
Stat Papers (2011) 52:789–798
DOI 10.1007/s00362-009-0287-8

REGULAR ARTICLE

Marshall–Olkin bivariate Weibull distributions
and processes

K. K. Jose · Miroslav M. Ristić · Ancy Joseph
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Abstract In this paper we introduce a new probability model known as type 2
Marshall–Olkin bivariate Weibull distribution as an extension of type 1 Marshall–
Olkin bivariate Weibull distribution of Marshall–Olkin (J Am Stat Assoc 62:30–44,
1967). Various properties of the new distribution are considered. Bivariate minification
processes with the two types of Weibull distributions as marginals are constructed and
their properties are considered. It is shown that the processes are strictly stationary.
The unknown parameters of the type 1 process are estimated and their properties are
discussed. Some numerical results of the estimates are also given.
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1 Introduction

Weibull probability model plays a crucial role in reliability theory and life testing
experiments. It reduces to exponential distribution when the shape parameter is one.
As in the case of exponential distributions we have different bivariate and multivariate
extensions of Weibull distribution. Mino et al. (2003) discussed the applications of a
Marshall–Olkin bivariate Weibull distribution in lifespan. Rachev et al. (1995) consid-
ered a Marshall–Olkin bivariate Weibull distribution as a bivariate limiting distribution
of the tumor latency time. In recent years a great number of minification processes
have been constructed by different authors. For example see Tavares (1980), Sim
(1986), Yeh et al. (1988), Arnold and Robertson (1989) and Pillai (1991). Jayakumar
and Thomas (2007) generalized a family of two parameters Marshall–Olkin distri-
butions to a family of three parameters Marshall–Olkin distributions. Balakrishna
and Jayakumar (1997) introduced a bivariate semi-Pareto minification process. Ristić
(2006) introduced a class of bivariate minification processes. Alice and Jose (2002)
introduced multivariate minification processes.

Marshall and Olkin (1997) introduced a method of adding a parameter into a family
of distributions, which result in the flexibility of the new distribution. Marshall and
Olkin (1967) introduced two new distributions: an exponential distribution with two
parameters and a Weibull distribution with three parameters. Alice and Jose (2005a,b)
introduced Marshall–Olkin distributions with semi-Weibull and logistic marginals.
Thomas and Jose (2004) introduced a Marshall–Olkin bivariate semi-Pareto minifica-
tion process.

In Sect. 2, we introduce a minification process with type 1 Marshall–Olkin bivariate
Weibull distribution. In Sect. 3, we estimate the unknown parameters and give some
numerical results of the estimates. Section 4 deals with type 2 Marshall–Olkin bivar-
iate Weibull distribution and its properties. In Sect. 5 we consider the properties of a
minification process with type 2 Marshall–Olkin bivariate Weibull distribution.

Definition 1.1 We say that a random vector (X, Y ) has a type 1 Marshall–Olkin bivar-
iate Weibull distribution with parameters λ1 > 0, λ2 > 0, λ12 > 0, α1 > 0 and α2 > 0
if its survival function is of the form

P(X > x, Y > y) = e−λ1xα1 −λ2 yα2 −λ12 max(xα1 ,yα2 ), x ≥ 0, y ≥ 0.

We denote a Marshall–Olkin bivariate Weibull distribution with parameters λ1, λ2,
λ12, α1 and α2 as MOBVW(λ1, λ2, λ12, α1, α2).

Remark 1.1 If α1 = α2 = 1, then a Marshall–Olkin bivariate Weibull distribution
becomes a Marshall–Olkin bivariate exponential distribution. For details see Marshall
and Olkin (1967).

Remark 1.2 If α1 = α2 = α, then a Marshall–Olkin bivariate Weibull distribution
becomes a bivariate Weibull distribution of Hanagal (1996).

123



Marshall–Olkin bivariate Weibull distributions and processes 791

Remark 1.3 The Marshall–Olkin bivariate Weibull distribution has univariate expo-
nential marginals with survival functions given by

F̄(x) = e−(λ1+λ12)xα1

F̄(y) = e−(λ2+λ12)yα2
.

2 Minification process with type 1 MOBVW

We consider a bivariate minification process {(Xn, Yn), n ≥ 0} given by

Xn = min
(

p−1/α1 Xn−1, (1 − p)−1/α1εn
)

Yn = min
(

p−1/α2 Yn−1, (1 − p)−1/α2ηn
) , n ≥ 1 (2.1)

where {(εn, ηn), n ≥ 1} is a sequence of identically and independently distributed
(i.i.d.) random vectors, (εn, ηn) and (Xm, Ym) are independent random vectors for all
m < n, α1 > 0, α2 > 0 and 0 < p < 1.

Below, we give a necessary and sufficient condition for the bivariate minification
process {(Xn, Yn)} given by (2.1) to be strictly stationary process with MOBVW
(λ1, λ2, λ12, α1, α2) distribution.

Theorem 2.1 A bivariate minification process {(Xn, Yn), n ≥ 0} given by (2.1) is a
strictly stationary Markov process with MOBVW (λ1, λ2, λ12, α1, α2) distribution if

and only if (εn, ηn) has a MOBVW (λ1, λ2, λ12, α1, α2) distribution and (X0, Y0)
d=

(ε1, η1).

Proof First assume that the process {(Xn, Yn)} is a strictly stationary process with
MOBVW (λ1, λ2, λ12, α1, α2) distribution. Let F̄(x, y) be the survival function of
the random vector (Xn, Yn) and Ḡ(x, y) be the survival function of the random vector
(εn, ηn). Then it follows from (2.1) that

Ḡ
(
(1 − p)1/α1 x, (1 − p)1/α2 y

)
= F̄ (x, y)

F̄
(

p1/α1 x, p1/α2 y
)

= e−λ1(1−p)xα1−λ2(1−p)yα2 −λ12(1−p) max(xα1 ,yα2 ).

This implies that the random vector (εn, ηn) has a MOBVW (λ1, λ2, λ12, α1, α2)

distribution.
Conversely, assume that (εn, ηn) has a MOBVW (λ1, λ2, λ12, α1, α2) distribution

and (X0, Y0)
d= (ε1, η1). Let F̄n(x, y) be the survival function of the random vector

(Xn, Yn). Then for n = 1 we have

F̄1(x, y) = F̄0

(
p1/α1 x, p1/α2 y

)
Ḡ

(
(1 − p)1/α1 x, (1 − p)1/α2 y

)

= e−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 ),
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which implies that (X1, Y1) has a MOBVW (λ1, λ2, λ12, α1, α2) distribution. Suppose
now that (Xi , Yi ) has a MOBVW (λ1, λ2, λ12, α1, α2) distribution, i = 1, 2, . . . , n−1.
Then

F̄n(x, y) = F̄n−1

(
p1/α1 x, p1/α2 y

)
Ḡ

(
(1 − p)1/α1 x, (1 − p)1/α2 y

)

= e−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 ),

i.e. (Xn, Yn)
d= MOBVW(λ1, λ2, λ12, α1, α2). Thus (Xn, Yn)

d= (X0, Y0) for every
n and since the process {(Xn, Yn)} is a Markov process, it follows that the process
{(Xn, Yn)} is a strictly stationary process. ��
Corollary 2.1 Suppose that the random vector (X0, Y0) has an arbitrary survival
function such that F̄0(x, y) → 1, as x → 0, y → 0. Then the random vector (Xn, Yn)

converges in distribution to MOBVW (λ1, λ2, λ12, α1, α2) distribution.

In this paper, we will consider a strictly stationary process {(Xn, Yn), n ≥ 0} with
MOBVW (λ1, λ2, λ12, α1, α2) distribution given by (2.1). The simulated sample path
of a Marshall–Olkin bivariate Weibull minification process for λ1 = 0.5, λ2 = 1,
λ12 = 1.5, α1 = 0.5, α2 = 0.25 and different values of p is given in Fig. 1.

Simulation procedure

First we simulate a realization of a random vector with Marshall–Olkin bivariate
exponential distribution. If the random variables U , V , and W have exponential distri-
butions with parameters λ1, λ2, λ12 respectively, then the random vector (X, Y ) where
X = min(U, W ) and Y = min(V, W ) has a Marshall–Olkin bivariate exponential
distribution. Then, (X1/α1 , Y 1/α2) has Marshall–Olkin bivariate Weibull distribution.

3 Estimation of the parameters

In this section, we shall consider the problem of estimating the parameters p, α1, α2, λ1,
λ2 and λ12. Let X0, X1, . . ., Xn be a sample of size n+1. We shall consider first the esti-
mation of the parameter p. Easy calculations show that P(Xn+1 > Xn) = (2 − p)−1

and P(Yn+1 > Yn) = (2 − p)−1. Let Ui = I (Xi+1 > Xi ) and Vi = I (Yi+1 > Yi ).
Since the process {(Xn, Yn)} is ergodic, the arithmetic means Ūn = 1

n

∑n−1
i=0 Ui and

V̄n = 1
n

∑n−1
i=0 Vi are strongly consistent estimators of (2− p)−1. This implies that the

estimators p̂1n = 2−(Ūn)−1 and p̂2n = 2−(V̄n)−1 are strongly consistent estimators
of p.

Now, we consider the estimation of the parameters α1 and α2. Let K = p−1/α1 and
L = p−1/α2 . Since Xi+1/Xi ≤ K and Yi+1/Yi ≤ L a.s., the natural estimators of K
and L are given by

K̂n = max(X1/X0, X2/X1, . . . , Xn/Xn−1),

L̂n = max(Y1/Y0, Y2/Y1, . . . , Yn/Yn−1),
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Marshall–Olkin bivariate Weibull distributions and processes 793

Fig. 1 The simulated sample path and scatterplot for λ1 = 0.5, λ2 = 1, λ12 = 1.5, α1 = 0.5, α2 = 0.25
and different values of p

respectively. Using the same technique as Balakrishna and Jacob (2003), we can show
that K̂n and L̂n are strongly consistent estimators of K and L .

Estimates of p, K and L can now be used to estimate α1 and α2. We propose two
estimators α̂1n = − log p̂1n/log K̂n and α̃1n = − log p̂2n/log K̂n for α1 and two esti-
mators α̂2n = − log p̂1n/log L̂n and α̃2n = − log p̂2n/log L̂n for α2. The estimators
α̂in and α̃in , i = 1, 2, are all strongly consistent estimators of α1 and α2.

Finally, we shall consider the estimation of the parameters λ1, λ2 and λ12. Since
E(Xα1

n ) = (λ1 + λ12)
−1, E(Y α2

n ) = (λ2 + λ12)
−1 and

E(Xα1
n Y α2

n ) = 1

λ1 + λ2 + λ12

(
1

λ1 + λ12
+ 1

λ2 + λ12

)
,

we can take the estimates of the parameters λ1, λ2 and λ12 as the solutions of the
system of the equations

λ̂1 + λ̂12 =
(

1

n + 1

n∑

i=0

X α̂1
i

)−1

λ̂2 + λ̂12 =
(

1

n + 1

n∑

i=0

Y α̂2
i

)−1
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Table 1 The results of the estimations for the true values p = 0.8, α1 = 0.5, α2 = 0.25, λ1 = 0.5, λ2 = 1
and λ12 = 1.5

Sample size p̂1n SD ( p̂2n) p̂2n SD ( p̂2n) α̂1n SD (̂α1n)

100 0.80100 0.04720 0.79922 0.04412 0.50110 0.13355

500 0.80119 0.01952 0.79932 0.01655 0.49733 0.05467

1,000 0.80126 0.01399 0.79852 0.01192 0.49682 0.03903

5,000 0.80084 0.00669 0.80034 0.00595 0.49774 0.01868

10,000 0.80010 0.00469 0.79996 0.00488 0.49977 0.01314

Sample size α̃1n SD (̃α1n) α̂2n SD (̂α2n) α̃2n SD (̃α2n)

100 0.50561 0.12454 0.25055 0.06677 0.25280 0.06227

500 0.50237 0.04648 0.24866 0.02734 0.25119 0.02324

1,000 0.50439 0.03345 0.24841 0.01951 0.25219 0.01672

5,000 0.49912 0.01668 0.24887 0.00934 0.24956 0.00834

10,000 0.50017 0.01366 0.24988 0.00657 0.25008 0.00683

Sample size λ̂1 SD (̂λ1) λ̂2 SD (̂λ2) λ̂12 SD (̂λ12)

100 0.78022 0.67288 1.25024 0.60928 1.32283 0.70243

500 0.62688 0.31307 1.08544 0.35073 1.40536 0.26576

1,000 0.56637 0.21887 1.04989 0.23679 1.45480 0.18630

5,000 0.52964 0.08968 1.02352 0.09966 1.48225 0.09074

10,000 0.51350 0.06347 1.01273 0.07320 1.48924 0.06391

1

λ̂1 + λ̂2 + λ̂12

(
1

λ̂1 + λ̂12
+ 1

λ̂2 + λ̂12

)

= 1

n + 1

n∑

i=0

X α̂1
i Y α̂2

i .

In Table 1 we present some results of the estimation. We simulated 10,000 realiza-
tions of a Marshall–Olkin bivariate Weibull minification process for the true values
p = 0.8, α1 = 0.5, α2 = 0.25, λ1 = 0.5, λ2 = 1 and λ12 = 1.5. The simulations
are repeated 100 times and for each data set the sample averages and the standard
deviations (SD) of the estimates are computed.

4 Type 2 Marshall–Olkin bivariate Weibull distribution

Here we develop a new probability model by applying the technique given in Marshall
and Olkin (1997). If F̄(x, y) is the survival function of a bivariate random vector (X, Y )

then the Marshall–Olkin family of distributions with an additional parameter α has
the new survival function given by

Ḡ(x, y) = α F̄(x, y)

1 − (1 − α)F̄(x, y)
, −∞ < x, y < ∞, 0 < α < ∞.
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Marshall–Olkin bivariate Weibull distributions and processes 795

Clearly when α = 1 we get the original survival function. Now we introduce the
Type 2 Marshall–Olkin bivariate Weibull distribution as follows.

Definition 4.1 We say that a random vector (X, Y ) has a type 2 Marshall–Olkin bivar-
iate Weibull distribution with parameters α > 0, λ1 > 0, λ2 > 0, λ12 > 0, α1 > 0
and α2 > 0 if its survival function is of the form

Ḡ(x, y) = αe−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )

1 − (1 − α)e−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )
.

We denote a type 2 Marshall–Olkin bivariate Weibull distribution with parameters
α, λ1, λ2, λ12, α1 and α2 as MOBVW (α, λ1, λ2, λ12, α1, α2).

Remark 4.1 If α = 1, then type 2 Marshall–Olkin bivariate Weibull distribution
becomes the Marshall–Olkin bivariate Weibull distribution of type 1.

In this theorem we establish a characterization of the type 2 Marshall–Olkin bivar-
iate Weibull distribution.

Theorem 4.1 Let {(Xn, Yn), n ≥ 1} be a sequence of i.i.d. random vectors with
common survival function F̄(x, y) which is survival function of type 1 MOB-
VW(λ1, λ2, λ12, α1, α2). Let N be a random variable with a geometric(α) distri-
bution and suppose that N and (Xi , Yi ) are independent for all i ≥ 1. Define
UN = min1≤i≤N Xi and VN = min1≤i≤N Yi . Then the random vector (UN , VN )

is distributed as type 2 MOBVW (α, λ1, λ2, λ12, α1, α2) if and only if (Xi , Yi ) has
type 1 MOBVW(λ1, λ2, λ12, α1, α2) distribution.

Proof Let S̄(x, y) be the survival function of (UN , VN ). By definition

S̄(x, y) = P(UN > x, VN > y) =
∞∑

n=1

[F̄(x, y)]n(1 − α)n−1α

= α F̄(x, y)

1 − (1 − α)F̄(x, y)
= αe−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )

1 − (1 − α)e−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )

which is the type 2 MOBVW(α, λ1, λ2, λ12, α1, α2). Converse easily follows. ��

5 Minification process with type 2 MOBVW

Now we define a minification process with type 2 MOBVW(α, λ1, λ2, λ12, α1, α2)

distribution.

Theorem 5.1 Consider a bivariate autoregressive minification process {(Xn, Yn),

n ≥ 0} having the structure

(Xn, Yn) =
{

(εn, ηn), w.p. α

(min(Xn−1, εn), min(Yn−1, ηn)), w.p. 1 − α
, n ≥ 1. (5.1)
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Then {(Xn, Yn), n ≥ 0} has type 2 MOBVW (α, λ1, λ2, λ12, α1, α2) stationary mar-
ginal distribution if and only if {(εn, ηn)} has type 1 MOBVW (λ1, λ2, λ12, α1, α2)

distribution and (X0, Y0) has MOBVW (α, λ1, λ2, λ12, α1, α2) distribution.

Proof Let Ḡn(x, y) and F̄(x, y) be the survival functions of (Xn, Yn) and (εn, ηn),
respectively. From the definition of the process, we have that

Ḡn(x, y) = P(Xn > x, Yn > y) = α F̄(x, y) + (1 − α)Ḡn−1(x, y)F̄(x, y).

(5.2)

Under stationarity

Ḡ(x, y) = [α + (1 − α)Ḡ(x, y)]F̄(x, y). (5.3)

Replacing Ḡ with the survival function of the random vector with type 2 MOBVW
(α, λ1, λ2, λ12, α1, α2) distribution and solving the obtained equation on F̄(x, y), we
obtain

F̄(x, y) = e−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 ). (5.4)

Hence (εn, ηn) follows type 1 MOBVW (λ1, λ2, λ12, α1, α2) distribution.
Conversely using (5.4) in (5.2) for n = 1, we can show that

Ḡ1(x, y) = αe−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )

1 − (1 − α)e−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )
,

which is the survival function of type 2 MOBVW(α, λ1, λ2, λ12, α1, α2). Thus,
(X1, Y1) has type 2 MOBVW(α, λ1, λ2, λ12, α1, α2) distribution. To prove stationa-

rity, assume that (Xn−1, Yn−1)
d= type 2 MOBVW(α, λ1, λ2, λ12, α1, α2). Then

Ḡn(x, y) = α F̄(x, y) + (1 − α)Ḡn−1(x, y)F̄(x, y)

= [α + (1 − α)Ḡn−1(x, y)]F̄(x, y)

= αe−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )

1 − (1 − α)e−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )
.

Thus, (Xn, Yn) follows type 2 MOBVW (α, λ1, λ2, λ12, α1, α2) distribution. Hence
by induction (Xn, Yn) has type 2 MOBVW (α, λ1, λ2, λ12, α1, α2) distribution for
every n ≥ 0. This establishes stationarity. ��

Corollary 5.1 If (X0, Y0) has an arbitrary bivariate distribution and {(εn, ηn)} has
type 1 MOBVW (λ1, λ2, λ12, α1, α2) distribution, then {(Xn, Yn)} has type 2 MOBVW
(α, λ1, λ2, λ12, α1, α2) distribution asymptotically.
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Proof Using the Eq. 5.2 repeatedly, we find

Ḡn(x, y) = α F̄(x, y) + (1 − α)F̄(x, y)Ḡn−1(x, y)

= α F̄(x, y)
(
1 + (1 − α)F̄(x, y)

) + (1 − α)2 F̄2(x, y)Ḡn−2(x, y)

= α F̄(x, y)

n−1∑

j=0

(1 − α) j F̄ j (x, y) + (1 − α)n F̄n(x, y)Ḡ0(x, y)

= α F̄(x, y)
(
1 − (1 − α)n F̄n(x, y)

)

1 − (1 − α)F̄(x, y)
+ (1 − α)n F̄n(x, y)Ḡ0(x, y).

Taking limit as n → ∞, we have that

lim
n→∞ Ḡn(x, y) = α F̄(x, y)

1 − (1 − α)F̄(x, y)
= αe−λ1xα1−λ2 yα2 −λ12 max(xα1 ,yα2 )

1 − (1 − α)e−λ1xα1 −λ2 yα2 −λ12 max(xα1 ,yα2 )
.

��

6 Conclusions

We have shown that a bivariate minification process (Xn, Yn) has type 2 MOBVW
stationary marginal distribution if and only if the distribution of the innovation (εn, ηn)

is type 1 MOBVW distribution. The simulation studies show that we have obtained
good estimates for the parameters. The R program for generating the random variables
and the processes is available with the authors and can be supplied on request.
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