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Abstract Partial linear modelling ideas have recently been adapted to situations
when functional data are observed. This paper aims to complete the study of such
model by proposing a fully automatic estimation procedure. This is achieved by con-
structing a data-driven method to choose the smoothing parameters entered in the
nonparametric components of the model. The asymptotic optimality of the method
is stated and its practical interest is illustrated on finite size Monte Carlo simulated
samples.
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1 Introduction

The partial linear model has been widely used in the literature for multivariate data,
as a nice way to balance the trade-off between flexibility and dimensionality of the
model. A selected set of references in this field includes the papers by Engle et al.
(1986), Robinson (1988) and Speckman (1988) (see also the general monograph by
Härdle et al. (2000)). Then, in modern applied statistics, it is more and more usual
to have at hand functional datasets, such as curves or images, and it is a challenge
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for the scientific community to develop new statistical models/tools to deal with
such infinite dimensional problems. This field has been popularized by the books of
Ramsay and Silverman (1997, 2002, 2005). Starting with the book by Ferraty and
Vieu (2006) the nonparametric ideas became to be popular in functional regression
settings, while the wide recent bibliographical discussion provided by Ferraty and
Vieu (2009) emphasizes on the under-development of semi-parametric statistics in
this framework. Recently, the partial linear modelling ideas have been adapted to this
new kind of data and this can be seen as a first advance in semi-parametric modelling
for functional data. More precisely, Aneiros-Pérez and Vieu (2006) stated asymptotic
properties under this semi-parametric functional model and showed its interest in an
applied case study.

The key question, not resolved until now, concerns the choice of the smoothing
factor entered in the nonparametric functional component of the model. As with any
nonparametric procedure (functional or not), it is necessary to provide a fully auto-
matic procedure (that is, a data-driven rule) to select this parameter to make the method
reliable for a wide scope of users. This is the gap that we aim to bridge in this contri-
bution.

This paper is organized as follows. The model and the estimates are briefly pre-
sented in Sect. 2. Then, in Sect. 3, the bandwidth selection problem is addressed using
cross-validation ideas. Special attention will be paid to the local adaptive selected
bandwidth, given its ability to capture all the local features of the functional data. The
asymptotic optimality, for both global and locally adaptive selection rules, is derived
in Sect. 4. Section 5 reports a simulation study designed to observe how our bandwidth
selectors perform when the sample size is finite, and to compare the global and local
procedures. Concluding remarks are given in Sect. 6. Finally, the Appendix presents
the technical proofs.

2 The model and estimators

The Semi-Functional Partial Linear Regression (SFPLR) model can be written as:

Y = r
(
X1, . . . , X p, T

) + ε =
p∑

j=1

X jβ j + m(T ) + ε, (1)

where X j ( j = 1, . . . , p) are real explanatory variables, T is another explanatory
variable but of functional nature, ε is a random error satisfying

E
(
ε | X1, . . . , X p, T

) = 0,

β j ( j = 1, . . . , p) are unknown real parameters and m is an unknown smooth opera-
tor. Identifiability of the model is discussed along Remark 1 in Sect. 4. The functional
explanatory variable T is valued in some abstract semi-metric space H, and so the
target m (respectively r ) is a non-linear real valued operator defined on H (respec-
tively, on R p × H, where R denotes de set of real numbers). In the remainder of the
paper, we denote by d (·, ·) the semi-metric on H and all the topological notions used

123



Automatic estimation procedure in partial linear model with functional data 753

derive from the topology Td associated with d. This model and the following estimates
were first proposed by Aneiros-Pérez and Vieu (2006). The remark in Sect. 4.1 will
emphasize on the strong necessity of using such a general abstract semi-metric space,
not only for seeking mathematical generality but mainly because it is a key tool for
insuring the good behavior of the statistical procedures.

Assume that we have a sample of n independent and identically distributed vectors
valued in R p+1 × C (C ⊂ H). These vectors will be denoted from now on by

{(
Yi , Xi1, . . . , Xip, Ti

)T
}n

i=1
.

The SFPLR model can be rewritten by assuming that

Yi =
p∑

j=1

Xi jβ j + m(Ti ) + εi (i = 1, . . . , n),

where

E
(
εi | Xi1, . . . , Xip, Ti

) = 0.

As proposed in Aneiros-Pérez and Vieu (2006), we estimate the vector of parameters
β = (

β1, . . . , βp
)T and the function m by means of

β̂h =
(

X̃T
h X̃h

)−1
X̃T

h Ỹh (2)

and

m̂h(t) =
n∑

i=1

wn,h(t, Ti )(Yi − XT
i β̂h), (3)

respectively. In these estimators, h > 0 is a smoothing parameter that typically appears
in any setting of nonparametric estimations. Furthermore, we have denoted X =
(X1, . . . , Xn)T with Xi = (

Xi1, . . . , Xip
)T , Y = (Y1, . . . , Yn)T and, for any (n ×q)-

matrix A (q ≥ 1), Ãh= (I − Wh)A, where Wh= (
wn,h

(
Ti , Tj

))
i, j with wn,h (·, ·)

being a weight function that can take different forms. Thus, we estimate the regres-
sion function r

(
x1, . . . , x p, t

)
by means of r̂h

(
x1, . . . , x p, t

) = xT β̂h +m̂h(t), where

we have denoted x = (
x1, . . . , x p

)T .

3 Bandwidth selection

3.1 Global cross-validation selection rule

Starting with Härdle and Marron (1985), much literature has been devoted to the con-
struction of automatic bandwidth selection rules in nonparametric kernel modelling.
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754 G. Aneiros-Pérez, P. Vieu

On the one hand, advances in the specific context of partial linear modelling (but
with non-functional data) have been reported by Linton (1995) and Aneiros-Pérez and
Quintela-del-Río (2001), while on the other, Rachdi and Vieu (2007) have recently
provided some advances in pure nonparametric functional settings. Usually, in any
nonparametric smoothing parameter choice problem, most of the selection techniques
consist in looking for data-driven values of h minimizing (at least asymptotically)
some measure of accuracy of the estimate. In our model, this could be the following
estimation error:

ASE (h) = n−1
n∑

i=1

(
r̂h

(
Xi1, . . . , Xip, Ti

) − r
(
Xi1, . . . , Xip, Ti

))2
G (Ti ),

where G is some (known) nonnegative weight function. In standard multivariate sit-
uations, cross-validation is a quite popular procedure for attacking the problem but
competitive alternatives (such as plug-in rule or bootstrapping) exist. From a technical
point of view, cross-validation is easier to use because it only requires knowing the
asymptotic rates of convergence of the error, while bootstrapping or plug-in require
the constant terms involved in these asymptotic expansions. In the functional set-
ting, the statement of precise asymptotic expansion is generally difficult. In the pure
nonparametric functional setting (see for instance Delsol (2009) for the most recent
developments), these constants are complicated, while in our partial linear functional
context they are still unknown. More discussion on these alternative ways for thinking
bandwidth selection problems, with bibliographical references, is included in Ferraty
and Vieu (2009).

For all these reasons, it makes sense to construct our selection rule by trying to
adapt cross-validation ideas to take into account both specificities of the model: the
functional feature of the data and the semi-parametric modelling. The cross-validated
bandwidth selector ĥ is defined as

ĥ = arg min
h∈Hn

CV (h),

where

CV (h) = n−1
n∑

i=1

(
Yi − r̂ i

h

(
Xi1, . . . , Xip, Ti

))2
G (Ti ),

with r̂ i
h

(
x1, . . . , x p, t

) = xT β̂h + m̂i
h(t). In this expression, m̂i

h(t) denotes the leave-
one-out estimator which is constructed like (3) but where, after estimating β, the i-th
data

(
Yi , Xi1, . . . , Xip, Ti

)T is eliminated from the sample. In this paper we will focus
on the weights

wn,h(t, Ti ) = K (d (t, Ti )/h)
∑n

j=1 K
(
d

(
t, Tj

)
/h

) ,
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Automatic estimation procedure in partial linear model with functional data 755

where K is a function from [0,∞) into [0,∞) (these weights are a functional version
of the Nadaraya-Watson type weights; see Ferraty and Vieu 2006, Chap. 5). Therefore,
the expression of m̂i

h(t) is

m̂i
h(t) =

n∑

j �=i

wi
n,h(t, Tj )

(
Y j − XT

j β̂h

)
,

where

wi
n,h(t, Tj ) = K

(
d

(
t, Tj

)
/h

)

∑n
k �=i K (d (t, Tk) /h)

.

3.2 Location adaptive selection rule

The selection procedure discussed before is called global in the sense that it is selecting
the same parameter for any functional data t at which the estimate is computed. How-
ever, various earlier works on one-dimensional problems (see for instance Staniswalis
1989; Vieu 1991) show evidence suggesting that such an approach has the main draw-
back of not being sufficiently flexible to capture local information in the data. In the
recent work by Benhenni et al. (2007), a local adaptive bandwidth improves more in
the functional setting than in the univariate, which is expected since the higher com-
plexity of the data (coming from their infinite dimensional feature) would yield more
local variation.

One way to construct the location adaptive estimate is to choose, for each t , a specific
bandwidth ht , with the aim of not minimizing the whole errors but only a local version
of quadratic errors. In our model, this could be the following local measurement of
error

ASEt (h) = n−1
n∑

i=1

(
r̂h

(
Xi1, . . . , Xip, Ti

) − r
(
Xi1, . . . , Xip, Ti

))2
Gn,t (Ti ),

where, for each t , the weight function Gn,t is chosen to be more and more concentrated
around t . Specific details on this local sequence of weight functions will be given later.
For now, just think that Gn,t could be taken in the form

Gn,t (t
′) = fn(d(t, t ′)),

where fn is some density function (Gaussian, for instance, but not necessarily) with
zero mean and with variance tending to zero as n approaches infinity. Similarly, as the
global cross-validation criterion was constructed before, the local selection criterion
is defined as

CVt (h) = n−1
n∑

i=1

(
Yi − r̂ i

h

(
Xi1, . . . , Xip, Ti

))2
Gn,t (Ti ),
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and the location adaptive bandwidth is

ĥt = arg min
h∈Hn

CVt (h).

We do not got more insight on the choice of the local weight functions Gn,. and fn

because they have small influences in practice, either in our functional framework as
in standard multivariate bandwidth selection problems (see Vieu 1991).

4 Asymptotic optimality of the bandwidth selectors

Let us first introduce a set of assumptions under which our asymptotic results can be
obtained. These assumptions will be widely commented later along the Remark 1.
Then, our main results will be presented in Sect. 4.2.

4.1 Assumptions

The weight function G is bounded and with support on C. (4)

The weight functions Gn,t are bounded and with compact supports in B
(
t, hγ

)
,

where 0 < γ < 1 and we have denoted B
(
t, hγ

) = {
t ′ ∈ H; d

(
t ′, t

)
< hγ

}
.

(5)

C is some given compact subset of H having nonempty interior, such that

C ⊂ ∪ln
l=1B (zl , rn) , where ln = r−ζ

n with ζ > 0, and rn → 0 as n → ∞. (6)

The set Hn , where the bandwidths are selected, verifies that

card (Hn) = O
(
nτ0

)
, where τ0 > 0. (7)

The kernel function K has support [0, 1] and is Lipschitz continuous on [0,∞),

and there exists some θ such that for any u ∈ [0, 1], − K ′ (u) > θ > 0. (8)

The probability distribution of the infinite-dimensional process T is assumed to

satisfy, for any h ∈ Hn, P (T ∈ B (t, h)) = Ktφ (h) + o (φ (h)) , for any t ∈ C,

(9)
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where

sup
t∈C

Kt < ∞,

1∫

0

φ (hs) ds > α0φ (h) with α0 > 0, φ (h) = O
(
n−τ

)
with τ > 0,

and

lim
h→0

φ (hs)

φ (s)
> 0 for any s ∈ [0, 1].

Let us introduce the following notation:

g j (t) = E
(
X j | T = t

)
, η j = X j − E

(
X j | T

)
and ηi = (

ηi1, . . . , ηi p
)T

,

where {ηi j }i is an i.i.d. sample according to the distribution of η j . Observe that the
expressions of our estimators (2) and (3) contain estimators of g1, . . . , gp. Thus, in
addition to the usual smoothness conditions on m, we need similar ones on g j . More
precisely, we assume that all the operators to be estimated are smooth, in the sense
that for some C < ∞ and some α > 0 we have that:

For any (u, v) ∈ C × C and f ∈ {
m, g1, . . . , gp

}
, | f (u) − f (v)| ≤ Cd (u, v)α .

(10)

Furthermore, we need the following assumptions:

For any k ∈ N∗ (N∗ denotes the set of natural numbers without the zero),

there exists Ck > 0 such that E(|ε|k | T = t) < Ck, for any t ∈ C. (11)

There exists σ > 0 such that E(ε2 | T = t) = σ (t) ≥ σ, for any t ∈ C,

where σ (t) is continuous. (12)

There exists q ≥ 3 such that E
(|η1|q

) + · · · + E
(∣∣ηp

∣∣q)
< ∞. (13)

B = E
(
η1η

T
1

)
is a positive definite matrix, (14)

and

ηi is independent of εi (i = 1, . . . , n). (15)
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Remark 1 The conditions above related to the nonparametric and/or functional set-
tings, as well as those concerning the moments of the random errors, are usual condi-
tions (see, for instance, Rachdi and Vieu 2007; Benhenni et al. 2007; Ferraty and Vieu
2008), while assumptions (13)–(15) are directly related to the semi-parametric mod-
elling and are quite unrestrictive (see Aneiros-Pérez and Vieu 2006). Note that (14) is
insuring the identifiability of the model, excluding situations when both variables X
and T are linked in a non stochastic way. This identifiability condition is very usual
in standard multivariate situations but avoids for considering interesting problems in
functional data analysis when both X and T are associated to the same functional
explanatory variable (further works in this direction are in progress). Note also that
(6) could be overpassed by introducing sophisticated entropy conditions on the set C,
but this is not done here in order to keep clearer our main issues on bandwidth selection
problems (details can be seen in Ferraty and Vieu (2009)). As told before, the exact
form of the weight functions G and Gn,. is of low importance, the main point being the
natural restriction that γ < 1 which is obviously necessary to make sure that the local
weight does not exclude more data than the bandwidth h itself does. Maybe, it should
finally be emphasized the hypotheses which are related to the small ball probability
functions φ. Indeed, these conditions are giving strong evidence for the necessity of
using a very general abstract semi-metric modelling for the space H. Looking at the
wide variety of probabilistic results existing about asymptotic expression of small ball
probability functions for various gaussian processes and/or for various norms (see
Bogachev (1998), Li and Shao (2001), for a few results in this field), one could see
that such a function φ will decrease to zero much faster than any polynomial rate. A
first naive point of view would be to say that our set of assumptions is excluding all
these standard processes because we need polynomial decreasing rate. However, this
is true if one is dealing with standard metric/normed spaces while the using of general
topology based on semi-metric makes possible to reach polynomial rate for any kind
of infinitely dimensional processes (see Ferraty and Vieu (2006) for examples of such
topology insuring polynomial decreasing as well as for their interest in applied stud-
ies). At the end, the negative naive point of view should be completely reconsidered
and semi-metric modelling has to be seen as powerful statistical tool and not only as
topological cosmetic.

4.2 Asymptotic optimality

We now give our asymptotic results. Theorem 1 studies the asymptotic optimality of
the global bandwidth selector ĥ, while Theorem 2 deals with the asymptotic optimality
of the local bandwidth selector ĥt . Both theorems will be proven in the Appendix.

Theorem 1 Under Assumptions (4) and (6)–(15), if in addition nh4α → 0 and
n4τ0 suph∈Hn

φ (h) log log n → 0 as n → ∞, and φ (h) ≥ n(2/q)+b−1/ (log n)2 for n
large enough and some constant b > 0 satisfying (2/q) + b > 1/2, then

ASE
(

ĥ
)

infh∈Hn ASE (h)
→ 1 a.s. as n → ∞.
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Theorem 2 If in the enunciate of Theorem 1 we use Assumption (5) instead of Assump-
tion (4), then

ASEt
(

ĥt
)

infh∈Hn ASEt (h)
→ 1 a.s. as n → ∞.

5 A simulation study

A simulation study was designed to observe how our bandwidth selectors perform
when the sample size is finite, and to compare the global and local procedures. Two
settings were considered. On the one hand, we dealt with smooth curves and mod-
erate variability in the errors. On the other hand, the case of rough curves and high
variability in the errors was studied.

Because our bandwidth selectors are constructed to estimate the regression function
r (equivalently, to estimate the nonparametric component m), all the measures below
concern this estimation setting.

5.1 Smooth curves

5.1.1 The simulated models

The SFPLR model

Yi = Xi1β1 + Xi2β2 + m(Ti ) + εi (i = 1, . . . , n)

was considered, where Xi j and εi were i.i.d. according to a N (0, 1) and a N (0, σε),
respectively (we have denoted σε = 0.1 (maxT m(T ) − minT m(T ))). The functional
data were Ti (z) = ai (z − 0.5)2 + bi (z ∈ [0, 1]) with ai and bi being i.i.d. according
to a U (0, 1) and a U (−0.5, 0.5), respectively. The curves Ti ’s were discretized on
the same grid generated from 50 equispaced points in [0, 1]. The unknown vector of
parameters β = (β1, β2)

T was β = (−1, 3)T , while two models were considered for
the unknown function m; say Model M1, where

m(Ti ) = exp (−8 f (Ti )) − exp (−12 f (Ti ))

with

f (Ti ) = sign
(
T ′

i (1) − T ′
i (0)

)

√√√√√3

1∫

0

(
T ′

i (z)
)2

dz,
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and Model M2, where

m(Ti ) = dnorm

⎛

⎝0.5

1∫

0

T ′′
i (z)dz; 0.5, 0.05

⎞

⎠

with dnorm (x;μ, σ) being the normal density with mean μ and standard deviation
σ taken at point x . Note that the expressions above give m(Ti ) = exp (−8ai ) −
exp (−12ai ) and m(Ti ) = dnorm (ai ; 0.5, 0.05) for Models M1 and M2, respectively
(see Staniswalis (1989) for a simulation study considering these kinds of regression
functions in a pure nonparametric finite dimensional setting; that is, eliminating the
linear component in the SFPLR model and using the scalar argument ai instead of the
curve Ti ).

For each model we simulated various sample sizes n = 50, 100, 200, and for each
of them the same experiment was replicated M = 100 times.

5.1.2 Choosing the parameters of the estimates

The Epanechnikov kernel was used in the estimates. The proximity between the curves
Ti was taken into account to construct the set Hn where the bandwidths were selected
(more precisely, the set Hn is the interval defined from the quantiles 0.05 and 0.5 of the
empirical distribution of d(Ti , Tj ), i �= j). In addition, the weight function G (Ti ) = 1
was considered for the global procedure, while for the local we took a weight function
in the class

Gn,t (Ti ) =
{

1, if d (Ti , t) < kn

0, otherwise

where the parameter kn was selected by means of cross-validation. Once again (see
Remark 1), let us recall that the form of these weights has low practical impact.

The smoothness of the curves Ti (see Fig. 1) lead us to consider semi-metrics based
on the L2 norm of some derivative of the curves (see Ferraty and Vieu 2006, Chap.
3). Several orders (0, 1, 2 and 3) for the derivative were considered, and we chose the
order which gave the best predictions on a sample test. Thus, we used the semi-metric

d
(
T, T ∗) =

⎛

⎝
1∫

0

(
T ′(z) − T ∗′(z)

)2
dz

⎞

⎠

1/2

=
⎛

⎝ 1

12

1∫

0

(
T ′′(z) − T ∗′′(z)

)2
dz

⎞

⎠

1/2

for both Models M1 and M2 (the computation of this semi-metric was based on
B-spline approximation of each curve). Note that the last equality above is a conse-
quence of the kind of curves considered. Also, the selected order is in accordance with
the features of the function m corresponding to each model considered.

In this study we aim to look at the behavior of the two bandwidth selection rules
defined in the sections above: the global data-driven bandwidth h minimizing the
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Fig. 1 Sample of 50 curves Ti ’s
(smooth curves)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.4

0.
0

0.
4

z

criterion CV, and the local bandwidth ht minimizing at each new curve t the local
criterion CVt .

5.1.3 Cross-validated and optimal theoretical bandwidths

In a first attempt we studied how these data-driven bandwidths approximate the best
(theoretical) bandwidths. For this, we consider the ratios:

RG
n,k = ASE

(
ĥn

)

infh∈Hn ASE (h)
, k = 1, . . . , M,

and

RL
n,k,T 0

j
=

ASET 0
j

(
ĥT 0

j ,n

)

infh∈Hn ASET 0
j
(h)

k = 1, . . . , M, j = 1, . . . , 100,

where
{(

Y 0
j , X0

j1, X0
j2, T 0

j

)}100

j=1
was a test sample. Boxplots of

{
RG

n,k

}

k
and

{
RL

n,k,T 0
j

}

k
are reported in Figs. 2 and 3, respectively (for the local case, these boxplots

are shown only for two values of j). These figures show the presence of some outliers,
but both their number and size decrease as the sample size n increases. Furthermore,
a considerable decrease to 1 in the ratios as n increases is suggested.

The information given by Figs. 2 and 3 is summarized in Tables 1 and 2, respec-

tively, which show the mean and the standard deviation of
{

RG
n,k

}

k
and

{
RL

n,k,T 0
j

}

k
,

respectively (for the local case, these descriptive measures are shown only for four
values of j).

In conclusion (from Figs. 2 and 3 and Tables 1 and 2), the good behavior of the
bandwidth selectors is clear. The global (respectively, local) cross-validated bandwidth
produces a global (respectively, local) estimation error which is close to the minimal
one. The good point is that the asymptotic behavior stated in Theorems 1 and 2 turns
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Fig. 2 Boxplots of the ratios
of the ASE’s when global
bandwidths are considered. Left
side: Model M1. Right side:
Model M2
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Fig. 3 Boxplots of the ratios
of the ASE’s when local
bandwidths are used. Upper
panel: Model M1. Lower panel:
Model M2 (two curves are
considered for each model)
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Table 1 Mean and standard
deviation (in parenthesis)
corresponding to the ratios of the
ASE’s when global bandwidths
are considered

n Model

M1 M2

50 1.3049 (0.6682) 1.1151 (0.2071)

100 1.1177 (0.1943) 1.1037 (0.1971)

200 1.0676 (0.0965) 1.0858 (0.1296)

to be apparent already for moderate sample sizes, at least for the specific models con-
sidered in this study. In addition, note that the speed of convergence to 1 in the ratio
corresponding to the global selector is fastest than that of the local selector.
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Table 2 Mean and standard
deviation (in parenthesis)
corresponding to the ratios of the
ASE’s when local bandwidths
are considered (these descriptive
measures are shown for four
curves)

n Model

M1 M2

50 2.1731 (2.5739) 1.4179 (0.8931)

1.9330 (2.2892) 1.4056 (0.8594)

2.1686 (2.5754) 1.4496 (0.9325)

2.3785 (2.9818) 1.3864 (0.7807)

100 1.6616 (1.0289) 1.2579 (0.4990)

1.4631 (1.3175) 1.2403 (0.4928)

1.6623 (1.0286) 1.2469 (0.5119)

1.6634 (1.0261) 1.2795 (0.5915)

200 1.2310 (0.3207) 1.1363 (0.3024)

1.0722 (0.2078) 1.1310 (0.2978)

1.2338 (0.3322) 1.1420 (0.2937)

1.2314 (0.3377) 1.1488 (0.2939)

5.1.4 Predictive behavior of cross-validated estimates

In a second attempt, it is worth looking at the main point of interest for people in
practice: what is the impact of this good behavior on the prediction? So, we com-
pleted the study as followings. For each sample size and model considered, the last

replication was taken for predicting the values
{

Y 0
j

}100

j=1
. In this way, global and local

bandwidths were used. The accuracy of the predictions was measured by using the
Mean Squared Errors of Prediction (MSEP)

MSEPG
n =

∑100
j=1

(
Y 0

j − r̂ĥn

(
X0

j1, X0
j2, T 0

j

))2

100

and

MSEPL
n =

∑100
j=1

(
Y 0

j − r̂ĥ
T 0

j ,n

(
X0

j1, X0
j2, T 0

j

))2

100
,

corresponding to the global and local selectors, respectively. The values of these mea-
sures, and their ratios, are given in Table 3.

In conclusion, the results reported in Table 3 indicate that, in general, for the mod-
els considered in this simulation study, the predictions obtained as well with local
bandwidths as with a global one are rather good. In this situation, local procedure
gives slightly best results but in counter part they need heavier computational time.
Note also that to be able to capture local features of the data a rather high sample size
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764 G. Aneiros-Pérez, P. Vieu

Table 3 Accuracy measure
MSEP using global (G) and
local (L) bandwidths, together
with their ratios L/G

a The MSEPs (but not their
ratios) corresponding to Model
M1 have been multiplied by 104

n Model

M1
a M2

50 4.6424G 1.0492 1.3507 0.8929

4.8706L 1.2060

100 2.9158 0.9848 0.9552 0.9280

2.8713 0.8864

200 2.6043 0.9060 0.7862 0.8944

2.3596 0.7032

is needed, since the interest of local selection procedure starts to be significant for
n = 200.

5.2 Rough curves

5.2.1 The simulated model

To give more evidence of the interest of our methodology, we proceeded a second
kind of simulated experiments, based on data having much higher variability than
those used previously. This is done from one side by generating rough curves in the
following way

Ti (z) = ai sin(4(bi − z)) + bi + ϑi,z (z ∈ [0, 1]),

with ai , bi and ϑi,z being r.v. i.i.d. according to a N (4, 3), N (0, 3) and N (0, 0.5) dis-
tributions, respectively. These curves are generated in a nonparametric way (because
of the random term ϑ) and, as depicted in Fig. 4, they present much higher variability
than the previous ones presented in Fig. 1.

Fig. 4 Sample of 50 curves
Ti ’s (rough curves)

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
10

z
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From another hand we have also increased the variability by choosing higher vari-
ance for the innovation error ε,

σε = 0.5

(
max

T
m(T ) − min

T
m(T )

)
,

and finally, we have considered the following regression operator

m(Ti ) =
1∫

0

dz

1 + |Ti (z)| .

5.2.2 The parameters of the estimates

When dealing with rough curves such as those introduced herein it does not make
sense to measure the proximity by means of a semi-metric based on the derivatives of
the curves. We used rather a new family of semi-metrics, based on the first components
of the functional principal component analysis of the data, and the number of principal
components was selected by using cross-validation techniques. Further motivations
as well as full details on the using of such functional PCA based semi-metrics can be
found in Ferraty and Vieu (2006).

All other parts of the experiment (choice of the kernel K , choice of the local and
global weight functions Gn,. and G, choice of the sample sizes n and construction
of the learning and testing samples) remain the same as they were before for smooth
curves.

5.2.3 The results

The next Figs. 5 and 6 show boxplots of the ratios of the ASE errors when global and
local cross-validation procedures are used, respectively (that is, boxplots of the ratios
{RG

n,k}k and {RL
n,k,T 0

j
}k , respectively).

Fig. 5 Boxplots of the ratios
of the ASE’s when global
bandwidths are considered

50 100 200

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

n

A
S

E
(h

.c
v)

/A
S

E
(h

.a
se

)
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Fig. 6 Boxplots of the ratios
of the ASE’s when local
bandwidths are used (two
curves are considered)
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Table 4 Mean and standard
deviation (in parenthesis)
corresponding to the ratios of the
ASE’s when global or local
bandwidths are considered (for
the local case those measures are
shown for four curves)

n Global Local

50 1.1694 (0.4156) 1.5549 (1.1985)

1.5358 (1.7676)

1.6331 (2.9564)

1.6497 (3.0202)

100 1.0633 (0.1648) 1.1274 (0.2637)

1.1197 (0.2438)

1.0873 (0.1880)

1.0897 (0.2348)

200 1.0571 (0.0907) 1.0979 (0.2001)

1.1042 (0.2417)

1.0707 (0.1288)

1.0566 (0.0972)

Table 5 Accuracy measure
MSEP using global (G) and
local (L) bandwidths, together
with their ratios L/G

n

50 100 200

0.1122G 1.0916 0.1164 1.1831 0.1057 1.1275

0.1225L 0.1377 0.1192

As observed before in Figs. 2 and 3 for smooth curves, one can see that both
global and local cross-validation procedures work well. To emphasize more on that,
we present in Table 4 the mean and the standard deviations of these ratios.

Once again, as observed before in Tables 1 and 2, one gets empirical evidence
of the asymptotic optimality of both bandwidth selection methods that was stated in
the theoretical part of this paper. Even for rather moderated sample size (n = 100),
the ratio between cross-validated ASE and optimal theoretical ASE is closed to 1. The
impact in terms of prediction is shown through Table 5.
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Automatic estimation procedure in partial linear model with functional data 767

As a matter of conclusion, one could say that both selection procedures (local and
global) have good predictive power. In this specific example there is a slight advantage
for the global procedure but the local one gives very similar results.

6 Concluding remarks

In this paper, we constructed two bandwidth selectors for the estimator of the regression
function in a SFPLR model. These selectors are based on global and local cross-val-
idation ideas, respectively. The asymptotic optimality of the selectors was obtained,
and their finite sample size behavior, as well as a comparison between them, were
illustrated by means of a simulation study.

The various simulation studies showed the good behavior of the bandwidth selectors
proposed. From one side, the ratios of the ASE’s (evaluated in both the cross-validation
and the optimal bandwidths) go to 1 when moderate sample sizes increase, confirming
the fact that the cross-validated bandwidths are closed to the optimal theoretical ones.
More importantly in practice, it has also been observed that both (local and global)
procedures have good predictive powers.

Appendix

Notation

The proofs of Theorems 1 and 2 are strongly linked with the corresponding results
obtained by Rachdi and Vieu (2007) and Benhenni et al. (2007), respectively, who
work on a pure nonparametric functional regression model. We introduce the follow-
ing notation:

Y ∗
j = m

(
Tj

) + ε j = Y j −
p∑

k=1

X jkβk,

m̂∗
h(t) =

n∑

j=1

wn,h(t, Tj )Y
∗
j , m̂∗i

h (t) =
n∑

j �=i

wi
n,h(t, Tj )Y

∗
j ,

CV∗ (h) = n−1
n∑

i=1

(
Y ∗

i − m̂∗i
h (Ti )

)2
G (Ti ),

ASE∗ (h) = n−1
n∑

i=1

(
m̂∗

h(Ti ) − m(Ti )
)2

G (Ti ),

MISE∗ (h) =
∫

E
((

m̂∗
h(t) − m(t)

)2
)

G (t) d PT (t) ,

where PT is the probability distribution measure of the functional variable T ,

m̂∗
h = (

m̂∗
h(T1), . . . , m̂∗

h(Tn)
)T

, m̂∗(−)
h =

(
m̂∗1

h (T1), . . . , m̂∗n
h (Tn)

)T
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768 G. Aneiros-Pérez, P. Vieu

and

Y∗ = (
Y ∗

1 , . . . , Y ∗
n

)T
.

Furthermore, we will denote

m = (m(T1), . . . , m(Tn))T , m̂h = (m̂h(T1), . . . , m̂h(Tn))T ,

m̂(−)
h =

(
m̂1

h(T1), . . . , m̂n
h(Tn)

)T
, ĝ(−)

h =
(

ĝi
j,h(Ti )

)

1≤i≤n; 1≤ j≤p
,

where ĝi
j,h(t) = ∑n

k �=i wi
n,h(t, Tk)X jk , and

X(−)
h = X − ĝ(−)

h and W(−)
h =

(
(1 − δi j )w

i
n,h

(
Ti , Tj

))

1≤i≤n; 1≤ j≤n
,

where δi j is the Dirac delta function (note that X(−)
h =

(
I − W(−)

h

)
X). Finally, G

denotes the (n × n) diagonal matrix whose i-th diagonal element is G (Ti ).

Auxiliary results

Before we begin with the proofs of our theorems, we will state some auxiliary results
which play a main role in these proofs.

Lemma 1 (Aneiros-Pérez and Vieu 2006) Under Assumptions (6), (8)–(10) and (13)
(m not included in (10)), if in addition

{(
Xi1, . . . , Xip, Ti

)}n
i=1 are independent and

distributed as
(
X1, . . . , X p, T

)
, and h → 0 and log n/ (nφ (h)) → 0 as n → ∞, we

have that

n−1X̃T
h X̃h −→ B a.s.

Theorem 3 (Aneiros-Pérez and Vieu 2006) Under Assumptions (6), (8)–(15) and
(13), if in addition nh4α → 0 as n → ∞ and φ (h) ≥ n(2/q)+b−1/ (log n)2 for n large
enough and some constant b > 0 satisfying (2/q) + b > 1/2, then

lim sup
n→∞

(
n

2 log log n

)1/2 ∣
∣β̂h j − β j

∣
∣ =

(
σ 2

ε b j j
)1/2

a.s.,

where σ 2
ε = V ar (ε) and b j j = (

B−1
)

j j .

Lemma 2 Under Assumptions (6), (8)–(10) and (13) (m not included in (10)), if in
addition

{(
Xi1, . . . , Xip, Ti

)}n
i=1 are independent and distributed as

(
X1, . . . , X p, T

)
,

and h → 0 and log n/ (nφ (h)) → 0 as n → ∞, we have that

n−1X(−)T
h X(−)

h −→ B a.s.
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Proof of Lemma 2 This proof can be obtained in a similar way as that of Lemma 1,
and therefore it is omitted.

Proof of Theorem 1

Rachdi and Vieu (2007) obtained that

ASE∗ (
ĥ∗)

infh∈Hn ASE∗ (h)
→ 1 a.s. as n → ∞,

where we have denoted

ĥ∗ = arg min
h∈Hn

CV∗ (h)

(at this moment, we should indicate that the kernel function used in Rachdi and Vieu
(2007) does not verify our Assumption (8) but, as they noted, the result above remains
under (8). We have used this assumption because we need the uniform convergence
of the nonparametric estimators; see Ferraty and Vieu 2008). Therefore, we have that
the proof of Theorem 1 is complete if we prove both

sup
h∈Hn

∣∣∣∣
ASE (h) − ASE∗ (h)

ASE∗ (h)

∣∣∣∣ → 0 a.s. as n → ∞ (16)

and

sup
h∈Hn

∣∣∣∣
CV (h) − CV∗ (h)

CV∗ (h)

∣∣∣∣ → 0 a.s. as n → ∞. (17)

For this, we will use the decompositions

ASE (h) = ASE∗ (h) + n−1 (
β̂h − β

)T
X̃T

h GX̃h
(
β̂h − β

)

+ 2n−1 (
m̂∗

h − m
)T GX̃h

(
β̂h − β

)
(18)

and

CV (h) = CV∗ (h) + n−1 (
β̂h − β

)T
X(−)T

h GX(−)
h

(
β̂h − β

)

− 2n−1
(

Y∗ − m̂∗(−)
h

)T
GX(−)

h

(
β̂h − β

)
, (19)

respectively, where we have considered the facts that

m̂h = m̂∗
h − WhX

(
β̂h − β

)

and
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m̂(−)
h = m̂∗(−)

h − W(−)
h X

(
β̂h − β

)
,

respectively.

Proof of (16) From (18) together with the Cauchy-Schwarz inequality we have that

∣∣ASE (h) − ASE∗ (h)
∣∣ ≤ n−1

∣∣∣
(
β̂h − β

)T
X̃T

h GX̃h
(
β̂h − β

)∣∣∣

+ 2n−1
∣∣
∣
(
m̂∗

h − m
)T GX̃h

(
β̂h − β

)∣∣
∣

≤ n−1
∣∣β̂h − β

∣∣2 ∥∥X̃h
∥∥2 ‖G‖

+ 2n−1
∣∣∣
(
m̂∗

h − m
)T G1/2

∣∣∣
∥∥∥G1/2

∥∥∥
∥∥X̃h

∥∥ ∣∣β̂h − β
∣∣ .

Thus, taking into account the facts that
∣∣β̂h − β

∣∣ = Oa.s.

((
n−1 log log n

)1/2
)

(see

Theorem 3),
∥∥X̃h

∥∥ = Oa.s.
(
n1/2

)
(see Lemma 1) and ‖G‖ = O(1) (see Assumption

(4)), together with both the asymptotic equivalence between the quadratic measures
ASE∗ (h) and MISE∗ (h) and the fact that MISE∗ (h) ≥ C (nφ (h))−1 (Rachdi and
Vieu 2007), we obtain

sup
h∈Hn

∣∣∣
∣
ASE (h) − ASE∗ (h)

ASE∗ (h)

∣∣∣
∣ = O

(
max

{
an,φ, a1/2

n,φ

})
a.s., (20)

where we have denoted an,φ = card4 (Hn) suph∈Hn
φ (h) log log n. Finally, Assump-

tion (7) together with the fact that n4τ0 suph∈Hn
φ (h) log log n→0 as n→∞ give (16).

Proof of (17) Rachdi and Vieu (2007) obtained that

sup
h∈Hn

∣∣∣∣
∣
CV∗ (h) − An − ˜ASE

∗
(h)

˜ASE
∗
(h)

∣∣∣∣
∣
→ 0 a.s. as n → ∞,

where An = n−1 ∑n
i=1 ε2

i G (Ti ) and ˜ASE
∗
(h) = n−1 ∑n

i=1

(
m̂∗i

h (Ti ) − m(Ti )
)2

G (Ti ), this last function being a quadratic measure asymptotically equivalent to
ASE∗ (h) (and therefore to MISE∗ (h)). Thus, we have that

CV∗ (h) is asymptotically equivalent to MISE∗ (h) + An . (21)

Now, a similar reasoning as that followed to obtain (20) (using (19) and Lemma 2
instead of (18) and Lemma 1, respectively, and taking into account both (21) and the
fact that An ≥ 0) gives

sup
h∈Hn

∣∣∣
∣
CV (h) − CV∗ (h)

CV∗ (h)

∣∣∣
∣ = O

(
max

{
an,φ, a1/2

n,φ

})
a.s.

Finally, as in the case of (16), we have that (17) holds.
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Proof of Theorem 2

This proof is analogous to that of Theorem 1, but using the results of Benhenni et al.
(2007) instead of those of Rachdi and Vieu (2007).

Acknowledgements Philippe Vieu wishes to thank all the participants of the work group STAPH on Func-
tional Statistics at the University Paul Sabatier of Toulouse for stimulating and helpful comments, and more
specifically Frédéric Ferraty for his continuous fruitful collaboration on nonparametric FDA. The activities
of this group are available on http://www.lsp.ups-tlse.fr/staph. We are also grateful to two anonymous refer-
ees for their constructive comments and suggestions, which helped to improve the quality of the paper. The
research of Germán Aneiros-Pérez was supported by Xunta de Galicia Grant PGIDIT07PXIB105259PR.

References

Aneiros-Pérez G, Quintela-del-Río A (2001) Modified cross-validation in semiparametric regression mod-
els with dependent errors. Commun Stat Theory Methods 30:289–307

Aneiros-Pérez G, Vieu P (2006) Semi-functional partial linear regression. Stat Probab Lett 76:1102–1110
Benhenni K, Ferraty F, Rachdi M, Vieu P (2007) Local smoothing regression with functional data. Comput

Stat 22:353–369
Bogachev VI (1998) Gaussian measures. Mathematical surveys and monographs 62. American Mathemat-

ical Society
Delsol L (2009) Advances on asymptotic normality in nonparametric functional time series analysis.

Statistics 43:13–33
Engle R, Granger C, Rice J, Weiss A (1986) Nonparametric estimates of the relation between weather and

electricity sales. J Am Stat Assoc 81:310–320
Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York
Ferraty F, Vieu P (2008) Nonparametric models for functional data, with application in regression, time-

series prediction and curve discrimination. J Nonparametr Stat 20:187–189 (Erratum of J Nonparametr
Stat 16:111–125, 2004)

Ferraty F, Vieu P (2009) Kernel regression estimation for functional data. In: Ferraty F, Romain Y (eds)
Handbook on statistics for functional and operatorial statistics. Oxford University Press, Oxford
(to appear)

Härdle W, Marron JS (1985) Optimal bandwidth choice in nonparametric regression function estimation.
Ann Stat 13:1465–1481

Härdle W, Liang H, Gao J (2000) Partially linear models. Springer-Verlag, New York
Li WV, Shao QM (2001) Gaussian processes: inequalities, small ball probabilities and applications.

In: Rao CR, Shanbhag D (eds) Stochastic processes: theory and methods. Handbook of Statistics,
vol 19. North-Holland, Amsterdam, pp 533–597

Linton O (1995) Second order approximation in the partially linear regression model. Econometrica
63:1079–1112

Rachdi M, Vieu P (2007) Nonparametric regression for functional data: automatic smoothing parameter
selection. J Stat Plan Inference 137:2784–2801

Ramsay J, Silverman B (1997) Functional data analysis. Springer, New York
Ramsay J, Silverman B (2002) Applied functional data analysis. Springer, New York
Ramsay J, Silverman B (2005) Applied functional data analysis, 2nd edn. Springer, New York
Robinson P (1988) Root-n-consistent semiparametric regression. Econometrica 56:931–954
Speckman P (1988) Kernel smoothing in partial linear models. J R Stat Soc Ser B 50:413–436
Staniswalis JG (1989) Local bandwidth selection for kernel estimates. J Am Stat Assoc 84:284–288
Vieu P (1991) Nonparametric regression: optimal local bandwidth choice. J R Stat Soc Ser B 53:453–464

123

http://www.lsp.ups-tlse.fr/staph

	Automatic estimation procedure in partial linear model with functional data
	Abstract
	1 Introduction
	2 The model and estimators
	3 Bandwidth selection
	3.1 Global cross-validation selection rule
	3.2 Location adaptive selection rule

	4 Asymptotic optimality of the bandwidth selectors
	4.1 Assumptions
	4.2 Asymptotic optimality

	5 A simulation study
	5.1 Smooth curves
	5.1.1 The simulated models
	5.1.2 Choosing the parameters of the estimates
	5.1.3 Cross-validated and optimal theoretical bandwidths
	5.1.4 Predictive behavior of cross-validated estimates

	5.2 Rough curves
	5.2.1 The simulated model
	5.2.2 The parameters of the estimates
	5.2.3 The results


	6 Concluding remarks
	Appendix
	Notation
	Auxiliary results

	Acknowledgements
	References


