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Abstract This paper is concerned with Bayesian estimation of a spatial regression
model with skew non-Gaussian errors. The regression parameters are estimated by
using a closed skew normal (CSN) distribution, which is closed under conditioning
and linear combination. The proposed model captures skewness in the response var-
iable. Sometimes, we may encounter missing observations in the response variable,
accordingly we model and predict the missing observations by a Bayesian approach
using Gibbs sampling methods. Next, a simulation study is performed to asses our
model validity. Also, the proposed model in this work is applied to CO data from
Tehran, the capital city of Iran. Then, the accuracy of the CSN and Gaussian models
is compared by cross validation criterion.

Keywords Bayesian prediction · Closed skew normal · Missing observations ·
MCMC

Mathematics Subject Classification (2000) 62H11 · 91B72

1 Introduction

The analysis of spatial data is of interest in many scientific fields including agriculture,
biology, geology and geography. One important object in the literature are regression
models for spatial data. Anselin (1988, 1990) proposed approaches to incorporate
spatial structural into regression models and Gschlößl and Czado (2008) presented
Modelling count data with overdispersion and spatial effects. Shin and Sarkar (1994)
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obtained the maximum likelihood estimation of the parameters in regression models
with autocorrelated errors and Oh et al. (2002) exhibited Bayesian analysis for these
models. Most of the theories in spatial regression analysis assume that the data are a
realization of a Gaussian random field, where the errors are assumed to be normal.
However, this assumption is not true for some of applications, for example the rainfall
data in Kim and Mallick (2004), the seismic data in Karimi et al. (2010) and the air
pollution data in Sect. 5.

When the distribution of the data is non-Gaussian but has many similar properties as
a normal distribution, a skew normal distribution (Azzalini 1985) can be used to model
their skewness. Recently in the literature, skew errors have been used in regression
models; for example, see Sahu et al. (2003), Arellano-Valle et al. (2005), Bolfarinea
and Lachos (2007). The closed skew normal (CSN) distribution (Dominguez-Molina
et al. 2003), which is an extension of the multivariate skew normal distribution, has the
advantage of being closed under marginalization and conditioning. Allard and Naveau
(2007) studied a new spatial skew random field model in a spatial context. They used
the class of CSN distributions and presented approaches for spatial interpolation. A
random vector Y distributed according to the multivariate CSN with parameters; μ,
�, D, ν, �, denoted by Y ∼ C SNp,q(μ, �, D, ν,�) has pdf given by

f p,q(y|μ, �, D, ν,�) = [�q(0; ν,�+ D�D′)]−1

×φp(y;μ, �)�q(D(y − μ); ν,�), (1)

whereφp(·;μ, �) is the p-dimensional normal density with mean vector μ and covari-
ance matrix�, elements of q × p matrix D are skewness parameters and�q(·; ν,�)

is the q-dimensional normal cdf with mean ν and covariance matrix �. When D is
a zero matrix, the density of Eq. 1 reduces to the multivariate normal density. The
multivariate skew normal density of Azzalini and Dalla Valle (1996) can be obtained
by letting q = 1, ν = 0 and � = I in Eq. 1. In this paper, we apply a Bayesian
approach of spatial regression models, when the errors are distributed as CSN. Since
missing values occur in many real data, we consider missing observations for the
response variable in the spatial regression model. Oh et al. (2002) presented Bayesian
prediction for missing observation of a Gaussian random field. We extend their method
for a general random field called closed skew Gaussian (CSG) random field, which
includes Gaussian and skew Gaussian random fields. Skew Gaussian random field has
been defined by Kim and Mallick (2004). Now, we define a set of random variables
{Z(s), s ∈ U ⊆ Rd} to be a CSG random field if for any finite integer m the random
vector (Z(s1), . . . , Z(sm))

′ has a multivariate CSN distribution. The CSG random field
has been completely defined in Karimi and Mohammadzadeh (2010) and a discrete
form of this random field was applied to seismic data in Karimi et al. (2010).

This paper is organized as follows. In Sect. 2, the spatial regression model with auto-
correlated errors is introduced. The Bayesian estimates of the parameters are obtained
by MCMC algorithms in Sect. 3. Also the Bayesian prediction of each missing obser-
vation is presented. In Sect. 4, a simulation study is performed to check the validity of
our model. The model is applied on a real data set in Sect. 5. Finally, a brief discussion
is given in the last section.
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2 The model

Basu and Reinsel (1994) considered the spatial regression model

yi j = x′
i jβ + zi j , i = 1, . . . ,m, j = 1, . . . , n, (2)

on a regular grids {(i, j) : i = 1, . . . ,m, j = 1, . . . , n}, where yi j s are response
variables, xi j is a vector of r dimensional explanatory variables, β ∈ Rr is regression
coefficients and zi j s are correlated errors following a first order ARMA model. Oh
et al. (2002) considered the regression model of Eq. 2 with multiplicative AR(1) errors

zi j = θ1zi−1, j + θ2zi, j−1 − θ1θ2zi−1, j−1 + εi j , i = 1, . . . ,m, j = 1, . . . , n,

(3)

where εi j s are iid normal errors having mean zero and variance σ 2 and |θ1| < 1,
|θ2| < 1. They presented Bayesian estimation of the model parameters when the
data are Gaussian. But their method can not be used for skew or other non-normal
data. Therefore, we propose the CSN model that is more general than the Gaussian
model by modeling the skewness of the data. Let Y = (y11, y12, . . . , ymn)

′, X =
(x11, x12, . . . , xmn)

′, z = (z11, z12, . . . , zmn)
′, ε = (ε11, ε12, . . . , εmn)

′ and z0 =
(z00, z01, . . . , zm0)

′. Then Eqs. 2 and 3 can be written as

Y = Xβ + z, (4)

z = Bz + Az0 + ε, (5)

where z0 denotes the vector of unobserved initial values of zi j , B is a mn × mn lower
triangular matrix and A is a mn × (m + n + 1) upper triangular matrix with elements
zeros and functions of θ1 and θ2, (for examples of A and B see Appendix A). A Eq. 5
can be written as (I − B)z = Az0 + ε, where (I − B) is a nonsingular matrix with
determinant 1. Therefore, z = (I − B)−1 Az0 + (I − B)−1ε. Let W = (I − B)−1,
thus z = W Az0 + Wε.

Proposition 1 In the spatial regression model as in Eq. 2 with correlated errors of
Eq. 3,

(i) let ε be an additive model which includes v ∼ Nmn(0, Imn) and u ∼ N ν
q (0,�

+ D�D′), then

ε = μ + Kv + Gu ∼ C SNmn,q(μ, �, D, ν,�),

where μ is constant, K = (�−1 + D′�−1 D)− 1
2 , G = �D′(�+ D�D′)−1 and

N ν
q (·, ·) is a normal distribution truncated below at ν. Thus

Y ∼ C SNmn,q(μy, �y, DW −1, ν,�),

where μy = Xβ + W Az0 + Wμ and �y = W�W ′.
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(ii) Define Y ∗ = (Y ′
obs,Y

′
mis)

′ = QY to separate missing values (Y mis) from
observed values (Y obs) in the vector Y , where Q is an orthogonal matrix, that
reorders the elements of Y . Thus

Y mis |yobs ∼ C SNNmis ,q(μmis +�mo�
−1
oo (yobs − μobs),

×�mm.o, Dmis, νm,�), (6)

where Nmis is dimension of missing values, νm = ν − D∗(yobs − μobs), D∗ =
Dobs + Dmis�mo�

−1
oo ,�mm.o = �mm −�mo�

−1
oo �om and μmis , μobs ,�oo,�mo,

�om, �mm, Dmis , Dobs come from the partitions

Qμy =
(

μobs
μmis

)
, Q�y Q′ =

(
�oo �om

�mo �mm

)
, DW −1 Q′ = (

Dobs Dmis
)
.

Proof see Appendix B. ��
Now, by using the conditional distribution of Eq. 6, the adequate predictor of the
missing values under square-error loss is given by

E(Y mis |yobs) = μmis +�mo�
−1
oo (yobs − μobs)+�mm.o D′

mis
,

where


 = �∗
q(0; ν − D∗(yobs − μobs),�+ Dmis�mm.o D′

mis)

�q(0; ν − D∗(yobs − μobs),�+ Dmis�mm.o D′
mis)

,

and for any positive definite matrix; �, �∗
q(s; ν,�) = ∇s�q(s; ν,�), where ∇s =

( ∂
∂s1
, . . . , ∂

∂sq
)′ is the gradient operator. Expectation of CSN distribution has been

defined by Dominguez-Molina et al. (2003).

3 Bayesian spatial regression model

In this section, we present the Bayesian estimation of the model parameters and Bayes-
ian prediction of the missing values by using MCMC algorithms. In the model of Eq. 5,
we assume that ε ∼ C SNmn,q(0, σ 2 Imn, D, 0, Iq) thus according to Proposition 1

Y ∼ C SNmn,q(μy, σ
2W W ′, DW −1, 0, Iq), (7)

where μy = Xβ + W Az0. We define two cases for matrix skewness of D to reduce
the dimension of skewness parameters as follows:

(i) The skewness can be fixed throughout spatial regions. Therefore, D = α Jq×mn ,
where α is an unknown scalar skewness parameter and Jq×mn is a q × mn matrix
with unit elements. This case is approximately similar to the model of Kim and
Mallick (2004).
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(ii) Different values of skewness can be considered in every grid of the spatial region.
Thus, D can be defined as D = (

α1 J ′
1 , . . . , αk J ′

k

)′, where α = (α1, . . . , αk)
′ is

a vector of unknown skewness parameters and Ji ’s are qi ×mn with unit elements
and

∑k
i=1 qi = q. We consider the case (ii) which is more general than the case

(i). This model has been presented by Karimi and Mohammadzadeh (2010).
Therefore the model parameters are η = (β, σ 2,α′, θ ′)′, where β is a vec-

tor of regression coefficients and θ = (θ1, θ2)
′ is a vector of spatial correla-

tion parameters. The Bayesian model requires us to adopt prior distributions
for all the unknown parameters. We consider prior independence as π(η) =
π(β, σ 2,α, θ) = π(β)π(σ 2)π(α)π(θ), thus the posterior distribution is pro-
portional to f (y|η)π(η) = f (y|β, σ 2,α, θ)π(β)π(σ 2)π(α)π(θ). Liseo and
Loperfido (2006) discussed the choice of prior for skew-normal distribution and
obtained reference and Jeffreys priors for the scalar skew-normal distribution.
They showed that Jeffreys and reference priors are proper for the skewness of the
multivariate skew-normal distribution. We adopt proper priors for all the unknown
parameters, to insure that the posterior distribution is proper. For the common
prior distributions, β ∼ Nr (β0, �0), σ 2 ∼ I G(λ0, σ0), α ∼ Nk(α0, τ

2
0 Ik) and

θi ∼ N (θ0i , ψ
2
i )I (|θi | < 1), i = 1, 2, the posterior distribution is given by

π(η|y) ∝ f (y|β, σ 2,α, θ)π(β)π(σ 2)π(α)π(θ)

∝ [�q(0; 0, Iq + σ 2 DD′)]−1φmn(y;μy, σ
2W W ′)

�q(DW −1(y − μy); 0, Iq)

×φr (β;β0, �0)
σ
λ0
0

�(λ0)

(
1

σ 2

)λ0+1

exp
{
− σ0

σ 2

}

φk(α;α0, τ
2
0 Ik)φ(θ1; θ01, ψ

2
1 )

×φ(θ2; θ02, ψ
2
2 )I (|θ1| < 1)I (|θ2| < 1). (8)

Since this is a complicated distribution, we use MCMC techniques to obtain quantities
of the posterior distribution. To use the Gibbs sampling algorithm, the full conditional
posterior distributions are obtained as follows:

π(σ 2|y,β,α, θ) ∝ I G(aσ , bσ )[�q(0; 0, Iq + σ 2 DD′)]−1,

π(β|y, σ 2,α, θ) ∼ C SNr,q(μβ,�β,−DW −1 X, νβ, Iq),

π(α|y, σ 2,β, θ) ∝ φk(α;α0, τ
2
0 Ik)�q(DW −1(y − μy); 0, Iq)

×[�q(0; 0, Iq + σ 2 DD′)]−1,

π(θi |y, σ 2,β,α, θ j ) ∝ φmn(y;μy, σ
2W W ′)φ(θi ; θ0i , ψ

2
i )

�q(DW −1(y − μy); 0, Iq)

× I (|θi | < 1), i = 1, 2 , j = 1, 2 , i �= j,
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where

aσ = mn

2
+ λ0, bσ = 1

2
{(y − μy)

′(W W ′)−1(y − μy)+ 2σ0},
�β = (X ′(σ 2W W ′)−1 X +�−1

0 )−1,

μβ = �β [X ′(σ 2W W ′)−1(y − W Az0)+�−1
0 β0],

and νβ = DW −1(W Az0 + Xμβ − y) (see Appendix C). According to Proposition 1,
the full conditional posterior distribution of missing values is as

Y mis |η, yobs ∼ C SNNmis ,q(μmis +�mo�
−1
oo (yobs − μobs),�mm.o, Dmis, νm,�).

Since the full conditionals of σ 2, α and θi s have no closed form, we use the Metropo-
lis-Hastings algorithm for generating samples from them. The full conditional of σ 2

can be written as π(·) ∝ f (·)�q(· · · )−1, where f (·) is a density that can be sam-
pled, so the probability of move in the Metropolis-Hastings algorithm is reduced to
r(x, y) = min(�q (x)

�q (y)
, 1) (see Kim and Mallick (2004)). Therefore, I G(aσ , bσ ) can

be used as a proposal distribution for σ 2.

Proposition 2 Let the skewness parameter of the Bayesian CSN model (8) has the
special form D = α J , where α is a scalar and J is a matrix with unit elements. Then
the full conditional of α is proportional to

C SN1,q(α0, τ
2
0 , Dα, να, Iq)[�q(0; 0, Iq + σ 2α2 J J ′)]−1,

where Dα = J W −1(y − μy) and να = −J W −1(y − μy)α0.

Proof see Appendix D. ��
According to Proposition 2, the CSN distribution C SN1,q(α0, τ

2
0 , Dα, να, Iq) can be

used as proposal distribution for α. For the case of k skewness parameters given by
D = (

α1 J ′
1 , . . . , αk J ′

k

)′, the full conditional of α has no special form. To determine
a proposal distribution for α, the CSN distribution C SNk,q(α0, τ

2
0 Ik, Dα, να, Iq) can

be used, which is close to the kernel density of the full conditional of α. The trun-
cated normal distribution in interval (−1, 1) is considered as proposal distributions
for both θ1 and θ2. We apply Gibbs sampler and Metropolis-Hastings together to
generate a sample from the posterior distribution. Then the parameters can be esti-
mated by η̂ = 1

M−burn

∑M
i=burn+1 η(i) and the missing values can be predicted by

Ŷmis = 1
M−burn

∑M
i=burn+1 Ymis(i) where M is number of generated samples, burn

is burn-in values in the MCMC algorithms, η(i) and Ymis(i) are i th generated sample.

4 Simulation study

In this section, first we present a method for generating samples from a CSN dis-
tribution. Then the Bayesian estimates of the model parameters and the Bayesian
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Fig. 1 a Simulated data and their locations, missing values are underlined; b Histogram of the simulated
data

prediction of the missing values are obtained in a simulation example to assess the
validity of the model. Also, we compare the proposal model with Gaussian model to
show improvement in results when the data have some skewness in their distribution.

To generate a sample from distribution C SNp,q(μ, �, D, ν,�) the following steps
can be repeated: (i) Generate u from distribution Nq(ν,�) and y from distribution
Nq(μ, �) (ii) Compute w = u − D(y − μ). (iii) If w ≤ 0 accept y as a sample from
C SNp,q(μ, �, D, ν,�) otherwise repeat steps.

Example A sample of Y is simulated in a regular grid 6 × 6 by the spatial regression
model of Eq. 2 where

⎧⎪⎪⎨
⎪⎪⎩

x′
i j = (1, i) , β ′ = (β0, β1) with β0 = 2 and β1 = 1,

z from a AR(1) model as z=W Az0 + Wε with parameters θ1 = 0.9 and θ2 = 0.7,
ε ∼ C SNmn,q(0, σ 2 Imn, D, 0, Iq),

σ 2 = 2, D′ = (α11′, α21′), mn = 36, q = 2, α1 = 2 and α2 = 1.

and z0 is a vector of initial values which is generated from N (0, 1). We assume that y

has 8 missing values as completely at random. The simulated data and their locations
are shown in Fig. 1a. The missing values ymis=(Y11,Y12,Y14,Y22,Y24,Y31,Y35,Y65)

are specified by underline. The histogram of the data in Fig. 1b shows some skewness
in the distribution of the data. However, the number of the data is small and the his-
togram is not a strong evidence that the data depart from the Gaussian distribution.
But, the CSG random field is more general than Gaussian random field. Therefore,
we consider a CSG random field for modeling the data. The common priors in Sect. 3
are adapted with large variances for Bayesian analysis. The Bayesian estimates of
the model parameters η = (β ′, σ 2,α′, θ ′)′ are calculated by Metropolis-Hastings and
Gibbs sampler algorithms. For bivariate and trivariate distributions, the multivariate
normal cumulative distribution function is calculated basic on methods developed by
Genz (2004). The algorithms have converged in 10,000 iterations by looking at run-
ning means over the MCMC iterations and the burn-in is chosen as 6,000 iterations
for the all parameters. To compare the CSN model with a basic model, we also obtain
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Table 1 Bayesian estimates (posterior means) and standard errors (S.E.) of the parameters for CSN
and Gaussian models for 5000 simulated data set presented in Fig. 1

Model σ 2 β0 β1 θ1 θ2 α1 α2

True val. 2 2 1 0.9 0.7 2 1

CSN Bay. est. 2.0394 2.5229 0.9854 0.9130 0.6421 2.1445 1.3804

S.E. 0.0095 0.0232 0.0063 0.0009 0.0021 0.0203 0.0184

Gaussian Bay. est. 3.0715 3.3425 1.0505 0.8668 0.5883 – –

S.E. 0.0191 0.0261 0.0094 0.0019 0.0041 – –

Table 2 MSE and Bias for CSN and Gaussian models averaged for 5000 simulated data sets

Model σ 2 β0 β1 θ1 θ2 α1 α2

CSN MSE 0.3000 1.2884 0.1305 0.0080 0.0204 0.0248 0.1351

Bias 0.0897 −0.1128 0.0968 −0.0293 −0.0220 0.0814 0.3329

Gaussian MSE 0.7718 1.8909 0.1815 0.0088 0.0226 – –

Bias −0.8167 0.1477 0.1586 −0.0466 −0.0562 – –

Bayesian estimation of the parameters for Gaussian model. The results of the two
models are summarized in Table 1. Bayesian estimates of the CSN model are closer
to the true values than the Gaussian model. Mean square error (MSE) and bias of the
parameters were obtained for the two models in Table 2 averaged over 5,000 simulated
data sets with different seed numbers. The results of MSE and bias for all parameters
shows adequacy of our proposed model. The algorithms have converged and burn-in
values can be consider 6,000 iterations.

The Bayesian prediction of the missing values for the two models are presented in
Table 3 as well as standard errors of the predictions. The prediction results of the CSN
model are closer to the true values than the Gaussian model. Moreover, the prediction
MSE (PMSE) were obtained for the two models in Table 4 for 5,000 simulated data
sets. The PMSE values of the CSN model are less than the Gaussian model. Therefore,
they show the adequacy of our proposed model to predict missing observations.

5 Application to data

Air pollution still is a major issue in many cities, and Tehran is one of the most air
polluted cities among all. In this section, we consider CO (Carbon monoxide) one of
the basic substances of air pollution. The air pollution data were collected from six air
stations of Tehran on 1st March 2007 at 12:00 PM by Air Quality Control Company
(AQCC). Measure unit of the CO values are ppm. To predict CO values from six air
stations in Tehran, we divide this city to a regular grid 16 × 16. In this case, we only
have observations in six locations and the other locations are considered as missing
values. Figure 2a shows locations of the air stations and points of the missing values on
Tehran map. Tehran has been divided to 22 regions (lines in Fig. 2a) by municipality
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Table 3 Bayesian prediction and standard error of the missing values for CSN and Gaussian models
for 5,000 simulated data set presented in Fig. 1

Model ymis Y13 Y21 Y22 Y23 Y25 Y33 Y41 Y45

True val. 1.62 11.24 5.9 8.83 3.2 2.7 6.51 12.05

CSN Bay. est. 2.2412 10.698 5.6849 9.6593 4.1965 2.5801 6.5352 12.207

S. E. 0.0125 0.0127 0.0123 0.0241 0.0121 0.0105 0.0121 0.0227

Gaussian Bay. est. 2.7368 10.072 6.6975 9.8755 5.1770 3.8092 7.1899 13.520

S. E. 0.0137 0.0143 0.0127 0.0330 0.0132 0.0112 0.0115 0.0244

Bayesian predictions are mean of generated samples from the full conditionals of the missing values after
removing burn-in values

Table 4 MSE prediction and Bias of the missing values for CSN and Gaussian models averaged for 5000
simulated data sets

Model ymis Y13 Y21 Y22 Y23 Y25 Y33 Y41 Y45

CSN PMSE 1.1983 1.3141 0.9337 1.1284 1.0472 0.7926 0.8260 1.3974

Bias 0.0706 −0.0582 0.0321 −0.1006 0.0603 0.0498 −0.0213 −0.0166

Gaussian PMSE 1.2030 1.4265 1.3230 1.1307 1.0815 0.8527 0.9145 1.4662

Bias 0.1019 −0.0634 0.0391 −0.1132 0.0112 0.0921 −0.0380 −0.1029
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Fig. 2 a The CO values of the six air stations located in a regular grid 16×16 on Tehran map, where yellow
points are location of missing values. Lines and red numbers specify 22 regions divided by municipality
of Tehran. b Scatter plots of the CO modeling data and their histogram. Measure unit of the CO values are
ppm

of Tehran. There is a physical modeling in AQCC based on physiological conditions
to predict the air pollution data in Tehran. There is no stochastic statistical model in
the physical modeling. The histograms of the CO data show that their distributions are
skewed (Fig. 2b). Scatter plots in Fig. 2b illustrate that the data have trends in x and
y directions proportional to bivariate normal distribution. So, we fitted a trend to the
data as g(yi j ) = 108.5φ2((i, j); coordFatemi , 107 I2) where φ2(·,μ, �) is bivariate
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Fig. 3 Scatter plots of the CO modeling data after removing the trend

Table 5 Bayes estimates of the parameters

Parameter σ 2 β0 α1 α2 θ1 θ2

Bayesian Est. 0.6411 1.9742 3.0380 1.1753 −0.1045 0.1443

S. E. 0.0031 0.0023 0.0162 0.0164 0.0027 0.0030

normal density with mean μ and covariance � and CoordFatemi denotes the location
of Fatemi station. Figure 3 shows the modeling data after removing the trend. We can
see in Fig. 3 that the trend was almost removed. However, this model is not the best
model to model trend of the data. Notice, we have used the physical modeling data
to estimate the trend model. Then, the CSN model is applied on the real data (the six
stations) to predict the missing values. After a summary exploratory data analysis, we
define the spatial regression model as yi j − g(yi j ) = β0 + zi j where zi j s are modeled
as in Eq. 3 and ε ∼ C SN256,2(0, σ 2 I256, D, 0, I2). Here, we consider two skewness
parameters similar to the simulation example as D = (α11′

256, α21′
256). So, the model

parameters are η = (β0, σ
2,α, θ).

For Bayesian analysis, the common priors are adopted as (β0|β01) ∼ N (β01, 3),
σ 2|λ0, σ0) ∼ I G(λ0, σ0), (α|α0, τ

2
0 ) ∼ N2(α0, τ

2
0 I2) and (θi |θ0i ) ∼ N (θ0i , 1)I (|θ0i |

< 1) i=1,2, where β01, λ0, σ0, α0, τ 2
0 and θ0i are considered as hyper parameters for

using hierarchical Bayes to decrease the prior sensitivity. We use the hyper priors as fol-
lows:β01 ∼ U (−5, 5),λ0 ∼ U (0, 10), σ0 ∼ U (0, 5),α0 ∼ U (−5, 5), τ 2

0 ∼ U (0, 10)
and θ0i ∼ U (−1, 1). Using MCMC algorithms, Bayesian estimation of parameters is
summarized in Table 5.
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Fig. 4 a Image of CO predictions with nine gray levels on Tehran map. b The prediction variance of CO
predictions

Table 6 The CVMSE values
of the CSN and Gaussian models

Model CSN Gaussian

CVMSE 1.2914 3.3183

Afterwards, a Bayesian prediction map is presented as an image with nine gray
levels of CO prediction values on Tehran map in Fig. 4a. Obviously, we can see that
city center and east side of Tehran is more polluted than the other parts of town. Figure
4b illustrates the variance of the CO prediction on the map. To check the accuracy
of the Bayesian prediction for the CSN model, the cross validated mean-square error
(CVMSE) is obtained as 1

mn

∑m
i=1

∑n
j=1(yi j − ŷ−i j )

2 where ŷ−i j denotes prediction
of yi j without using the datum at grid point (i, j). Also the CVMSE value is obtained
for a Gaussian model where the error terms are realizations from a Gaussian random
field. The CVMSE values for CSN and Gaussian models in Table 6 show that the CSN
model is more accurate than the Gaussian model.

6 Discussion and results

We modeled the skewness of the data by using CSN distribution for a spatial regres-
sion model with spatially autocorrelated errors and missing observations. In a Bayesian
framework, we showed that the full conditionals of some model parameters and miss-
ing observations have closed form. Bayesian estimation of the model parameters were
obtained in a simulation study, for the CSN model with two skewness parameters
and the Gaussian model. We showed accuracy of our model by MSE criterion in this
simulation.

We applied our model on air pollution data in Tehran city, then modeled the skew-
ness of the data by the CSN model on a regular grid 16×16. We also used the physical
modeling data to find the trend model. Then, Bayesian prediction of the CO data
were illustrated on Tehran map at 12 PM. Finally, the MSECV was obtained for CSN
and Gaussian models. It showed that the CSN model is better than Gaussian model.
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The CSN model is analytically tractable, this provides the usage of time dimension
for the CO data, while the time was considered to be fixed in this example. Therefore,
we can use a space-time model in our method to forecast CO values in future time.

Usually, it is difficult to check if a small data set comes from a normal distribution
or from a CSN distribution. Since the CSN distribution is more general than a normal
distribution, the CSN model is proposed to model data related to the Gaussian model.
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Appendix A

For example, in a 3 × 2 regular grid the matrices in Eq. 5 are given by

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
θ2 0 0 0 0 0
θ1 0 0 0 0 0

−θ1θ2 θ1 θ2 0 0 0
0 0 θ1 0 0 0
0 0 −θ1θ2 θ1 θ2 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−θ1θ2 θ1 θ2 0 0 0
0 −θ1θ2 θ1 0 0 0
0 0 0 −θ1θ2 θ2 0
0 0 0 0 0 0
0 0 0 0 −θ1θ2 θ2
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Appendix B: Proof of proposition 1

Part (i): ε is a additive model as ε = μ + Kv + Gu, then according to Dominguez-
Molina et al. (2007)

ε ∼ C SNmn,q(μ, �, D, ν,�).

Since z in Eq. 5 is a linear combination of ε, due to the linear combination prop-
erty of CSN distribution (Dominguez-Molina et al. 2003), z ∼ C SNmn,q(W Az0 +
Wμ,W�W ′, DW −1, ν,�). Similarly, Y ∼ C SNmn,q(μy, �y, DW −1, ν,�),where
μy = Xβ + W Az0 + Wμ and �y = W�W ′.

Part (ii): Let Y mis denotes the vector of missing observations and Y obs be the
vector of observed values. Let Y ∗ = (Y ′

obs,Y
′
mis)

′ = QY , where Q is an orthogonal
matrix, that reorders the elements of Y . Thus, Y ∗ ∼ C SN (μQ, �Q, DQ, ν,�), where
μQ = Qμy ,�Q = Q�y Q′, DQ = DW −1 Q′. Since CSN distribution is closed under
conditioning, thus

Y mis |yobs ∼ C SNNmis ,q(μmis +�mo�
−1
oo (yobs − μobs),�mm.o, Dmis, νm,�),

where Nmis is dimension of missing values, νm = ν − D∗(yobs − μobs), D∗ =
Dobs + Dmis�mo�

−1
oo , �mm.o = �mm − �mo�

−1
oo �om and μmis , μobs , �oo, �mo,
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�om , �mm , Dmis and Dobs come from the partitions

Qμy =
(

μobs
μmis

)
, Q�y Q′ =

(
�oo �om

�mo �mm

)
, DW −1 Q′ = (

Dobs Dmis
)
.

Appendix C

Here, we show that the full conditional of β in the Bayesian CSN model of Eq. 8 is a
CSN distribution as C SNr,q(μβ,�β,−DW −1 X, νβ, Iq).

Proof

π(β|y, σ 2, θ ,α) ∝ f (y|β, σ 2, θ ,α)π(β)

∝ φmn(y;μy, σ
2W W ′)�q(DW −1(y − μy); 0, Iq)φr (β;β0, �0)

∝ φr (β;μβ,�β)�q(DW −1(y − Xβ − W Az0); 0, Iq),

where �β = (X ′(σ 2W W ′)−1 X + �−1
0 )−1, μβ = �β [X ′(σ 2W W ′)−1(y − W Az0)

+�−1
0 β0]. Thus

π(β|y, σ 2, θ ,α) ∝ φr (β;μβ,�β)�q(−DW −1 Xβ + DW −1(y − W Az0); 0, Iq),

= φr (β;μβ,�β)�q(−DW −1 X (β − μβ)

+DW −1(y − W Az0 − Xμβ); 0, Iq),

= φr (β;μβ,�β)�q(−DW −1 X (β − μβ);
DW −1(W Az0 + Xμβ − y); 0, Iq).

Let νβ = DW −1(W Az0 + Xμβ − y), therefore the full conditional of β is a CSN
distribution as C SNr,q(μβ,�β,−DW −1 X, νβ, Iq). ��

Appendix D: Proof of proposition 2

Set D = α J in the full conditional of α, thus k = 1 and

π(α|y, σ 2,β, θ) ∝ φ(α;α0, τ
2
0 )�q(α J W −1(y − μy); 0, Iq)

×[�q(0; 0, Iq + σ 2α2 J J ′)]−1,

= φ(α;α0, τ
2
0 )�q(J W −1(y − μy)(α − α0)

+J W −1(y − μy)α0; 0, Iq)

×[�q(0; 0, Iq + σ 2α2 J J ′)]−1,

= φ(α;α0, τ
2
0 )�q(J W −1(y − μy)(α − α0);

−J W −1(y − μy)α0, Iq)

×[�q(0; 0, Iq + σ 2α2 J J ′)]−1,
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set Dα = J W −1(y − μy) and να = −Dαα0, thus

π(α|y, σ 2,β, θ) ∝ φ(α;α0, τ
2
0 )�q(Dα(α − α0); να, Iq)

×[�q(0; 0, Iq + σ 2α2 J J ′)]−1.

According to CSN density, full conditional of α is proportional to

C SN1,q(α0, τ
2
0 , Dα, να, Iq)[�q(0; 0, Iq + σ 2α2 J J ′)]−1.
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