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Abstract In a number of situations such as industrial quality control experiments
the only observations are record-breaking data. In this paper, two sampling schemes
are used to collect record data: single sample and multisample. The aim of this paper is
to investigate which one of them is more efficient in the sense of Shannon information.
Several general results are established and it is shown that there is a connection between
some reliability properties of the parent distribution and the considered comparison
criterion. A number of examples illustrating the results are given.

Keywords Inverse sampling · Hazard rate function · Reversed hazard rate function ·
Stochastic orders · Shannon information
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1 Introduction

Let {Xi , i ≥ 1} be a sequence of independent and identically distributed (iid) con-
tinuous random variables. An observation X j will be called an upper record value if
its value is greater than that of all previous observations. Thus X j is an upper record
value if X j > Xi for all i < j . By convention, X1 is the first upper record value.
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The times at which upper record values appear are given by the random variables
Tj which are called record times and are defined by T1 = 1 with probability 1 and
for j ≥ 2, Tj = min{i : Xi > XTj−1} and U j = XTj . The waiting time between
the i-th and (i + 1)-th upper record value is called the inter-record time (IRT) and is
denoted by Ki = Ti+1 − Ti (i = 1, 2, . . .). Also, �i = Ki − 1 is the number of trials
following the observation Ui before a new record is obtained. Lower record statistics
are analogously defined. The reader is referred to Arnold et al. (1998) for more details.

In this paper, we consider two sampling schemes for generating record data:

(i) The experiments are sequentially done, and the only observations available for
analysis are record values and their inter record times and sampling is termi-
nated when the n-th record is observed, which is known single sample. We call
this design as plan A.

(ii) Suppose m independent sequences are sequentially obtained and the only obser-
vations available for analysis are record values and their inter record times and
sampling is terminated in the i-th sequence, when the ki -th record is observed,
which is known multisample, where

∑m
j=1 k j = n. We call this design as

plan B.

In the contexts of record values, the design A is well-known as inverse sampling
scheme. Most researches on the basis of record values have been done in view of inverse
sampling scheme, see Arnold et al. (1998) and the references therein. In developing the
nonparametric maximum likelihood estimation of the underlying distribution based
on record data, Samaniego and Whitaker (1988) extended the single sample results
in inverse sampling scheme to the multisample case, design B. They used design B
since design A does not provide sufficient information to estimate parent distribution
nonparametrically. They showed that replicated record sequences provide a data set
for which nonparametric estimation of the parent distribution is acceptable from both
practical and theoretical perspectives, see also Gulati and Padgett (2003). In fact the
data values of plan A can provide reliable information only in the left (lower records)
or in the right (upper record) tails of the sampling distribution.

The concept of Shannon’s information (Shannon 1948) plays a central role in infor-
mation theory and is sometimes taken as measure of uncertainty or ignorance about
the outcome of a random experiment. It is known to be of importance in physics (sta-
tistical mechanics), mathematics (probability theory), statistical inference (hypothesis
testing), electrical engineering (communication theory), and computer science (algo-
rithmic complexity), see Cover and Thomas (1991) for relationship of information
theory to other fields. Also, Verdu (1998) gave a list of selected points of tangency of
information theory with other fields. If X is a random variable having a continuous
pdf f , then the basic uncertainty measure of X is defined as

HX = −
∞∫

−∞
f (x) log f (x)dx . (1)

In the literature, HX is commonly referred to as the entropy of X or Shannon infor-
mation measure and used as a tool to determine the amount of information associated
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with X regarding its parent distribution. Recently, several authors have studied the
subject of entropy properties of record statistics. Raqab and Awad (2000) character-
ized a class of Pareto distributions based on the entropy of record statistics, Zahedi and
Shakil (2006) studied the properties of entropies of record values for some common
distribution, Baratpour et al. (2007a) investigated the entropy properties of record sta-
tistics and showed that the mutual information between record values is distribution
free, Baratpour et al. (2007b) presented some characterizations based on entropy of
order statistics and record values, Ahmadi and Fashandi (2008) examined the entropy
properties of record statistics, especially the difference between entropy of upper and
lower bounds of record coverage and obtained several upper and lower bounds. Habibi
et al. (2007) investigated testing exponentially based on entropy of record values. No
previous work has been done on comparison study of two sampling designs on the
basis of entropy. These motivate us to investigate the entropies of record data from two
mentioned plans A and B. We present a comparison study to find out which scheme,
A or B, is more informative, in the sense of Shannon information. Toward this end,
we suppose k j = k ( j = 1, . . . , m), and so we compare the entropy of the first mk
record statistics in two sampling schemes A and B. For convenience of notations, we
use U BG A, U BL A or U B E A for a distribution F , when entropy of upper records in
plan B is greater than, less than or equal to that in plan A, respectively. Also, U T BG A,
U T BL A or U T B E A is applied for a distribution, if entropy of upper records and
their inter record times in plan B is greater than, less than or equal to that in plan A,
respectively. Similarly, L BG A, L BL A, L B E A, LT BG A, LT BL A and LT B E A
are used when the data values are lower record statistics.

In Sect. 2, we obtain the entropy of upper (lower) records and their inter record
times. Some general results are derived regarding the entropy of the records and their
IRTs of sampling schemes A and B. Section 3 contains similar results of Sect. 2 for
records (upper or lower) alone. In Sect. 4, we consider several common statistical
distributions and illustrate the proposed procedure.

2 Results in terms of records and their IRT’s

In the following theorem, we obtain an expression for entropy of the first k upper
records and their inter record times in terms of reversed hazard rate function.

Theorem 1 Let {Xi , i ≥ 1} be a sequence of iid continuous random variables with

cdf F(x), pdf f (x) and reversed hazard rate function r(x) = f (x)

F(x)
. The joint entropy

of the first k upper records and their IRTs is

HU,�(k) = k −
k∑

i=1

E
{

log
(

r
(

F−1(1 − e−Yi )
))}

, (2)

where (U,�) = (U1,�1, . . . , Uk−1,�k−1, Uk) and Yi has a gamma distribution with
parameters i and 1, i.e., Yi ∼ �(i, 1).
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Proof By the Markov chain property of record statistics, we have

HU,�(k) = HU1 + HU2,�1|U1 + · · · + HUk ,�k−1|Uk−1 . (3)

By (1), the entropy of the first upper record statistic is

HU1 = 1 −
∞∫

−∞
f (x) log r(x)dx . (4)

Notice that the joint density of the first k upper records and their inter record times is
(see Arnold et al. 1998)

fU,�(u, δ) =
k∏

i=1

f (ui )[F(ui )]δi , (5)

where δk = 0. Using (5), the conditional density of Uk and �k−1 given Uk−1 = uk−1
is as follows

fUk ,�k−1|Uk−1(uk, δ|uk−1) = f (uk)Fδ(uk−1); uk > uk−1, δ = 0, 1, . . . .

Therefore, the conditional entropy of Uk and �k−1 given Uk−1 = uk−1 is

HUk ,�k−1|Uk−1(uk−1) = −
∞∑

δ=0

∞∫

uk−1

f (x)[F(uk−1)]δ[log f (x) + δ log F(uk−1)]dx

= − F(uk−1)

F̄(uk−1)
log F(uk−1) − 1

F̄(uk−1)

∞∫

uk−1

f (x) log f (x)dx,

where F̄(x) = 1 − F(x). Considering the identity

1

F̄(y)

∞∫

y

f (x) log f (x)dx + F(y) log F(y)

F̄(y)
= 1

F̄(y)

∞∫

y

f (x) log r(x)dx − 1,

we have

HUk ,�k−1|Uk−1 = E[HUk ,�k−1|Uk−1(Uk−1)]

=
∞∫

−∞
HUk ,�k−1|Uk−1(y) fUk−1(y)dy

= 1 −
∞∫

−∞
fUk (y) log r(y)dy, (6)
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where fUk (y) is the marginal pdf of Uk and is given by

fUk (y) = [− log(F̄(y))]k−1

(k − 1)! f (y). (7)

By Eq. 7 and substituting (4) and (6) in (3), we get

HU,�(k) = k −
k∑

i=1

∞∫

−∞

f (x)[− log F̄(x)]i−1

�(i)
log r(x)dx .

Taking y = − log F̄(x), the result follows. ��

It is well-known that in the literature of reliability theory, a distribution F is said
to be I RF R, C RF R or DRF R, if its reversed hazard rate function is increasing,
constant or decreasing, respectively. Comparing of sampling schemes A and B based
on entropy of upper records and their IRTs in terms of reversed hazard rate function
is considered in the next theorem. First, we recall some notions of stochastic ordering
that will be used in finding new results, see Shaked and Shanthikumar (2007) for more
details.

Definition 1 Let X and Y be two random variables such that P(X > t) ≤ P(Y > t)
for all t ∈ (−∞,∞), then X is said to be smaller than Y in the usual stochastic order
(denoted by X ≤st Y ).

Definition 2 Let X and Y be two random variables with pdfs f and g, respectively,
such that g(t)

f (t) increases in t over the union of the supports of X and Y , then X is said
to be smaller than Y in likelihood ratio order (denoted by X ≤lr Y ).

Lemma 1 (Shaked and Shanthikumar 2007) For two random variables, X and Y , the
following statements are hold:

(i) If X ≤lr Y , then X ≤st Y .
(ii) If X ≤st Y and g is an increasing [a decreasing] function, then g(X) ≤st

[≥st ]g(Y ).
(iii) X ≤st Y if and only if for all increasing function ξ , E[ξ(X)] ≤ E[ξ(Y )] for

which the expectations exist.

Lemma 2 Let X and Y be two gamma random variables with shape parameters α1
and α2, and scale parameters λ1 and λ2, respectively. If α1 ≤ α2 and λ1 ≤ λ2, then
X≤lr Y .

Theorem 2 Under the assumptions of Theorem 1, a distribution F is U T BG A,
U T B E A or U T BL A, if it is I RF R, C RF R or DRF R, respectively.
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Proof By (2), the difference entropy of the first mk upper records and their IRTs of
sampling schemes A and B is

H B
U,�(mk) − H A

U,�(mk) =
mk∑

i=1

ϕ(i) − m
k∑

i=1

ϕ(i)

=
m∑

i=1

k∑

j=1

{ϕ ( j + k(i − 1)) − ϕ( j)} (8)

for which

ϕ(i) = E
[
log

(
r
(

F−1(1 − e−Yi )
))]

,

where Yi ∼ �(i, 1). Therefore, by Lemmas 1 and 2, F−1(1 − e−Yi ) <st F−1

(1 − e−Yi+1). Since log x is an increasing function, ϕ(i) is an increasing, constant
or decreasing function in i , when r(x) is an increasing, constant or decreasing func-
tion, respectively. Hence by (8), the result follows. ��

Lemma 3 Under the assumptions of Theorem 1, the joint entropy of the first k lower
records and their inter record times is

HL,�
′ (k) = k −

k∑

i=1

E
{

log
(

h
(

F−1(e−Yi )
))}

, (9)

where (L,�′) = (L1,�
′
1, . . . , Lk−1,�

′
k−1, Lk), h(x) = f (x)

F̄(x)
is the hazard rate

function of X and Yi ∼ �(i, 1).

Proof Using the identity

1

F(y)

y∫

−∞
f (x) log h(x)dx − 1 = 1

F(y)

y∫

−∞
f (x) log f (x)dx + F̄(y)

F(y)
log F̄(y)

the proof is similar to that of Theorem 1. ��

In the following corollary some similar results of Theorem 2 in terms of hazard
rate function are presented, when the interested statistics are lower records and their
inter record times. It is well-known that a distribution F is said to be I F R, C F R or
DF R, if its hazard rate function is increasing, constant or decreasing, respectively.

Corollary 1 Under the assumptions of Theorem 1 and using Lemma 1, a distribution
F is LTBLA, LTBEA or LTBGA, if it is IFR, CFR or DFR, respectively.
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3 Results in terms of records without their IRT’s

In this section, we consider record values (upper and lower) alone and study the prob-
lems presented in the previous section.

Lemma 4 Under the assumptions of Theorem 1, the joint entropy of the first k upper
records is given by

HU(k) = k −
k∑

i=1

E
{

log
(

h
(

F−1(1 − e−Yi )
))}

, (10)

where h(x) is the hazard rate function of X and Yi ∼ �(i, 1).

Proof Habibi et al. (2007), showed that

HU(k) = k − k(k + 1)

2
−

k∑

i=1

∞∫

−∞

f (x)[− log F̄(x)]i−1

�(i)
log f (x)dx . (11)

Using the identity log f (x) = log h(x) + log F̄(x) and transforming by y =
− log F̄(x), the result follows. ��
Corollary 2 Under the assumptions of Theorem 1 and using Lemma 1, a distribution
F is U BG A, U B E A or U BL A, if it is I F R, C F R or DF R, respectively.

Lemma 5 The joint entropy of the first k lower records is given by

HL(k) = k −
k∑

i=1

E
{

log
(

r
(

F−1(e−Yi )
))}

, (12)

where r(x) is the reversed hazard rate function of X and Yi ∼ �(i, 1).

Corollary 3 Under the assumptions of Theorem 1 and using Lemma 1, a distribution
F is L BL A, L B E A or L BG A, if it is I RF R, C RF R or DRF R, respectively.

We would intuitively expect that the entropy of records and their IRT’s should be
greater than that of those without their IRT’s, to investigate this we need the following
lemmas.

Lemma 6 Suppose that Yi ∼ �(i, 1), then

k∑

i=1

E
{
− log(1 − e−Yi )

}
= k

{

1 −
k−1∑

i=1

ζ(i + 1)

}

+
k−1∑

i=1

iζ(i + 1), (13)

where ζ(i + 1) = ∑∞
j=1

1
( j+1)i+1 is the generalized zeta function.
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Proof Notice that

k∑

i=1

E
{
− log(1 − e−Yi )

}
=

k∑

i=1

∞∑

j=1

1

j
E

{
e− jYi

}
=

∞∑

j=1

1

j2

(

1 − 1

( j + 1)k

)

.

On the other hand,

∞∑

j=1

k−1∑

i=1

k − i

( j + 1)i+1 = k
∞∑

j=1

k−1∑

i=1

1

( j + 1)i+1 −
∞∑

j=1

k−1∑

i=1

i

( j + 1)i+1

=
∞∑

j=1

k

j ( j + 1)
−

∞∑

j=1

k

j ( j + 1)k

−
∞∑

j=1

{
1

j2 − k

j2( j + 1)k−1 + k − 1

j2( j + 1)k

}

= k −
∞∑

j=1

1

j2

(

1 − 1

( j + 1)k

)

.

Therefore, the result follows. ��

Lemma 7 For α > 0, we have

1

α2α
≤ ζ(α + 1) ≤ 1

α
. (14)

Proof For α > 0 and n ≥ 2, (see Gut 2007, p. 559), we have

1

αnα
≤

∞∑

j=n

1

jα+1 ≤ 1

α(n − 1)α
≤ 2α

αnα
. (15)

Substituting n = 2 in (15), the result follows. ��

Theorem 3 Under the assumptions of Theorem 1, for k ≥ 2, the entropy of the first
k upper (lower) records and their IRTs is greater than the entropy of upper (lower)
records.

Proof We show that the result holds for upper records, the case of lower records is
similar. By Theorem 1 and Lemma 4, we have

HU,�(k) − HU(k) =
k∑

i=1

E

{

log
1 − e−Yi

e−Yi

}

,
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where Yi ∼ �(i, 1). So, it is sufficient to show that
∑k

i=1 E
{− log(1 − e−Yi )

}
<

k(k+1)
2 . By the first inequality in (14), we get

1 −
k−1∑

i=1

ζ(i + 1) ≤ 1 −
k−1∑

i=1

1

i2i
< 1 (16)

and by the second inequality in (14), we find

k−1∑

i=1

iζ(i + 1) ≤ k − 1. (17)

Therefore, by (13), we have

k∑

i=1

E
{
− log(1 − e−Yi )

}
≤ 2k − 1 ≤ k(k + 1)

2
,

which proves the result. ��

Remark 1 When the parent distribution is symmetric, the entropy results of this paper
based on upper records are similar to those of lower records.

4 Examples

In this section, we present some examples in order to illustrate our results. Let {Yi , i ≥
1} be a sequence of iid random variables with an absolutely continuous cdf G and pdf
g. Suppose G(·) belongs to the location-scale family of distributions, viz.,

G(y) = F

(
y − μ

σ

)

and g(y) = 1

σ
f

(
y − μ

σ

)

, σ > 0, μ ∈ R,

where F(·) and f (·) are the corresponding standard forms (with μ = 0 and σ = 1).

Then, it is evident that RY
n

d= μ + σ RX
n , where RY

n and RX
n are the n-th record (upper

or lower) value of the Y and X sequences, respectively, and
d= stands for identical in

distribution. Then

HRY
n

= HRX
n

+ log σ,

hence it is obvious that the scale parameter does not any effect on comparing of sam-
pling schemes A and B. So, we can consider the standard form of the corresponding
distribution.
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Example 1 Let X has a standard normal distribution, then

h(x) = e− x2
2

∫ ∞
x e

−t2
2 dt

is an increasing function in x . Hence, by Corollaries 1 and 2, normal distribution is
LT BL A and U BG A, respectively. Using Remark 1, it is also U T BL A and L BG A.

Example 2 Let X has an extreme value distribution with cdf

F(x) = e−e−x
, −∞ < x < ∞.

Then the reversed hazard rate function of X is

r(x) = f (x)

F(x)
= e−x ,

which is decreasing in x . So, by Theorem 2 and Corollary 3, this distribution is
U T BL A and L BG A, respectively. On the other hand the hazard rate function of X is

h(x) = f (x)

F̄(x)
= e−x e−e−x

1 − e−e−x ,

where h is an increasing function. Therefore, by Corollaries 1 and 2, extreme value
distribution is LT BL A and U BG A, respectively.

Example 3 Consider the Weibull distribution with cdf

F(x;α) = 1 − e−xα

, x > 0, α > 0.

Note that the reversed hazard rate function of X is

r(x;α) = f (x;α)

F(x;α)
= αxα−1e−xα

1 − e−xα ,

which is decreasing function in x for positive values of α. So, by Theorem 2 and
Corollary 3, the distribution is U T BL A and L BG A, respectively.

On the other hand, the hazard rate function of X is given by

h(x;α) = f (x;α)

F̄(x;α)
= αxα−1,

where h is an increasing, constant or decreasing function in x , when α is greater than,
equal to or less than 1, respectively. Therefore, by Corollary 1 [and Corollary 2],
the distribution is LT BL A [and U BG A], LT B E A [and U B E A] or LT BG A [and
U BL A], when α is greater than, equal to or less than 1, respectively.
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Table 1 Classification of some common distributions based on entropy properties of record data

cdf Upper records Lower records Upper records Lower records
and their IRT and their IRT

∫ x
−∞ 1√

2πσ
e

−(t−μ)2

2σ2 dt UBGA LBGA UTBLA LTBLA

e−e
−

(
x−α
β

)

UBGA LBGA UTBLA LTBLA

xθ

θ ≥ 1 UBGA LBGA UTBLA LTBLA

0 < θ < 1 UBGA∗ LBGA UTBLA LTBLA∗

1 − e
−

(
x−μ
σ

)α

0 < α < 1 UBLA LBGA UTBLA LTBGA

α = 1 UBEA LBGA UTBLA LTBEA

α > 1 UBGA LBGA UTBLA LTBLA

1 −
(

β
x

)α
UBLA LBGA UTBLA LTBGA

1 − (1 + xα)−1

0 < α ≤ 1 UBLA LBGA UTBLA LTBGA

α > 1 UBLA∗ LBGA UTBLA LTBGA∗

Notice that, in the special case, α = 1, the results of Weibull distribution coincide
with those of exponential distribution.

Example 4 A random variable X is said to have a power function distribution if its
cdf is

F(x; θ) = xθ , 0 < x < 1.

Then the reversed hazard rate function of X is

r(x; θ) = θ

x
,

which is decreasing in x . So by Theorem 2 and Corollary 3, the corresponding distribu-
tion is U T BL A and L BG A, respectively. On the other hand the hazard rate function
of X is

h(x; θ) = θxθ−1

1 − xθ
,

which is an increasing function with respect to x for θ ≥ 1, whereas for θ < 1 it is not
a monotone function. Therefore for θ ≥ 1, by Corollaries 1 and 2, the power function
distribution is LT BL A and U BG A, respectively. Using Eq. 10, we get
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H B
U (mk)−H A

U (mk)= mk2(m − 1)

2
+ θ − 1

θ

m∑

i=1

k∑

j=1

{ξ ( j +k(i −1))−ξ( j)} , (18)

where ξ(i) = E[log(1−e−Yi )] and Yi ∼ �(i, 1). Notice that the sign of the expression
(18) cannot be mathematically determined when θ < 1; Numerical computations in
this case indicate that the distribution is U BG A. Similarly, for lower records and their
IRTs, by Eq. 9, we find

H A
L,�′(mk) − H B

L,�′(mk) = θ − 1

θ

mk2(m − 1)

2

+
m∑

i=1

k∑

j=1

{ξ ( j + k(i − 1)) − ξ( j)} . (19)

Using (19), it can be numerically shown that for θ < 1 the distribution is LTBLA.

We have considered several other common life distributions and the results are
summarized in Table 1. In this table, ∗ means that the result there has been obtained
using numerical computations, but has not been proved mathematically.
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