, p = 0.97 and n = 100, p = 0.99, respective results are given in
Tables 4 and 5.

For k = 3 and m = 4, for example, we see that R(3)
50 (4, 0.95)= 0.999951, R(3)

75

(4, 0.97)= 0.999994 and R(3)
100(4, 0.99)= 1.

Possible applications of the random variable T (1)
r,k are indicated in Koutras (1996).
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