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Abstract The empirical likelihood method is proposed to construct the confidence
regions for the difference in value between coefficients of two-sample linear regres-
sion model. Unlike existing empirical likelihood procedures for one-sample linear
regression models, as the empirical likelihood ratio function is not concave, the usual
maximum empirical likelihood estimation cannot be obtained directly. To overcome
this problem, we propose to incorporate a natural and well-explained restriction into
likelihood function and obtain a restricted empirical likelihood ratio statistic (RELR).
It is shown that RELR has an asymptotic chi-squared distribution. Furthermore, to
improve the coverage accuracy of the confidence regions, a Bartlett correction is
applied. The effectiveness of the proposed approach is demonstrated by a simulation
study.
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84 X. Zi et al.

1 Introduction

Consider the following linear regression model,

yk =
{
xτ

kβ + εk, 1 ≤ k ≤ n1,

xτ
kβ1 + εk, n1 < k ≤ n,

(1)

where xk ∈ R
d , 1 ≤ k ≤ n are fixed design points, yk ∈ R, 1 ≤ k ≤ n are the

corresponding responses and β, β1 are unknown d-dimensional coefficients. Here
we assume εk ∈ R, 1 ≤ k ≤ n are independent random variables with mean zero.
Furthermore, {εi , 1 ≤ i ≤ n1} and {ε j , n1 ≤ j ≤ n} come from two distributions F
and G respectively.

Let δ = β − β1. We are interested in constructing confidence intervals for δ or
testing H0 : δ = δ0. This problem has been well addressed in the literature if F and G
are both normally distributed (see Sen and Srivastava 1997). In general, when both F
and G are unknown, it seems that development of nonparametric approaches is highly
desirable.

In this paper, we will apply the empirical likelihood method to this problem. Empir-
ical likelihood that was first introduced by Owen (1988, 1990) is a nonparametric
method of statistical inference. It allows the data analyst to use likelihood methods
without having to assume that the data comes from a known family of distributions.
It has sampling properties similar to bootstrap, but achieves them through profiling a
multinomial with one parameter per data point instead of resampling. Many advantages
of the empirical likelihood over the normal approximation-based method have been
shown in literature. In particular, it does not impose prior constraints on the shape of
region, it does not require the construction of a pivotal quantity and the region is range
preserving and transformation respecting (see Hall and La Scala 1990). Specially,
there are various authors to extend empirical likelihood methodology to regression
model; see Owen (1991) and Chen (1993, 1994) for linear models, Kolaczyk (1994)
for generalized linear models, Wang and Jing (1999), Shi and Lau (2000) and Zhu and
Xue (2006) for partially linear models, Cui and Chen (2003) for linear EV models,
etc.

Unlike common empirical likelihood procedures for one-sample linear regression
models or the two-sample problem of univariate and multivariate mean models (Jing
1995; Liu et al. 2008), as the empirical likelihood ratio function is not concave, the
usual maximum empirical likelihood estimation cannot be obtained directly. To attack
this difficulty, we propose to incorporate a natural and well-explained restriction into
likelihood function and obtain a restricted empirical likelihood ratio statistic (RELR).
The RELR is proved to achieve asymptotic χ2 distribution, which allows us to con-
struct the confidence regions for the difference in value between the coefficients of
two-sample linear regression model with the coverage error tending to zero at the rate
of n−1. Note that the problem of non-concavity in empirical likelihood has been men-
tioned in the existing literature, e.g., Chen et al. (2008) which suggested a novel method
to overcome the difficulty posed by the nonexistence of solutions while computing
the profile empirical likelihood.
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Two-sample empirical likelihood method for linear model 85

Furthermore, we will give a Bartlett correction for the empirical likelihood confi-
dence regions. As we know, an attractive advantage of empirical likelihood against
bootstrap is that it admits Bartlett correction in many important situations such as the
smooth function model (DiCiccio et al. 1991), linear regression model (Chen 1993,
1994) and two-sample mean problem (Jing 1995; Liu et al. 2008). With Bartlett cor-
rection the empirical likelihood ratio statistic has a limiting chi-squared distribution
with error being reduced from O(n−1) to O(n−2). In this article, an explicit formula
for the correction which can improve the coverage accuracy of confidence regions
is derived. Also, an empirical Bartlett correction is given for practical implementa-
tion. Simulation shows that the proposed confidence region has satisfactory coverage
accuracy.

This paper is organized as follows. We formulate the empirical likelihood and con-
fidence regions for δ in Sect. 2. The coverage accuracy and Bartlett correction are also
studied in this section. The simulation results are presented in Sect. 3. All the technical
proofs are put in the Appendix.

2 Methodology and main results

Recall the model (1) mentioned in Sect. 1. In this paper, it is assumed that θ =
n1/n → θ0 ∈ (0, 1) as n → ∞ and β0 is the true regression coefficient under H0.
Since then, unless otherwise stated, subscript i runs from 1 to nθ , j from nθ + 1 to
n and k from 1 to n, while all superscripts run from 1 to d. Let y∗

j = y j + xτ
j δ0,

Vn1 = 1
nθ

∑
i xix

τ
i and Vn2 = 1

n(1−θ)

∑
j x jx

τ
j . Using the idea of Owen (1991), we

introduce the auxiliary random vector of d components zi ≡ zi (β) = xi (yi − xτ
i β)

and z j ≡ z j (β) = x j (y∗
j −xτ

jβ). Let (p1, p2, · · · , pnθ ) and (qnθ+1, qnθ+2, · · · , qn)

be probability vectors (that is,
∑

pi = 1,
∑

q j = 1 and pi ≥ 0, q j ≥ 0). The
empirical likelihood for δ, evaluated at δ0, is defined as

L(δ0) = sup
{ ∏

i

pi

∏
j

q j

∣∣∣∑
i

pi zi =
∑

j

q j z j = 0
}

and the corresponding empirical log-likelihood ratio is defined as

l(δ0) = −2 ln L(δ0)/L(δ̂)

= −2 sup
{ ∑

i

ln(nθpi ) +
∑

j

ln(n(1 − θ)q j )

∣∣∣∑
i

pi zi =
∑

j

q j z j = 0
}

where δ̂ = (
∑

i xix
τ
i )−1 ∑

i x
τ
i yi − (

∑
j x jx

τ
j )

−1 ∑
j x

τ
j y j and we have used the

fact that L(δ̂) = (nθ)−nθ [n(1 − θ)]−n(1−θ).

The lagrange multiplier method leads to

pi = 1

nθ

1

1 + θ−1λτ
1zi

q j = 1

n(1 − θ)

1

1 − (1 − θ)−1λτ
2z j

,
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86 X. Zi et al.

where the multipliers λ1,λ2 ∈ R
d . Consequently, the maximum log-likelihood ratio

is

l(λ1,λ2,β) = 2
[ ∑

i

ln{1 + θ−1λτ
1zi } +

∑
j

ln{1 − (1 − θ)−1λτ
2z j }

]
. (2)

In general, the empirical likelihood method is to seek the maximum of (2) under the
following inequality constraints

1 + θ−1λτ
1zi >

1

nθ
, 1 − (1 − θ)−1λτ

2z j >
1

n(1 − θ)
.

However, such maximum mechanism does’t work in this case because the function
l(λ1,λ2,β) is not concave, which is easy to be verified. To overcome this problem,
consider one of the score functions of (2)

∂l(λ1,λ2,β)

−2∂β
=

∑
i

pixix
τ
i λ1 −

∑
j

q jx jx
τ
jλ2 = 0.

It can be shown that the solution to the above score equation satisfies λ1 = Op(n−1/2)

and λ2 = Op(n−1/2). Therefore the resulting probability weights pi s and q j s are
approximately 1

nθ
and 1

n(1−θ)
, respectively. This motivates us to set pi = 1

nθ
and

q j = 1
n(1−θ)

in the above equation, and restrict λ1 and λ2 in

Ω =
{
(λ1,λ2) : Vn1λ1 = Vn2λ2

}
.

It follows that a restricted empirical likelihood ratio (RELR) function can be defined
as

lR(λ,β) ≡ l(λ1,λ2,β|(λ1,λ2) ∈ Ω)

= 2
[ ∑

i

ln{1 + θ−1λτzi } +
∑

j

ln{1 − (1 − θ)−1λτ Vn1 V−1
n2
z j }

]
.

Let (̂λ, β̂) be the solution to the score equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i

zi

θ + λτzi
−

∑
j

Vn1 V−1
n2
z j

1 − θ − λτ Vn1 V−1
n2 z j

= 0,

∑
i

xix
τ
i λ

θ + λτzi
−

∑
j

x jx
τ
j V

−1
n2

Vn1λ

1 − θ − λτ Vn1 V−1
n2 z j

= 0

(3)

and define l1(δ0) = lR (̂λ, β̂). It can be shown that the function lR(λ,β) is at least con-
cave in the n− 1

2 neighborhood of (0,β0) and asymptotic concave in the neighborhood
of (̂λ, β̂), which means that the maximum value can be attained as n → ∞.
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Two-sample empirical likelihood method for linear model 87

In the following theorem, we shall establish a nonparametric version of Wilk’s the-
orem for RELR. To this end, we make the following assumptions. Let v

(1)
dn , v

(1)
1n and

v
(2)
dn , v

(2)
1n be the smallest and largest eigenvalues of Vn1 and Vn2 , respectively.

C1. There exist positive constants m and M such that for all n, m < v
(1)
dn , v

(2)
dn ≤

v
(1)
1n , v

(2)
1n < M.

C2.
Eε4

1
(nθ)2

∑
i (x

τ
i xi )

2 + Eε4
n

(n(1−θ))2

∑
j (x

τ
jx j )

2 → 0 when n → ∞.

We have the following theorem.

Theorem 1 Let δ0 be the true value of δ. Then under the conditions C1 and C2, l1(δ0)

has an asymptotic χ2
d distribution. Furthermore, P(l1(δ0) < cα) = α + O(n−1),

where cα is the α percentile of the χ2
d distribution.

From Theorem 1, one can construct an α-level confidence region for δ by

Iα = {δ : l1(δ) < cα}.

Then Iα will have correct asymptotic coverage accuracy in the sense that its coverage
error tends to zero at the rate of n−1, i.e.

P(δ ∈ Iα) = α + O(n−1).

For one-sample linear regression model, the order O(n−1) was pointed out by Chen
(1993). Besides, Chen (1993) also showed that using Bartlett correction could reduce
the coverage error of empirical likelihood confidence regions from order O(n−1) to
order O(n−2). Here we show the proposed l1(δ0) for the two-sample linear regression
problem is also Bartlett correctable.

Let U = (G1, . . . , Gt , . . . , Gddd) (see the Appendix for the definitions of G’s).
Some additional regularity conditions are needed.

C3. The smallest eigenvalue of nCov(U) is bounded away from 0.
C4. There exist M1 > m1 > 0, such that m1 < inf ‖xk‖ ≤ sup ‖xk‖ < M1

uniformly in n.
C5. E |εi |15 < ∞ and E |ε j |15 < ∞.
C6. For all b > 0, max

1≤l≤2
sup

‖t‖>b
‖gl(t)‖ < 1, where g1(t) = Eeiε1t and g2(t) = Eeiεn t .

Remark 1 Under condition C3, the vector U is of full rank. Condition C4 assures that
matrices such as Vn1, Vn2 are uniformly nonsingular and bounded for n larger than
some integer. Condition C5 is similar to that of Chen (1993) and assures the validity of
the Edgeworth expansion of l1(δ0). Condition C6 is just common Cramer’s condition.

For notation convenience, define H = [θσ 2
2 Vn1 + (1 − θ)σ 2

1 Vn2 ]−1, Mn = θ(1 −
θ)Vn1HVn2 , ui = M

1
2
n V−1

n1
xi/θ and u j = −M

1
2
n V−1

n2
x j/(1 − θ), where σ 2

1 = Eε2
1

and σ 2
2 = Eε2

n are the second moments of F and G respectively. For a vector u we
use ur to denote its r -th component. Further define
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88 X. Zi et al.

η =
∑
r,k,l

(1

n

∑
i

ur
i u

k
i u

l
i Eε3

1 + 1

n

∑
j

ur
ju

k
ju

l
j Eε3

n

)2
,

ζ =
∑
r,k

(1

n

∑
i

ur
i u

r
i u

k
i u

k
i Eε4

1 + 1

n

∑
j

ur
ju

r
ju

k
ju

k
j Eε4

n

)
,

ξ =
∑
r,s,t

1

n

∑
k

ur
ku

r
kx

s
kx

t
kHst ,

where Hst denotes the (s,t)-th element of H. Here we use the summation convention
according to which, if an index occurs more that once in an expression, summation
over the index is understood. Then we have the following theorem.

Theorem 2 Assume that conditions C1 − C6 hold. Let δ0 be the true value of δ, then
we have

P
(
l1(δ0) ≤ cα(1 + an−1)

) = α + O(n−2). (4)

where a = −η/3d + ζ/2d + ξ/d.

In practical application, the moments of εi and ε j are unknown. Consider the
least square estimates βL1 and βL2 for {(xi , yi )} and {(x j , y j )} respectively, then
the estimates of the kth moments are defined as μ̂k1 = 1

nθ

∑
i (yi − xτ

i βL1)
k and

μ̂k2 = 1
n(1−θ)

∑
j (y j − xτ

jβL2)
k . We can substitute these moment estimates for the

corresponding unknown ones in (4) to obtain
√

n-consistent estimates η̂, ζ̂ , ξ̂ and
correspondingly obtain an estimate â = −η̂/3d + ζ̂ /2d + ξ̂ /d for a. Replacing a by
â in (4) does’t affect the theorem (by utilizing the parity property of the polynomials
in Edgeworth expansion; see Hall and La Scala 1990, Sect. 3.3). So we can construct
an α-level confidence region for δ based on (4), which is

Jα = {δ : l1(δ) ≤ cα(1 + ân−1)}.

The corresponding coverage error is reduced from O(n−1) to O(n−2).

3 A simulation study

In this section we report a simulation study designed to evaluate the performance of the
proposed empirical likelihood confidence region. Under consideration is the following
simple linear regression model:

yk = 1 + xk + εk, 1 ≤ k ≤ n. (5)

The distributions of xi and x j are both standard Normal. In this case, d = 2, β0 =
(1, 1) and xk = (1, xk) for 1 ≤ k ≤ n. Three error patterns are considered: (i)
εi = N (0, 1) and ε j = N (0, 1); (ii) εi = t (4) and ε j = N (0, 1); (iii) εi = χ2

4 − 4.0,
ε j = exp(1.0) − 1.0, where N (0, 1), exp(1.0), χ2(4) and t (4) are random variables
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Two-sample empirical likelihood method for linear model 89

Table 1 The coverage probability comparisons of confidence regions with three error patterns for α = 0.95

Error θ Bootstrap Uncorrected Iα Jα with a Jα with â

(i) 0.250 0.923 0.922 0.939 0.935

0.375 0.930 0.933 0.942 0.939

0.500 0.938 0.938 0.945 0.943

(ii) 0.250 0.908 0.906 0.931 0.923

0.375 0.917 0.920 0.940 0.936

0.500 0.932 0.931 0.941 0.938

(iii) 0.250 0.898 0.896 0.920 0.911

0.375 0.908 0.911 0.931 0.925

0.500 0.927 0.928 0.937 0.934

Table 2 Simulated results on the lengths of confidence intervals and two one-sided errors for slope param-
eter at α = 0.95

Error θ Bootstrap Uncorrected Iα Jα with â

LCI LE UE LCI LE UE LCI LE UE

(i) 0.250 0.90 0.44 0.31 0.90 0.49 0.18 0.95 0.42 0.20

0.375 0.68 0.38 0.25 0.66 0.30 0.26 0.69 0.40 0.11

0.500 0.51 0.15 0.17 0.51 0.21 0.14 0.52 0.15 0.05

(ii) 0.250 1.63 0.60 0.49 1.32 0.83 0.47 2.14 0.43 0.28

0.375 1.24 0.50 0.34 1.10 0.56 0.31 1.52 0.38 0.18

0.500 0.76 0.26 0.21 0.89 0.34 0.12 1.17 0.21 0.06

(iii) 0.250 2.40 0.03 2.75 2.54 0.42 1.99 2.82 0.45 1.21

0.375 1.86 0.20 1.66 1.92 0.14 1.17 2.14 0.23 0.97

0.500 1.45 0.06 0.65 1.47 0.12 0.42 1.51 0.02 0.28

LCI length of confidence interval, LE (lower-sided error)×100, UE (upper-sided error)×100

with standard Normal distribution, exponential distribution with unit mean, chi-square
distribution with four degrees of freedom and student-t distribution with four degrees
of freedom. For each of these three error patterns, we choose the sample size n = 200,
θ = 0.25, 0.375, 0.5 and nominal coverage level α = 0.95. Table 1 shows the simu-
lated coverage percentage comparisons for confidence regions through ten thousand
replications. The four values in each row are the coverages of the confidence regions
obtained by studentized bootstrap approach (see Davison and Hinkley 1997), the
uncorrected regions Iα and two corrected regions Jα which use a and â respectively.
As we can expect, the unadjusted empirical likelihood has similar performance to
the bootstrap approach because they both have theoretical coverage errors of order
O(n−1). The corrected empirical confidence regions perform similarly to their theo-
retical counterparts. The empirical likelihood with Bartlett corrections work uniformly
better than the uncorrected one and in come cases the improvements are quite remark-
able.
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90 X. Zi et al.

To further check the efficiency of the proposed RELR approach, we consider the
case that the model (5) only contains the slope term, i.e., d = 1. This simple model
allows us to compute the length of confidence interval which is also a good benchmark
for evaluating the relative performance of various methods. We only present the results
at nominal coverage level α = 0.95 because similar conclusion holds for other levels.
The studentized bootstrap approach, the uncorrected regions Iα and corrected regions
Jα with â are considered. Besides the lengths of confidence intervals, the two one-
sided errors are also presented (DiCiccio and Romano 1989). The simulated results
over ten thousand replications under the same settings of Table 1 are summarized
in Table 2. Similar to the findings of Table 1, the unadjusted RELR has comparable
performance to the bootstrap approach in terms of both lengths of confidence intervals
and one-sided errors. In comparison, the corrected RELR usually has wider intervals
which results in smaller sum of one-sided errors.

Acknowledgements The authors thank the editor, and an anonymous referee for many constructive com-
ments that greatly improved the article. This work was supported by the NNSF of China grant No. 10771107,
10711120448, 10901092, 10926063.

Appendix: Proofs

Throughout the Appendix, we use the following additional notation:

wi
�= wi (β) = M

1
2
n V−1

n1
zi , w j

�= w j (β) = M
1
2
n V−1

n2
z j ,

where Mn is defined in Sect. 2. In this appendix, all the expressions in Sect. 2 are
rewritten by using wi and w j instead of zi and z j , which makes the arguments more
concise.

First we rewrite lR(λ,β) in terms of wi and w j ,

l(λ,β) = 2
∑

i

ln

(
1 + 1

θ
λτwi

)
+ 2

∑
j

ln

(
1 − 1

1 − θ
λτw j

)
.

Meanwhile Eq. 3 become

⎧⎪⎨
⎪⎩

∑
i

wi
θ+λτwi

− ∑
j

w j
1−θ−λτw j

= 0,

M
1
2
n V−1

n1

∑
i

xix
τ
i λ

θ+λτwi
− M

1
2
n V−1

n2

∑
j

x jx
τ
jλ

1−θ−λτw j
= 0.

(A.1)

To prove Theorem 1, we need the following lemma.

Lemma 1 Under the conditions of Theorem 1, let (̂λ, β̂) be the solution to Eq. A.1,
we have

λ̂ = Op(n
− 1

2 ), β̂ − β0 = op(1).
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Two-sample empirical likelihood method for linear model 91

Proof Let l(β) = lR(λ(β),β), where λ(β) is determined by the first equation of
(A.1). For β = β0 + γ , where ‖ γ ‖= ε > 0, expanding the first equation of (A.1)
and following similar arguments to Owen (2001, p. 220), we can obtain

λ = S(β)−1ψ + op(n
− 1

2 ),

where

ψ = 1

nθ

∑
i

wi (β) − 1

n(1 − θ)

∑
j

w j (β)

and

S(β) = 1

nθ2

∑
i

wi (β)wi (β)τ + 1

n(1 − θ)2

∑
j

w j (β)w j (β)τ .

Note that here ψ is independent of β.
Then expanding l(β) leads to

l(β) = ψS−1(β)ψ + op(1) = ψ(S(β0) + φ)−1ψ + op(1),

where

φ = 1

nθ2

∑
i

M
1
2
n V−1

n1
xix

τ
i γ γ

τxix
τ
i V−1

n1
M

1
2
n

+ 1

n(1 − θ)2

∑
j

M
1
2
n V−1

n2
x jx

τ
jγ γ

τx jx
τ
j V

−1
n2

M
1
2
n .

We can see that when γ = 0, that isβ = β0,ψ(S(β0) + φ)−1ψ achieves its maximum
in the neighborhood of β0. This means when n tends to infinity in any ε-neighborhood
of β0 the function lR(λ,β) has one local maximum, which indicates β̂−β0 = op(1).

Therefore the above approximation forλ is valid. In fact, since S(β0) = Id +Op(n− 1
2 ),

λ̂ = S−1(β0)ψ + op(n
− 1

2 ) = ψ + op(n
− 1

2 ) = Op(n
− 1

2 ),

which completes the proof. �

Proof of Theorem 1 From the proof of Lemma 1 we have

λ̂ = ψ + op(n
− 1

2 ) = 1

nθ

∑
i

M
1
2
n V−1

n1
xi yi − 1

n(1 − θ)

∑
j

M
1
2
n V−1

n2
x j y j + op(n

− 1
2 ).

By Linderberg-Feller Theorem, we know that
√

nλ̂
L→ N (0, Id). Using Taylor expan-

sion of lR (̂λ, β̂) and treating high-order terms similarly as in the standard empirical
likelihood method (Owen 2001), we can get
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92 X. Zi et al.

lR (̂λ, β̂) = nλ̂
τ
λ̂+ op(1)

L→ χ2
d ,

which completes the proof. �


Before giving the proof of Theorem 2, we need some additional notation. Define

gt1t2···tl = 1

nθ l

∑
i

E(w
t1
i0w

t2
i0 · · ·wtl

i0) + 1

n(θ − 1)l

∑
j

E(w
t1
j0w

t2
j0 · · ·wtl

j0),

Gt1t2···tl = 1

nθ l

∑
i

w
t1
i0w

t2
i0 · · ·wtl

i0 + 1

n(θ − 1)l

∑
j

w
t1
j0w

t2
j0 · · ·wtl

j0 − gt1t2···tl ,

Gt1t2···tl
1 = 1

nθ l

∑
i

w
t1
i1w

t2
i1 · · ·wtl

i1 + 1

n(θ − 1)l

∑
j

w
t1
j1w

t2
j1 · · ·wtl

j1 − gt1t2···tl ,

where wk0 = wk(β0) and wk1 = wk(β(1)) and β(1) is defined in the following proof
of Theorem 2.

Proof of Theorem 2 Based on Lemma 1, by lengthy algebra we can obtain β(r) and

ξ r , r = 1, 2, 3 which satisfy β(r) − β̂ = Op(n− 1+r
2 ) and ξ r − λ̂ = Op(n− 1+r

2 ). The
details are omitted here and a similar manipulation can be found in Liu et al. (2008).

Similar to the methodology given in DiCiccio et al. (1991), by using β(r) and
ξ r , r = 1, 2, 3, we have the following Taylor expansion for l1(δ0),

n−1l1(δ0) = Δ1 + Δ2 + Op

(
n− 5

2

)
, (A.2)

where

Δ1 = Gr Gr − Grs Gr Gs + 2

3
gruvGr GuGv + Grs Gst Gr Gt + 2

3
GruvGr GuGv

−2grst Gru Gs GuGt + grst gruvGs Gt GuGv − 1

2
grstuGr Gs Gt Gu,

Δ2 = (Grs − Grs
1 )Gr Gs + 2

3
(Gruv

1 − Gruv)Gr GuGv.

Note that Δ1 is similar to the expansion of one-sample empirical log-likelihood
ratio, compared with the terms given in Chen (1993). However, Δ2 is a new and
unique term for the two-sample case. The existence of this term is because under H0
we know nothing but the difference about the two coefficients, therefore we have to
estimate them. For a related but more detailed discussion on two-sample multivariate
mean problem, please refer to Liu et al. (2008).

Next, we decompose l1(δ0) from (A.2) as

l1(δ0) = (
√

nRτ )(
√

nR) + Op(n
− 3

2 ),
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whereR = R1 +R2 +R3 is d-dimensional vector andRi = Op(n− i
2 ) for i = 1, 2, 3.

Rr
1 = Gr , Rr

2 = −1

2
Grk

1 Gk + 1

3
grkl Gk Gl ,

Rr
3 = 4

9
gukl gurvGk Gl Gv + 3

8
Grk Gkl Gl − 5

12
gkrl GkuGuGl

− 5

12
gurl Gur Gk Gl + 1

3
Grkl

1 Gk Gl − 1

4
grklm Gk Gl Gm .

Checking the conditions and applying Theorem 2.1 of Chen (1993) lead to the
following Edgeworth expansion:

P(l1(δ0) < cα) = α − acαhd(cα)n−1 + O(n− 3
2 )

where hd is the density of χ2
d distribution, P(χ2

d < cα) = α and a is defined in Sect. 2.
This completes the proof of Theorem 2. �
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