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Abstract This paper is concerned with Bayesian estimation of a spatial regression
model with skew non-Gaussian errors. The regression parameters are estimated by
using a closed skew normal (CSN) distribution, which is closed under conditioning
and linear combination. The proposed model captures skewness in the response var-
iable. Sometimes, we may encounter missing observations in the response variable,
accordingly we model and predict the missing observations by a Bayesian approach
using Gibbs sampling methods. Next, a simulation study is performed to asses our
model validity. Also, the proposed model in this work is applied to CO data from
Tehran, the capital city of Iran. Then, the accuracy of the CSN and Gaussian models
is compared by cross validation criterion.

Keywords Bayesian prediction - Closed skew normal - Missing observations -
MCMC
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1 Introduction

The analysis of spatial data is of interest in many scientific fields including agriculture,
biology, geology and geography. One important object in the literature are regression
models for spatial data. Anselin (1988, 1990) proposed approaches to incorporate
spatial structural into regression models and Gschlofl and Czado (2008) presented
Modelling count data with overdispersion and spatial effects. Shin and Sarkar (1994)
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obtained the maximum likelihood estimation of the parameters in regression models
with autocorrelated errors and Oh et al. (2002) exhibited Bayesian analysis for these
models. Most of the theories in spatial regression analysis assume that the data are a
realization of a Gaussian random field, where the errors are assumed to be normal.
However, this assumption is not true for some of applications, for example the rainfall
data in Kim and Mallick (2004), the seismic data in Karimi et al. (2010) and the air
pollution data in Sect. 5.

When the distribution of the data is non-Gaussian but has many similar properties as
anormal distribution, a skew normal distribution (Azzalini 1985) can be used to model
their skewness. Recently in the literature, skew errors have been used in regression
models; for example, see Sahu et al. (2003), Arellano-Valle et al. (2005), Bolfarinea
and Lachos (2007). The closed skew normal (CSN) distribution (Dominguez-Molina
etal. 2003), which is an extension of the multivariate skew normal distribution, has the
advantage of being closed under marginalization and conditioning. Allard and Naveau
(2007) studied a new spatial skew random field model in a spatial context. They used
the class of CSN distributions and presented approaches for spatial interpolation. A
random vector Y distributed according to the multivariate CSN with parameters; g,
2, D,v, A,denotedby Y ~ CSN,, ,(i, Z, D, v, A) has pdf given by

Sp.aOlm, 3, D, v, A) = [Py(0; v, A+ DD}
X¢p(y, ”’7 E)ch(D(y_M’)’va)’ (1)

where ¢, (-; , ) is the p-dimensional normal density with mean vector g and covari-
ance matrix ¥, elements of ¢ x p matrix D are skewness parameters and ®,(-; v, A)
is the g-dimensional normal cdf with mean v and covariance matrix A. When D is
a zero matrix, the density of Eq. 1 reduces to the multivariate normal density. The
multivariate skew normal density of Azzalini and Dalla Valle (1996) can be obtained
by letting ¢ = 1, v = 0 and A = [ in Eq. 1. In this paper, we apply a Bayesian
approach of spatial regression models, when the errors are distributed as CSN. Since
missing values occur in many real data, we consider missing observations for the
response variable in the spatial regression model. Oh et al. (2002) presented Bayesian
prediction for missing observation of a Gaussian random field. We extend their method
for a general random field called closed skew Gaussian (CSG) random field, which
includes Gaussian and skew Gaussian random fields. Skew Gaussian random field has
been defined by Kim and Mallick (2004). Now, we define a set of random variables
{Z(s),s € U € R%)} to be a CSG random field if for any finite integer m the random
vector (Z(s1), ..., Z(s;,)) has amultivariate CSN distribution. The CSG random field
has been completely defined in Karimi and Mohammadzadeh (2010) and a discrete
form of this random field was applied to seismic data in Karimi et al. (2010).

This paper is organized as follows. In Sect. 2, the spatial regression model with auto-
correlated errors is introduced. The Bayesian estimates of the parameters are obtained
by MCMC algorithms in Sect. 3. Also the Bayesian prediction of each missing obser-
vation is presented. In Sect. 4, a simulation study is performed to check the validity of
our model. The model is applied on a real data set in Sect. 5. Finally, a brief discussion
is given in the last section.

@ Springer



Bayesian spatial regression models with CSN correlated errors 207

2 The model
Basu and Reinsel (1994) considered the spatial regression model
yijzxgjﬂ—l-zij, i=1,....m, j=1,...,n, 2)

on a regular grids {(i, j) : i = 1,...,m, j = 1,...,n}, where y;;s are response
variables, x;; is a vector of r dimensional explanatory variables, 8 € R" is regression
coefficients and z;;s are correlated errors following a first order ARMA model. Oh
etal. (2002) considered the regression model of Eq. 2 with multiplicative AR(1) errors

zij = 01zi—1,j +62zi j—1 — O10ozi1,j—1+ &, i=1,....m, j=1,...,n,

3)

where ¢;;s are iid normal errors having mean zero and variance o2 and |6;] < 1,
|62] < 1. They presented Bayesian estimation of the model parameters when the
data are Gaussian. But their method can not be used for skew or other non-normal
data. Therefore, we propose the CSN model that is more general than the Gaussian
model by modeling the skewness of the data. Let Y = (y11, y12, -+ Ymn)» X =

(X11.X12, -« Xmn) s 2 = (211,212, - - -+ Zmn) s € = (€11, €12, ..., €mn)  and 2o =
(200, 201, - - - » Zmo)’- Then Egs. 2 and 3 can be written as
Y= XB+z, @
z =Bz + Azp + &, 5)

where z( denotes the vector of unobserved initial values of z;;, B is a mn x mn lower
triangular matrix and A is a mn x (m + n + 1) upper triangular matrix with elements
zeros and functions of 81 and 6;, (for examples of A and B see Appendix A). A Eq. 5
can be written as (I — B)z = Azp + €, where (I — B) is a nonsingular matrix with
determinant 1. Therefore, z = (I — B) " 'Azg+ (I — B) 'e.Let W = (I — B)"!,
thus z = WAzg + We.

Proposition 1 In the spatial regression model as in Eq. 2 with correlated errors of
Eq. 3,

(1) let € be an additive model which includes v ~ Ny,,(0, I,,,) and u ~ N; 0, A
+ DX D), then

e=p+Kv+Gu~ CSNyuq4(n, Z,D,v, A),

where  is constant, K = (X! + D’A_ID)_%, G=XD'(A+D=ED") " and
N; (-, ) is a normal distribution truncated below at v. Thus

Y ~ CSNm)’l,q(I'l’yv Eyv DW_ly v, A)y

where p, = XB + WAzo + Wpand 2y = WEW'.
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(ii) Define Y* = (Y, ,Y' .Y = QY to separate missing values (Y ,;s) from

obs’> * mis
observed values (Y yps) in the vector Y, where Q is an orthogonal matrix, that
reorders the elements of Y. Thus

Ymis|yobs ~ CSNNmis,q(”’mis + EmoE(;)l (yohs - ”‘abs)’
X Xmm.o» Dmis, Vs D), (6)

where Npyis is dimension of missing values, v, = v — D*(¥ 55 — Rops), D* =
-1 -1

Dobs + Dmis 2:mo Egg ’ 2:mm.o = Emm - E’nDEgg z:Dm and Mmiss Mobs» Eou: 2:mo,

Yoms Zmm> Dmis, Dops come from the partitions

_ [ Mobs /_ 200 Zom -1, _ )
Qﬂy_(”’mis)’ QEyQ _(Emo me)7 DW™— 0 —(Dobs Dmls)-

Proof see Appendix B. O

Now, by using the conditional distribution of Eq. 6, the adequate predictor of the
missing values under square-error loss is given by

E(Y mis|Yops) = Bmis + Emozo_ol (Yobs — Mobs) + Emm.oD;m'S\IJa
where

_ CDZ (05 v — D*(Yops — Hobs)s A+ Dimis meﬂDr/nis)
Cpq 0; v — D*(yobx — Rops)s A + Dy Emm.oD)

9
mis)

and for any positive definite matrix; €2, CDZ(S; v, Q) = VP, (s; v, Q), where Vs =
(a%, ceey %)’ is the gradient operator. Expectation of CSN distribution has been

defined by Dominguez-Molina et al. (2003).

3 Bayesian spatial regression model

In this section, we present the Bayesian estimation of the model parameters and Bayes-
ian prediction of the missing values by using MCMC algorithms. In the model of Eq. 5,
we assume that & ~ CSN; 4 (0, 621y, D, 0, I,) thus according to Proposition 1

Y ~ CSNmn,q(ILyaUZWW/, DW_I’O» Iq)7 @)
where p, = XB + WAzo. We define two cases for matrix skewness of D to reduce

the dimension of skewness parameters as follows:

(i) The skewness can be fixed throughout spatial regions. Therefore, D = & Jyxmn,
where « is an unknown scalar skewness parameter and J;; xu, 18 @ ¢ X mn matrix
with unit elements. This case is approximately similar to the model of Kim and
Mallick (2004).
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(i1) Different values of skewness can be considered in every grid of the spatial region.
Thus, D can be defined as D = (oelJl/ s (ka,é)/, where @ = (a1, ..., o) i
a vector of unknown skewness parameters and J;’s are ¢; x mn with unit elements
and Zi'(:l qi = q. We consider the case (ii) which is more general than the case
(1). This model has been presented by Karimi and Mohammadzadeh (2010).

Therefore the model parameters are = (S, o2, a',0"), where B is a vec-
tor of regression coefficients and § = (0, 6,)" is a vector of spatial correla-
tion parameters. The Bayesian model requires us to adopt prior distributions
for all the unknown parameters. We consider prior independence as w () =
7(B,0% a,0) = n(B)w(c?)m(a)m(9), thus the posterior distribution is pro-
portional to f(y|lp)w(n) = f(y|B, o2, &, 8)x(B)r(c?)m(ae)(P). Liseo and
Loperfido (2006) discussed the choice of prior for skew-normal distribution and
obtained reference and Jeffreys priors for the scalar skew-normal distribution.
They showed that Jeffreys and reference priors are proper for the skewness of the
multivariate skew-normal distribution. We adopt proper priors for all the unknown
parameters, to insure that the posterior distribution is proper. For the common
prior distributions, B ~ N, (B, £o), 0 ~ IG(Xo, 00), @ ~ Ni(ewo, 73 Ix) and
6; ~ N(0o;, 1//1.2)1 (16;] < 1),i =1, 2, the posterior distribution is given by

m(ly) o« f(yIB, o7, o, O)m(B)m(c*)7 ()7 (8)
o [@g(0:0, I, + 0> DD $un (y: 1y, > WW)

Dy (DWW (y = p): 0, I)

A0 ro+1
. % (1 _%0
Xd’r(ﬁ» ﬁOs EO)F(}\.O) (02) exp{ 02}
dr (e o, T4 TP (01 Bo1, ¥
X ¢ (62; o2, sz)l(|91| < DI(|62] < D). 8)

Since this is a complicated distribution, we use MCMC techniques to obtain quantities
of the posterior distribution. To use the Gibbs sampling algorithm, the full conditional
posterior distributions are obtained as follows:

m(0?y, B, &, 0) o IG(ag, by)[Py(0; 0, I, +0>DD"] ",
m(Bly. 0% o, 0) ~ CSNyq(ng. Zp, —DW ™' X, vg, 1),
m(aly, 0?, B.0) o prle: o, 0 1) Dy (DW ™' (y — )1 0, 1)
x [@4(0;0, 1, +o*DD)] 7!,
701y, 0%, B. o, 0) O Gun (s sy o WW )P (6:; O0i, ¥7)
g (DW ™ (y = 1t,): 0, 1)
xI(6il<1), i=1,2,j=1,2,i+#],
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where

mn
ag = 7 + Ao, by = {(y /Ly) (WW) (_)’ Ry )+ 200},
Sp = (X' (PWW')~ 1X+EO N

tp = Tp[X (PWW) "1y — WAzo) + Zg ' Bl

andvg = DW~ Y (WAzy+ Xpg —y) (see Appendix C). According to Proposition 1,
the full conditional posterior distribution of missing values is as

Ymixm, Yobs ™~ CSNNmiJ,q(I"mis + Emazo_u] (yobs - ”'ubs)v Emmo, Dmim Vm, A)-

Since the full conditionals of o2, & and 0;s have no closed form, we use the Metropo-
lis-Hastings algorithm for generating samples from them. The full conditional of o2
can be written as 7 (-) o f(-)Py(- - )~1, where f(-) is a density that can be sam-
pled, so the probability of move in the Metropolis-Hastings algorithm is reduced to
r(x,y) = min(zz g; 1) (see Kim and Mallick (2004)). Therefore, I G (ay, by ) can

be used as a proposal distribution for o2.

Proposition 2 Let the skewness parameter of the Bayesian CSN model (8) has the
special form D = aJ, where « is a scalar and J is a matrix with unit elements. Then
the full conditional of « is proportional to

CSN1 4(0, 73, Do, Ve, 1)[@4(0; 0, I, + o?a?JJ)] 7",

where D, = JW‘l(y — uy) and vy = —JW_I(y — ;Ly)ozo.
Proof see Appendix D. O

According to Proposition 2, the CSN distribution CSN 4 (co, ‘L'g, Dy, vy, 1) can be
used as proposal distribution for «w. For the case of k skewness parameters given by
D= (aJ],..., J,é)/, the full conditional of & has no special form. To determine
a proposal distribution for e, the CSN distribution C SNy 4 (o, rg Iy, Dy, vy, 1;) can
be used, which is close to the kernel density of the full conditional of «. The trun-
cated normal distribution in interval (—1, 1) is considered as proposal distributions
for both 61 and 6. We apply Gibbs sampler and Metropolis-Hastings together to
generate a sample from the posterlor distribution. Then the parameters can be esti-
mated by ) = 5= bum Z —burns1 M) and the missing values can be predicted by

Ym” = m Z —burnt1 Ymis(i) where M is number of generated samples, burn
is burn-in values in the MCMC algorithms, n(;y and Y,,;4(;) are ith generated sample.

4 Simulation study

In this section, first we present a method for generating samples from a CSN dis-
tribution. Then the Bayesian estimates of the model parameters and the Bayesian
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Fig. 1 a Simulated data and their locations, missing values are underlined; b Histogram of the simulated
data

prediction of the missing values are obtained in a simulation example to assess the
validity of the model. Also, we compare the proposal model with Gaussian model to
show improvement in results when the data have some skewness in their distribution.

To generate a sample from distribution CSN,, 4 (i, £, D, v, A) the following steps
can be repeated: (i) Generate u from distribution N, (v, A) and y from distribution
Ny (p, ¥) (i) Compute w = u — D(y — p). (iii) If w < 0 accept y as a sample from
CSNpq(p, %, D, v, A) otherwise repeat steps.

Example A sample of Y is simulated in a regular grid 6 x 6 by the spatial regression
model of Eq. 2 where

x§j = (1,i), B' = (Bo, B1) with fp =2and B =1,

z from a AR(1) model as z=W Azg + We with parameters ¢; =0.9 and 6, =0.7,
€ ~ CSNyng(0,0% Ly, D, 0, 1),

02=2, D = (1, aal'), mn =36, g =2, aj =2and ap = 1.

and z¢ is a vector of initial values which is generated from N (0, 1). We assume that y
has 8 missing values as completely at random. The simulated data and their locations
are shown in Fig. 1a. The missing values y,,;;.=(Y11, Y12, Y14, Y22, Y24, Y31, Y35, Y65)
are specified by underline. The histogram of the data in Fig. 1b shows some skewness
in the distribution of the data. However, the number of the data is small and the his-
togram is not a strong evidence that the data depart from the Gaussian distribution.
But, the CSG random field is more general than Gaussian random field. Therefore,
we consider a CSG random field for modeling the data. The common priors in Sect. 3
are adapted with large variances for Bayesian analysis. The Bayesian estimates of
the model parameters § = (8, 02, &', 8')’ are calculated by Metropolis-Hastings and
Gibbs sampler algorithms. For bivariate and trivariate distributions, the multivariate
normal cumulative distribution function is calculated basic on methods developed by
Genz (2004). The algorithms have converged in 10,000 iterations by looking at run-
ning means over the MCMC iterations and the burn-in is chosen as 6,000 iterations
for the all parameters. To compare the CSN model with a basic model, we also obtain
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Table 1 Bayesian estimates (posterior means) and standard errors (S.E.) of the parameters for CSN
and Gaussian models for 5000 simulated data set presented in Fig. 1

Model o? Bo B 01 (%) o] o)
True val. 2 2 1 0.9 0.7 2 1

CSN Bay. est. 2.0394 2.5229 0.9854 0.9130 0.6421 2.1445 1.3804
S.E. 0.0095 0.0232 0.0063 0.0009 0.0021 0.0203 0.0184

Gaussian Bay. est. 3.0715 3.3425 1.0505 0.8668 0.5883 - -
S.E. 0.0191 0.0261 0.0094 0.0019 0.0041 - -

Table 2 MSE and Bias for CSN and Gaussian models averaged for 5000 simulated data sets

Model o2 Bo Bi 0 0, a o
CSN MSE 0.3000 12884  0.1305 0.0080 0.0204  0.0248  0.1351
Bias 0.0897  —0.1128  0.0968  —0.0293  —0.0220 0.0814  0.3329
Gaussian ~ MSE 0.7718 1.8909  0.1815 0.0088 0.0226 - -
Bias  —0.8167 0.1477  0.1586  —0.0466 —0.0562 - -

Bayesian estimation of the parameters for Gaussian model. The results of the two
models are summarized in Table 1. Bayesian estimates of the CSN model are closer
to the true values than the Gaussian model. Mean square error (MSE) and bias of the
parameters were obtained for the two models in Table 2 averaged over 5,000 simulated
data sets with different seed numbers. The results of MSE and bias for all parameters
shows adequacy of our proposed model. The algorithms have converged and burn-in
values can be consider 6,000 iterations.

The Bayesian prediction of the missing values for the two models are presented in
Table 3 as well as standard errors of the predictions. The prediction results of the CSN
model are closer to the true values than the Gaussian model. Moreover, the prediction
MSE (PMSE) were obtained for the two models in Table 4 for 5,000 simulated data
sets. The PMSE values of the CSN model are less than the Gaussian model. Therefore,
they show the adequacy of our proposed model to predict missing observations.

5 Application to data

Air pollution still is a major issue in many cities, and Tehran is one of the most air
polluted cities among all. In this section, we consider CO (Carbon monoxide) one of
the basic substances of air pollution. The air pollution data were collected from six air
stations of Tehran on 1st March 2007 at 12:00 PM by Air Quality Control Company
(AQCC). Measure unit of the CO values are ppm. To predict CO values from six air
stations in Tehran, we divide this city to a regular grid 16 x 16. In this case, we only
have observations in six locations and the other locations are considered as missing
values. Figure 2a shows locations of the air stations and points of the missing values on
Tehran map. Tehran has been divided to 22 regions (lines in Fig. 2a) by municipality
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Table 3 Bayesian prediction and standard error of the missing values for CSN and Gaussian models
for 5,000 simulated data set presented in Fig. 1

Model Yimis Y13 63 Y2 Y23 Y25 Y33 Yy Yys
True val. 1.62 11.24 59 8.83 3.2 2.7 6.51 12.05

CSN Bay.est. 2.2412  10.698 5.6849 9.6593 4.1965 2.5801 6.5352 12.207
S.E. 0.0125 0.0127 0.0123 0.0241 0.0121 0.0105 0.0121 0.0227

Gaussian  Bay.est.  2.7368  10.072 6.6975 9.8755 5.1770 3.8092 7.1899  13.520
S.E. 0.0137 0.0143  0.0127 0.0330 0.0132 0.0112 0.0115 0.0244

Bayesian predictions are mean of generated samples from the full conditionals of the missing values after
removing burn-in values

Table 4 MSE prediction and Bias of the missing values for CSN and Gaussian models averaged for 5000
simulated data sets

Model Ymis Y13 Y21 Y2 Y23 Y5 Y33 Yqy Yys

CSN PMSE 1.1983 1.3141 0.9337 1.1284 1.0472  0.7926 0.8260 1.3974
Bias 0.0706 —0.0582 0.0321 —0.1006 0.0603 0.0498 —0.0213 —0.0166
Gaussian PMSE  1.2030 1.4265 1.3230 1.1307 1.0815 0.8527 0.9145 1.4662
Bias 0.1019 —0.0634 0.0391 —0.1132 0.0112 0.0921 —0.0380 —0.1029
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Fig.2 a The CO values of the six air stations located in a regular grid 16 x 16 on Tehran map, where yellow
points are location of missing values. Lines and red numbers specify 22 regions divided by municipality
of Tehran. b Scatter plots of the CO modeling data and their histogram. Measure unit of the CO values are
ppm

of Tehran. There is a physical modeling in AQCC based on physiological conditions
to predict the air pollution data in Tehran. There is no stochastic statistical model in
the physical modeling. The histograms of the CO data show that their distributions are
skewed (Fig. 2b). Scatter plots in Fig. 2b illustrate that the data have trends in x and
y directions proportional to bivariate normal distribution. So, we fitted a trend to the
data as g(y;j) = 108'5¢2((i, J); coordratemi 107 1) where ¢2(-, p, X) is bivariate
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Fig. 3 Scatter plots of the CO modeling data after removing the trend
Table 5 Bayes estimates of the parameters
Parameter o2 Bo o o) 01 %)
Bayesian Est. 0.6411 1.9742 3.0380 1.1753 —0.1045 0.1443
S.E. 0.0031 0.0023 0.0162 0.0164 0.0027 0.0030

normal density with mean g and covariance X and CoordFp semi denotes the location
of Fatemi station. Figure 3 shows the modeling data after removing the trend. We can
see in Fig. 3 that the trend was almost removed. However, this model is not the best
model to model trend of the data. Notice, we have used the physical modeling data
to estimate the trend model. Then, the CSN model is applied on the real data (the six
stations) to predict the missing values. After a summary exploratory data analysis, we
define the spatial regression model as y;; — g(yij) = Bo + z;; where z;;s are modeled
as in Eq. 3 and & ~ CSN2s56.2(0, 02hse, D, 0, D). Here, we consider two skewness
parameters similar to the simulation example as D = (0511/256, a21’256). So, the model
parameters are n = (Bo, o2 a, 9).

For Bayesian analysis, the common priors are adopted as (Bo|Bo1) ~ N (Bo1, 3),
a?[%0, 90) ~ 1G (ro, 00), (@lag, 75) ~ Na(eto, 75 12) and (6;160;) ~ N (Boi, DI (|60
< 1) i=1,2, where Bo1, *o, 00, @0, tg and 6; are considered as hyper parameters for
using hierarchical Bayes to decrease the prior sensitivity. We use the hyper priors as fol-
lows: Bo1 ~ U(=5,5), 0 ~ U (0, 10),00 ~ U (0, 5),a¢9 ~ U(-5,5), Tg ~ U (0, 10)
and 6p; ~ U(—1, 1). Using MCMC algorithms, Bayesian estimation of parameters is
summarized in Table 5.
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Tehran Tehran

(b)

Fig. 4 a Image of CO predictions with nine gray levels on Tehran map. b The prediction variance of CO
predictions

Table 6 The CVMSE values

of the CSN and Gaussian models Model CSN Gaussian

CVMSE 1.2914 3.3183

Afterwards, a Bayesian prediction map is presented as an image with nine gray
levels of CO prediction values on Tehran map in Fig. 4a. Obviously, we can see that
city center and east side of Tehran is more polluted than the other parts of town. Figure
4b illustrates the variance of the CO prediction on the map. To check the accuracy
of the Bayesian prediction for the CSN model, the cross validated mean-square error
(CVMSE) is obtained as ﬁ > Z;': 1 (vij — $—ij)* where $_;; denotes prediction
of y;; without using the datum at grid point (7, j). Also the CVMSE value is obtained
for a Gaussian model where the error terms are realizations from a Gaussian random
field. The CVMSE values for CSN and Gaussian models in Table 6 show that the CSN
model is more accurate than the Gaussian model.

6 Discussion and results

We modeled the skewness of the data by using CSN distribution for a spatial regres-
sion model with spatially autocorrelated errors and missing observations. In a Bayesian
framework, we showed that the full conditionals of some model parameters and miss-
ing observations have closed form. Bayesian estimation of the model parameters were
obtained in a simulation study, for the CSN model with two skewness parameters
and the Gaussian model. We showed accuracy of our model by MSE criterion in this
simulation.

We applied our model on air pollution data in Tehran city, then modeled the skew-
ness of the data by the CSN model on a regular grid 16 x 16. We also used the physical
modeling data to find the trend model. Then, Bayesian prediction of the CO data
were illustrated on Tehran map at 12 PM. Finally, the MSECV was obtained for CSN
and Gaussian models. It showed that the CSN model is better than Gaussian model.
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The CSN model is analytically tractable, this provides the usage of time dimension
for the CO data, while the time was considered to be fixed in this example. Therefore,
we can use a space-time model in our method to forecast CO values in future time.
Usually, it is difficult to check if a small data set comes from a normal distribution
or from a CSN distribution. Since the CSN distribution is more general than a normal
distribution, the CSN model is proposed to model data related to the Gaussian model.
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Appendix A

For example, in a 3 x 2 regular grid the matrices in Eq. 5 are given by

0 0 0 00O —0160 61 6, O 0 0

6 0 0 00O 0 —666, O 0 0

B 6p 0 0 00O A= 0 0 0—-660 60 O
—60166; 6, 000}’ 0 0 0 O 0 O

0 0 6 000 0 0 0 0 —61606,

0 0 —616,616,0 0 0 0 O 0 O

Appendix B: Proof of proposition 1

Part (i): e is a additive model as € = u + Kv + Gu, then according to Dominguez-
Molina et al. (2007)

e~ CSNmn,q(IL, 25 D7 v, A)

Since z in Eq. 5 is a linear combination of &, due to the linear combination prop-
erty of CSN distribution (Dominguez-Molina et al. 2003), z ~ CSNy,, (W Azo +
W, WEW', DW=, v, A).Similarly, ¥ ~ CSNynq(r,, =y, DW !, v, A), where
My =XB+WAzo+Wpand £, = WE W' '

Part (ii): Let Y,,;s denotes the vector of missing observations and Y ,;s be the
vector of observed values. Let Y* = (Y, . Y/ . ) = QY, where Q is an orthogonal
matrix, that reorders the elements of Y. Thus, Y* ~ CSN(pg, 29, Dg,v, A), where
ro =0y, 29 =0%,0',Dg = DW~1Q’. Since CSN distribution is closed under
conditioning, thus

Ymis|yobs ~ CSNNmis,q(leis + Zmox(;l (yubs - ILobs)’ 2:mm.m Dmim Vi, A)’

where N5 is dimension of missing values, v,, = v — D*(¥,ps — Mops)> DF =
Dobs + Dmix EmOE()_()I’ Z:mm.r) - 2:mm - Em()E()_()l Z:()m and Mniss Mobss Eoo’ Emo’
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Loms Zmm»> Dmis and D,ps come from the partitions

Yoo X 1
QﬂyZ(MOhS)’ QEyQ/Z( s )s DWQ = (Dobs Diis) .
Rmis 2:mo 2:mm

Appendix C

Here, we show that the full conditional of 8 in the Bayesian CSN model of Eq. 8 is a
CSN distribution as CSNy.q (g, T, —DW ' X, vg, I,).

Proof

7(Bly. 0%, 0. a) o f(y|B.0> 0, )1 (B)
O bun (¥ oy, S WW) D (DW ™! (y — p,): 0. 1), (B: Bo. o)
o pr (B g, Tp) Dy (DW ™ (y — XB — WAz0): 0, 1),

where Xg = (X'(@2WW)7'X + 35)7, ng = Bp(X (@2WW) ™! (y — WAZ0)
+ 2 ' Bol. Thus

m(Bly. 0%, 0. 0) o ¢r(B; pp, Tp)Pg(—DW ' XB+ DW ™ (y — WAz0): 0, 1),
= ¢r(B: g, Tp) Dy (—DW X (B — pp)
+DW ! (y — WAzg — Xpp); 0, 1),
= ¢r(B: g Tp) Dy (—DW X (B — pp);
DW= N (WAzo+ Xpp — ¥): 0, I,).

Letvg = DW—Y(WAzy + Xpg —y), therefore the full conditional of B is a CSN
distribution as CSNr’q([Lﬁ, X, —-DWlx, vg, Iy). O

Appendix D: Proof of proposition 2
Set D = «J in the full conditional of «, thus k = 1 and

w(aly, o2, B.0) o (o g, 1) Py (I W' (y — 1)1 0, 1)
X [4(0;0, I, +0%a?T I,
= ¢ 00, 75) P (JW ' (y — ) (@ — )
+IW T (y = py)eo: 0, 1)
X [@g4(0;0, I, + o 2a? T I,
= ¢ 00, 1) P (JW ' (y — ) (@ — o)
—IW Ny = pyao. 1)
X [@4(0;0, I, +o2a*J I,
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set Dy = JW‘l(y — uy) and v, = — Dy, thus

w(aly, o2, B,0) o ¢(a; @, ©3) Py (Dy (e — ap); va, I)
x[@,4(0;0, I, + o*a?TJ)] 7"

According to CSN density, full conditional of « is proportional to

CSN1 4(0, 73, Do, Ve, 15)[@4(0; 0, I, + o*a?TJ)] 7"
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