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Abstract This paper proposes new classifiers under the assumption of multivariate
normality for multivariate repeated measures data with Kronecker product covariance
structures. These classifiers are especially effective when the number of observations
is not large enough to estimate the covariance matrices, and thus the traditional classi-
fiers fail. Computational scheme for maximum likelihood estimates of required class
parameters are also given. The quality of these new classifiers are examined on some
real data.
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1 Introduction

Discrimination or classification is about predicting the unknown class to which
an observation is to be allocated. An observation is a collection of numerical measure-
ments represented by a d-dimensional vector x. The unknown nature of the observation
is called a class. It is denoted by y and takes values in the set Y ∈ {1, 2, . . . , K }.
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818 M. Krzyśko, M. Skorzybut

The mapping

g : R
d → Y

is called a classifier or a classification rule.
The optimal Bayes classifier is

g(x) = arg max
1≤i≤K

πi fi (x),

where πi = P(y = i) is the prior probability that x is a member of a class i ,
π1 + π2 + · · · + πK = 1, and fi (x) = f (x|y = i) is the probability density function
associated with the random vector x for a class i , i = 1, 2, . . . , K . In our model, we
have access to a training data observed in the past. The training data set is given by

Dn = {(xi , yi )}, i = 1, 2, . . . , n.

That is, a set of n observations is available for which the true categorization is known.
If πi and fi (x) are unknown then a classifier is constructed on the basis of the training
data set Dn and is denoted by gn . The process of constructing gn is called learning.

In the usual classification problems a training data are taken at a given time point.
Moreover, in many practical situations in medicine, agriculture, psychology and educa-
tion a training data are taken repeatedly over time. Such learning data are often referred
to in the statistical and behavioral science literature as the multivariate repeated mea-
sures data or doubly multivariate data.

Suppose there are p response variables and on each of them, observations are taken
over T time points. We denote information on a typical subject by x, a (pT × 1)-
dimensional column vector obtained by stacking all p responses at the first time point,
then stacking all p responses at the second time point below it and so on.

Next, assume that x ∼ NpT (ν,Ω) with pT × pT positive definite covariance
matrix Ω . When ν and Ω are unknown and completely unspecified, a total of pT +
pT (pT + 1)/2 unknown parameters must be estimated. This number increases very
rapidly with p and T . For example, when p = 4 and T = 5, the number of unknown
parameters equals two hundred thirty. Estimation of so many parameters will require
a very large sample, which may not always be feasible.

Hence, we assume Ω to be of the form (Roy and Khattree 2005b; Roy and Khattree
2008):

Ω = V ⊗ Σ,

where V is a T × T positive definite covariance matrix and Σ is p × p positive
definite covariance matrix. The matrix V represents the covariance between repeated
measures on a given subject and for a given response variable. Likewise, Σ represents
the covariance between all response variables on a given subject and for a given time
point. The above covariance structure is subject to an implicit assumption that for all
the response variables, the correlation structure between repeated measures remains
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Discriminant analysis of multivariate repeated measures data 819

the same and that for covariance between all the response variables does not depend on
time and remains constant for all time points. No structure whatsover on Σ is assumed
except that it is positive definite.

Classification rules for univariate repeated measures data were given by Roy and
Khattree (2005a). Classification rules in case of multivariate repeated measures data
under the assumption of multivariate normality for classes and with compound sym-
metric correlation structure on the matrix V were given by Roy and Khattree (2005b).
Next, Roy and Khattree (2008) gave the solution of this problem for the case when
the correlation matrix V has the first order autoregressive (AR(1)) structure.

From Roy and Khattree (2008) study it is clear that taking the correct correlation
structure on the repeated measurements in the classification rule is very important to
reduce the misclassification error rates. Also, testing the equality of the Kronecker
product structure variance-covariance matrices is equally important. Hypotheses tes-
tings for Kronecker product structures V ⊗Σ with V as CS structure are discussed in
Roy and Khattree (2003) for both one population and two population cases. The paper
also discusses the hypotheses testings for Kronecker product structures V ⊗ Σ for
one population case with both V and Σ as unstructured. Similar hypotheses testings
for Kronecker product structures V ⊗ Σ with V as AR(1) structure are discussed in
Roy (2006) for both one population and two population cases.

In this paper, we propose the new classification rules applicable in the case of mul-
tivariate repeated measures data under the following assumptions: (1) multivariate
normality for classes, (2) Kronecker product structure of the covariance matrix Ω , (3)
no structures whatsover are imposed on V and Σ except that they are positive definite.

These new general classifiers are presented in Sect. 2. For completness, in Sect. 3,
we describe the compound symmetric case for matrix V , and in Sect. 4, we describe
the AR(1) case for matrix V . Section 5 examines the quality of the various classifiers
on some real data.

2 General classifiers

Suppose that no structures whatsover are assumed on V and Σ except that they are
positive definite. In this case the classifier has the form

g(x) = arg max
1≤i≤K

ln(πi fi (x)),

where

fi (x) = (2π)−
pT
2 |V i |− p

2 |Σ i |− T
2 exp

[
−1

2
(x − νi )

′ (V−1
i ⊗ Σ−1

i

)
(x − νi )

]
,

and πi is the prior probability that an observation x is from class i .
The parameters νi , V i and Σ i are unknown and should be estimated relying on K

training samples of sizes n1, n2, . . . , nK from the respective classes.
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Let xi jk (k = 1, 2, . . . , T ; j = 1, 2, . . . , ni ; i = 1, 2, . . . , K ) be a p × 1 column
vector of measurements on the j th individual in the i th class at the kth time point and

xi j =
(

x′
i j1, x′

i j2, . . . , x′
i jT

)′
.

Then xi j is a pT ×1 random observational vector corresponding to the j th individual
in the i th class.

We consider a model described as follows:

all observations xi j are independent and xi j ∼ NpT (νi , V i ⊗ Σ i ), (1)

where V i is a T ×T positive definite matrix and Σ i is a p× p positive definite matrix,
j = 1, 2, . . . , ni , ni > max(p, T ), i = 1, 2, . . . , K .

Case 1 Matrix V i = (v
(i)
rs ) has all the diagonal elements equal to one. In this case the

maximum likelihood estimate of νi is given by

ν̂i = x̄i = 1

ni

ni∑
j=1

xi j , i = 1, . . . , K , (2)

and we can estimate Σ i by

Σ̃ i = Si = 1

ni T

ni∑
j=1

T∑
k=1

(xi jk − x̄ik)(xi jk − x̄ik)
′, (3)

where

x̄ik = 1

ni

ni∑
j=1

xi jk, i = 1, . . . , K , k = 1, . . . , T . (4)

Similarly, we can estimate v
(i)
rs , r �= s, by

ṽ(i)
rs = 1

ni p

ni∑
j=1

tr(S−1
i (xi jr − x̄ir )(xi js − x̄is)

′), (5)

r, s = 1, . . . , T , r �= s, i = 1, . . . , K .

Theorem 1 (Srivastava et al. 2008) If V i = (v
(i)
rs ) has all the diagonal elements equal

to one then ṽ
(i)
rs defined in (5) is a consistent estimate of v

(i)
rs , r �= s, r, s = 1, . . . , T ,

and (ni/(ni − 1))Si is an unbiased and consistent estimate of Σ i , where Si is given
by (3).

The form of the obtained classifier is presented in the following theorem.
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Discriminant analysis of multivariate repeated measures data 821

Theorem 2 The classifier based on K training samples of sizes n1, n2, . . . , nK from
the respective classes has the form

ĝ1(x) = arg max
1≤i≤K

δ̂i1(x), (6)

where

δ̂i1(x) = − p

2
ln |Ṽ i | − T

2
ln |Σ̃ i | − 1

2
(x − x̄i )

′(Ṽ
−1
i ⊗ Σ̃

−1
i )(x − x̄i ) + ln π̂i , (7)

is the quadratic classification function, x̄i is given by (2), π̂i = ni/
∑K

j=1 n j , and

where Σ̃ i is given by (3) and the nondiagonal elements of matrix Ṽ i are given by (5).

Case 2 For V i = (v
(i)
rs ), we only assume that v

(i)
T T = 1.

Let

X i j = (xi j1, xi j2, . . . , xi jT ), (8)

X̄ i = 1

ni

ni∑
j=1

X i j , (9)

X i jc = X i j − X̄ i , (10)

and

X i jc = (X i jc1 : X i jcT ) : (p × (T − 1) : p × 1), (11)

j = 1, . . . , ni , i = 1, . . . , K .
In this case the maximum likelihood estimation equations are of the form (Srivastava

et al. 2008):

ν̂i = x̄i = vec(X̄ i ), (12)

V̂ i = 1

ni p

[∑ni
j=1 X ′

i jc1Σ̂
−1
i X i jc1

∑ni
j=1 X ′

i jc1Σ̂
−1
i X i jcT∑ni

j=1 X ′
i jcT Σ̂

−1
i X i jc1

∑ni
j=1 X ′

i jcT Σ̂
−1
i X i jcT

]

= 1

ni p

ni∑
j=1

X ′
i jcΣ̂

−1
i X i jc, (13)

where

ni∑
j=1

X ′
i jcT Σ̂

−1
i X i jcT = ni p, (14)
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822 M. Krzyśko, M. Skorzybut

and

Σ̂ i = 1

ni T

ni∑
j=1

X i jc V̂
−1
i X ′

i jc, (15)

respectively, i = 1, 2, . . . , K .
In this case no explicit maximum likelihood estimates of V i and Σ i are avail-

able. The MLEs of V i and Σ i are obtained by solving simultaneously and iteratively
the Eqs. (13) and (15) subject to the condition (14). This is the so called “flip-flop”
algorithm.

The results given above are summarized in the following theorem:

Theorem 3 (Srivastava et al. 2008) In the model (1) with v
(i)
T T = 1, if ni > max(p, T )

then the maximum likelihood estimation equations given by (13) and (15) subject to
the condition (14) will always converge to the unique maximum.

The following iterative steps are suggested to get the maximum likelihood estimates
of V i and Σ i , i = 1, 2, . . . , K .
Algorithm 1

Step 1 Get the initial covariance matrix Σ i of the form (3), i = 1, 2, . . . , K .
Step 2 On the basis the initial covariance matrix Si compute the matrix V̂ i given by

(13) and replace all the elements v̂
(i)
rs by v̂

(i)
rs /v̂

(i)
T T .

Step 3 Compute the matrix Σ̂ i from the Eq. (15) using V̂ i obtained in step 2.
Step 4 Repeat steps 2 and 3 until convergence is attained.

We have selected the following stopping rule. Compute two matrices: (a) a matrix
of difference between two successive solutions of (13), and (b) a matrix of difference
between two successive solutions of (15). Continue the iterations until the maxima of
the absolute values of the elements of the matrices in (a) and (b) are smaller than the
pre-specified quantities.

The form of the obtained classifier is presented in the following theorem.

Theorem 4 The classifier based on K training samples of sizes n1, n2,…, nK from
the respective classes has the form

ĝ2(x) = arg max
1≤i≤K

δ̂i2(x), (16)

where

δ̂i2(x)=− p

2
log |V̂ i | − T

2
log |Σ̂ i | − 1

2
(x − x̄i )

′(V̂
−1
i ⊗ Σ̂

−1
i

)
(x − x̄i ) + log π̂i (17)

is the quadratic classification function, x̄i is given by (2), π̂i = ni/
∑K

j=1 n j , and

where V̂ i and Σ̂ i are obtained by solving simultaneously and iteratively the Eqs. (13)
and (15) subject to the condition (14).
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Discriminant analysis of multivariate repeated measures data 823

3 Classifier for compound symmetry case (Roy and Khattree 2005b)

In repeated measurement designs, one often assume that the correlation matrix V i

has compound symmetry structure. The compound symmetry correlation structure
assumes equal correlation among all the repeated measurements:

V i = (1 − �i )I T + �i 1T 1′
T , i = 1, 2, . . . , K . (18)

The determinant of V i is given by

|V i | = (1 − �i )
T −1[1 + (T − 1)�i ],

and the inverse of V i is given by

V−1
i = 1

1 − �i

(
I T − �i

1 + (T − 1)�i
1T 1′

T

)
.

Since V i must be positive definite, we also require that

− 1

T − 1
< �i < 1, i = 1, 2, . . . , K .

Let

Ai =
(

ai
rs

)
=

ni∑
j=1

(xi j − x̄i )(xi j − x̄i )
′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ai
11 Ai

12 . . . Ai
1T

Ai
21 Ai

22 . . . Ai
2T

...
...

. . .
...

Ai
T 1 Ai

T 2 . . . Ai
T T

⎞
⎟⎟⎟⎟⎟⎟⎠

(19)

is the block matrix containing T 2 blocks, where Ai
jk = (Ai

k j )
′.

Let

A∗
i =

(
ai∗

rs

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

Ai∗
11 Ai∗

12 . . . Ai∗
1p

Ai∗
21 Ai∗

22 . . . Ai∗
2p

...
...

. . .
...

Ai∗
p1 Ai∗

p2 . . . Ai∗
pp

⎞
⎟⎟⎟⎟⎟⎟⎠

, (20)

where Ai∗
jk = (Ai∗

k j )
′.

The blocks

Ai∗
jk =

(
ai∗ jk

rs

)
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824 M. Krzyśko, M. Skorzybut

are constructed with the elements of the matrix Ai = (
ai

rs

)
:

ai∗ jk
rs = ai

j+(r−1)p,k+(s−1)p,

r, s = 1, 2, . . . , T ; j, k = 1, 2, . . . , p; i = 1, 2, . . . , K .
Let

Bi =
(

tr Ai
jkΣ

−1
i

)
(21)

and

C i =
(

tr Ai∗
jk V−1

i

)
, (22)

i = 1, 2, . . . , K .
The maximum likelihood estimates Σ̂ i and �̂i are obtained by simultaneously and

iteratively solving the following Eqs. (23) and (24):

Σ i = 1

T ni
C i (23)

T (T − 1)2

2
pni�

3
i −

[
T (T − 1)(T − 2)

2
pni − (T − 1)(T − 2)

2
ci0+(T − 1)ci3

]
�2

i

+
[
(T − 1)ci0 − T (T − 1)

2
pni

]
�i − ci3 = 0, (24)

where

ci0 =
T∑

k=1

tr
(

Ai
kkΣ

−1
i

)
, (25)

ci1 =
T∑

k,l=1
k<l

tr
(

Ai
klΣ

−1
i

)
, (26)

i = 1, 2, . . . , K .
The following iterative steps are suggested to get the maximum likelihood estima-

tors of �i and Σ i , i = 1, 2, . . . , K .
Algorithm 2

Step 1 Compute Ai and A∗
i from the Eqs. (19) and (20), respectively and compute

H i = 1

p

p∑
j=1

H i j , (27)
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Discriminant analysis of multivariate repeated measures data 825

where H i j is the correlation matrix based on the training sample of size ni

from the i th class between T time points for the j th variable, i = 1, 2, . . . , K ,
j = 1, 2, . . . , p.

Step 2 Obtain an initial estimate of �i as

�
(0)
i = (1′

T H i 1T − trH i )/(T (T − 1)).

Thus, V (0)
i , an initial estimate of V i , is obtained by replacing �i by �

(0)
i in

Eq. (18).
Step 3 Compute C i from (22) and next compute Σ i from (23).
Step 4 Compute ci0 and ci1 from (25) and (26), respectively, using Σ i obtained in

step 3.
Step 5 Compute the value of �i by solving the cubic equation (24).
Step 6 Compute the revised estimate of V i from �i .
Step 7 Compute the revised estimate of Σ i from (23) using V i obtained in step 6.
Step 8 Repeat steps 4 through 7 until convergence is attained.

4 Classifier for AR(1) case (Roy and Khattree 2008)

Suppose the repeated measures are modeled using the first order autoregressive (AR(1))
covariance structure. In this case we write the correlation matrix V i as

V i =
(
�

|r−s|
i

)T

r,s=1
, i = 1, 2, . . . , K . (28)

We have

|V i | =
(

1 − �2
i

)T −1
,

and

V−1
i =

(
1 − �2

i

)−1(
I T + �2

i K 1 − �i K 2

)
,

where K 1 = diag
(
0, 1′

T −2, 0
)

and K 2 is a tridiagonal T × T matrix with 0 on the
diagonal, 1 on the first superdiagonal and on the first subdiagonal.

As V i is positive definite, we should have

−1 < �i < 1, i = 1, 2, . . . , K .

The maximum likelihood estimates Σ̂ i and �̂i are obtained by simultaneously and
iteratively solving the Eqs. (28) and (29):

ni (T −1)p�3
i − ci2�

2
i − [ni (T −1)p−ci0−ci1]�i −ci2 = 0, i = 1, 2, . . . , K , (29)
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826 M. Krzyśko, M. Skorzybut

where

ci0 = tr
[(

I T ⊗ Σ−1
i

)
Ai

]
=

T∑
k=1

tr
(

Ai
kkΣ

−1
i

)
, (30)

ci2 = tr
[(

K 1 ⊗ Σ−1
i

)
Ai

]
=

T −1∑
k=2

tr
(

Ai
kkΣ

−1
i

)
, (31)

ci3 = tr
[(

K 2 ⊗ Σ−1
i

)
Ai

]
=

T −1∑
k=1

tr
(

Ai
k,k+1Σ

−1
i

)
(32)

with K 1, K 2 as defined earlier.
The following iterative steps are suggested to get the maximum likelihood estimators
of �i and Σ i , i = 1, 2, . . . , K .
Algorithm 3

Step 1 Compute Ai and A∗
i from the Eqs. (19) and (20), respectively, and compute

H i from (27).
Step 2 Get the average of the first superdiagonal elements of H i , say �

(i)
1∗ . Then get

the average of the second superdiagonal elements of H i , say �
(i)
2∗ , and so on.

The initial estimate of �i is obtained as

�
(0)
i =

[
1

T − 1

T −1∑
m=1

sgn

((
�(i)

m∗
)(T −1)/m

) ∣∣∣∣
(
�(i)

m∗
)(T −1)/m

∣∣∣∣
]1/(T −1)

,

and thus V (0)
i , an initial estimate of V i , is obtained by replacing �i by �

(0)
i

in Eq. (28).
Step 3 Compute the matrix C i from (22) and next compute the matrix Σ i from

Eq. (23).
Step 4 Compute ci0, ci2 and ci3 from (30)–(32), respectively, using Σ i obtained in

step 3.
Step 5 Compute the value of �i by solving the cubic equation (29).
Step 6 Compute the revised estimate of V i from �i .
Step 7 Compute the revised estimate of Σ i from (23) using V i obtained in step 6.
Step 8 Repeat steps 4 through 7 until convergence is attained.

5 Examples

To illustrate our classifiers and their effectiveness, we take three real data sets into
consideration.

123



Discriminant analysis of multivariate repeated measures data 827

Table 1 False flax (Camelina sativa L.) measurements

Line 1 Line 2

1st time point 2nd time point 1st time point 2nd time point

Height # leaves Height # leaves Height # leaves Height # leaves

98 59 117 226 74 28 98 56

85 135 97 344 68 27 95 43

92 118 112 277 70 28 98 51

95 51 118 145 74 29 105 56

90 34 110 86 72 30 105 56

94 36 118 76 64 29 95 58

94 34 116 164 65 27 94 48

95 33 116 82 66 28 93 58

101 46 121 132 68 31 95 51

99 38 116 191 75 27 101 58

5.1 Example 1

Table 1 contains false flax (Camelina sativa L.) measurements. There were two classes
(lines) of plants. Each plant was measured at two time points for each of two features:
height of plant and number of leaves. The data set was made available by professor
Tadeusz Łuczkiewicz from Poznań University of Life Sciences (Department of Genet-
ics and Plant Breeding).

In this example K = 2, p = 2, T = 2, n1 = n2 = 10.
Multivariate normality with Ω i = V i ⊗ Σ i , i = 1, 2 is assumed.
The maximum likelihood estimates of ν1 and ν2 in the two classes are:

ν̂1 = (94.3 58.4 114.1 172.3)′,
ν̂2 = (69.6 28.4 97.9 53.5)′,

respectively.

Case 1 Matrix V i has all the diagonal elements equal to one.
The estimates of V 1, Σ1, V 2, Σ2 in the two classes are:

Ṽ 1 =
(

1.0000 0.7493

0.7493 1.0000

)
, Σ̃1 =

(
30.1500 −224.4300

−224.4300 4168.6000

)
,

Ṽ 2 =
(

1.0000 0.4256
0.4256 1.0000

)
, Σ̃2 =

(
15.9650 3.6550
3.6550 12.4450

)
,

respectively.
Table 2 gives the confusion matrix. We see that all plants were classified correctly.

123



828 M. Krzyśko, M. Skorzybut

Table 2 Confusion matrix for
the case in which matrix V i has
all the diagonal elements equal
to one (Example 1)

Assigned Total % Errors

1 2

True = 1 10 0 10 0.00

True = 2 0 10 10 0.00

Total 10 10 20 0.00

Table 3 Confusion matrix,
where for V i we only assume

that v
(i)
T T = 1 (Example 1)

Assigned Total % Errors

1 2

True = 1 10 0 10 0.00

True = 2 0 10 10 0.00

Total 10 10 20 0.00

Case 2 For V i , we only assume that v
(i)
T T = 1.

The maximum likelihood estimates of V 1, Σ1, V 2, Σ2 in the two classes are:

V̂ 1 =
(

0.3067 0.4776

0.4776 1.0000

)
, Σ̂1 =

(
50.6250 −322.9900

−322.9900 5621.2000

)
,

V̂ 2 =
(

0.3155 0.2756

0.2756 1.0000

)
, Σ̂2 =

⎛
⎝ 27.0900 0.7652

0.7652 16.8920

⎞
⎠,

respectively.
Table 3 gives the confusion matrix. We see that all plants were classified correctly.

Case 3 The correlation matrix V i has the compound symmetric structure.
The maximum likelihood estimates of Σ1 and Σ2 in the two classes are:

Σ̂1 =
(

27.2 −257.3
−257.3 5361.3

)
, Σ̂2 =

(
12.8552 2.5411
2.5411 15.8353

)
.

The maximum likelihood estimates of �1 and �2 are 0.7797 and 0.5160, respectively.
Table 4 gives the confusion matrix. In this model all plants were also classified

correctly.

Case 4 As we are taking into consideration only two time points, structures of the
first order autoregressive and the compound symmetry are equivalent (the Eqs. (24)
and (29) are equivalent).
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Discriminant analysis of multivariate repeated measures data 829

Table 4 Confusion matrix for
the compound symmetry
correlation structure case
(Example 1)

Assigned Total % Errors

1 2

True = 1 10 0 10 0.00

True = 2 0 10 10 0.00

Total 10 10 20 0.00

5.2 Example 2

SAS Institute Inc (1990, example 9, p. 988) provides data for two responses, Y1 and
Y2, measured three times for each subject (at pre, post, and follow-up). Each subject
reviewed one of three treatments: A, B, or the control C. In our case K = 3, p = 2,
T = 3, n1 = n2 = n3 = 6.

Multivariate normality with Ω i = V i ⊗ Σ i , i = 1, 2, 3 is assumed.
The maximum likelihood estimates of ν1, ν2 and ν3 in the three classes are:

ν̂1 = (4.5000 6.6667 11.0000 4.8333 11.3330 6.0000)′,

ν̂2 = (5.0000 6.5000 12.0000 2.6667 12.8330 19.8330)′,

ν̂3 = (6.3333 4.6667 8.8333 4.5000 11.8330 12.0000)′,

respectively.

Case 1 Matrix V i has all the diagonal elements equal to one.
The estimates of V 1, Σ1, V 2, Σ2, V 3 and Σ3, in the three classes are:

Ṽ 1 =
⎛
⎜⎝

1.0000 0.0464 −0.1416

0.0464 1.0000 −0.6802

−0.1416 −0.6802 1.0000

⎞
⎟⎠, Σ̃1 =

(
9.9352 2.2778

2.2778 11.2310

)
,

Ṽ 2 =
⎛
⎜⎝

1.0000 −0.3340 0.3410

−0.3340 1.0000 0.0664

0.3410 0.0664 1.0000

⎞
⎟⎠, Σ̃2 =

(
7.1574 2.9907

2.9907 23.9810

)
,

Ṽ 3 =
⎛
⎝ 1.0000 0.6540 −0.0470

0.6540 1.0000 0.2878
−0.0470 0.2878 1.0000

⎞
⎠, Σ̃3 =

(
9.5000 −5.8796
−5.8796 12.6020

)
,

respectively.
Table 5 gives the confusion matrix. In this case 11.11% of subjects was classified

incorrectly.
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Table 5 Confusion matrix for
the case in which matrix V i has
all the diagonal elements equal
to one (Example 2)

Assigned Total % Errors

1 2 3

True = 1 6 0 0 6 0.00

True = 2 1 4 1 6 33.33

True = 3 0 0 6 6 0.00

Total 7 4 7 18 11.11

Table 6 Confusion matrix,
where for V i we only assume

that v
(i)
T T = 1 (Example 2)

Assigned Total % Errors

1 2 3

True = 1 6 0 0 6 0.00

True = 2 1 5 0 6 16.67

True = 3 0 0 6 6 0.00

Total 7 5 6 18 5.56

Case 2 For V i , we only assume that v
(i)
T T = 1.

The maximum likelihood estimates of V 1, Σ1, V 2, Σ2, V 3 and Σ3, in the three classes
are:

V̂ 1 =
⎛
⎜⎝

1.2890 0.0034 −0.1846

0.0034 1.5329 −0.9594

−0.1846 −0.9594 1.0000

⎞
⎟⎠, Σ̂1 =

(
6.2317 1.8963

1.8963 11.8660

)
,

V̂ 2 =
⎛
⎜⎝

0.4574 −0.3297 0.2750

−0.3297 0.6366 −0.1510

0.2750 −0.1510 1.0000

⎞
⎟⎠, Σ̂2 =

(
12.7220 13.5300

13.5300 45.2480

)
,

V̂ 3 =
⎛
⎜⎝

1.0775 0.5566 −0.1195

0.5566 0.5561 0.2261

−0.1195 0.2261 1.0000

⎞
⎟⎠, Σ̂3 =

(
11.0200 −9.0898

−9.0898 17.9780

)
,

respectively.
Table 6 gives the confusion matrix. In this case 5.56% of subjects was classified

incorrectly.
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Table 7 Confusion matrix for
the compound symmetry
correlation structure case
(Example 2)

Assigned Total % Errors

1 2 3

True = 1 6 0 0 6 0.00

True = 2 0 4 2 6 33.33

True = 3 0 1 5 6 16.67

Total 6 5 7 18 16.67

Table 8 Confusion matrix for
the autoregressive of order 1
correlation structure case
(Example 2)

Assigned Total % Errors

1 2 3

True = 1 5 1 0 6 16.67

True = 2 0 5 1 6 16.67

True = 3 0 0 6 6 0.00

Total 5 6 7 18 11.11

Case 3 The correlation matrix V i has the compound symmetric structure.
The maximum likelihood estimates of Σ1, Σ2 and Σ3 in the three classes are:

Σ̂1 =
(

8.8557 3.2645
3.2645 13.6191

)
, Σ̂2 =

(
7.2397 2.7346
2.7346 23.5208

)
,

Σ̂3 =
(

10.7572 −5.5036
−5.5036 10.9386

)
.

The maximum likelihood estimates of �1, �2 and �3 are −0.2897, 0.0341 and 0.3409,
respectively.

Table 7 gives the confusion matrix. In this case 16.67% of subjects was classified
incorrectly.

Case 4 The correlation matrix V i has an autoregressive structure of order 1.
The maximum likelihood estimates of Σ1, Σ2 and Σ3 in the three classes are:

Σ̂1 =
(

8.9666 2.3714
2.3714 12.4522

)
, Σ̂2 =

(
6.9794 6.2447
6.2447 30.7660

)
,

Σ̂3 =
(

10.7609 −6.0574
−6.0574 11.8867

)
.

The maximum likelihood estimates of �1, �2 and �3 are −0.3073, −0.3124 and 0.5504,
respectively.

Table 8 gives the confusion matrix. In this case 11.11% of subjects was classified
incorrectly.
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5.3 Example 3

A laboratory experiment was set up to investigate the effect of growth of inoculating
paspalum grass with a fungal infection applied at four different temperatures (14, 18,
22, 26◦C). For each pot of paspalum, measurements were made on three variables:

x1 = the fresh weight of roots (gm),
x2 = the maximum root length (mm),
x3 = the fresh weight of tops (gm).

The inoculated group was compared with a control group and six three-dimensional
observations were made on each treatment-temperature combination. These are given
in Table 9.10 of Seber (1984) monograph.

The problem here is to classify an unknown subject into one of two groups: a control
group and the inoculated group. In our case K = 2, p = 3, T = 4, n1 = n2 = 6.

Multivariate normality with Ω i = V i ⊗ Σ i , i = 1, 2 is assumed.
The maximum likelihood estimates of ν1 and ν2 in the two classes are:

ν̂1 = (2.7000 23.0000 2.2667 15.3670 39.8330 20.6330

11.6170 38.4170 25.5500 4.5000 27.2500 16.4170)′,

ν̂2 = (2.5333 22.5830 2.1000 8.4667 31.5830 13.4000

9.4833 30.8330 23.4000 2.9500 23.9170 11.3830)′,

respectively.

Case 1 Matrix V i has all the diagonal elements equal to one.
The estimates of V 1, V 2, Σ1, Σ2 in the two classes are:

Ṽ 1 =

⎛
⎜⎜⎝

1.0000 −0.0538 −0.0852 0.0195
−0.0538 1.0000 0.3595 0.0898
−0.0852 0.3595 1.0000 −0.2511
0.0195 0.0898 −0.2511 1.0000

⎞
⎟⎟⎠,

Ṽ 2 =

⎛
⎜⎜⎝

1.0000 −0.0172 −0.0452 −0.0429
−0.0172 1.0000 −0.4011 0.0206
−0.0452 −0.4011 1.0000 −0.1783
−0.0429 0.0206 −0.1783 1.0000

⎞
⎟⎟⎠,

Σ̃1 =
⎛
⎝ 6.3534 11.3530 8.8976

11.3530 45.4760 20.1780
8.8976 20.1780 18.4100

⎞
⎠, Σ̃2 =

⎛
⎝ 10.0150 6.0649 10.5890

6.0649 30.7690 8.0830
10.5890 8.0830 14.8870

⎞
⎠ ,

respectively.
Table 9 gives the confusion matrix. We see that all subjects were classified correctly.
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Table 9 Confusion matrix for
the case in which matrix V i has
all the diagonal elements equal
to one (Example 3)

Assigned Total % Errors

1 2

True = 1 6 0 6 0.00

True = 2 0 6 6 0.00

Total 6 6 12 0.00

Table 10 Confusion matrix,
where for V i we only assume

that v
(i)
T T = 1 (Example 3)

Assigned Total % Errors

1 2

True =1 6 0 6 0.00
True= 2 0 6 6 0.00
Total 6 6 12 0.00

Case 2 For V i , we only assume that v
(i)
T T = 1.

The maximum likelihood estimates of V 1, V 2, Σ1, Σ2 in the two classes are:

Ṽ 1 =

⎛
⎜⎜⎜⎝

0.1366 −0.1466 −0.1005 0.0197

−0.1466 3.0201 0.9259 0.1211

−0.1005 0.9259 2.6829 −0.3556

0.0197 0.1211 −0.3556 1.0000

⎞
⎟⎟⎟⎠,

Ṽ 2 =

⎛
⎜⎜⎜⎝

0.1433 −0.0972 −0.3183 −0.1372

−0.0972 14.0240 −2.6968 −0.0739

−0.3183 −2.6968 7.1557 −0.4372

−0.1372 −0.0739 −0.4372 1.0000

⎞
⎟⎟⎟⎠,

Σ̃1 =
⎛
⎜⎝

3.1882 7.2789 4.6887

7.2789 33.1720 11.8650

4.6887 11.8650 10.5800

⎞
⎟⎠, Σ̃2 =

⎛
⎜⎝

1.3018 1.5964 1.8687

1.5964 9.4255 3.5066

1.8687 3.5066 3.8256

⎞
⎟⎠,

respectively.
Table 10 gives the confusion matrix. We see that all subjects were classified cor-

rectly.

Case 3 The correlation matrix V i has the compound symmetric structure.
The maximum likelihood estimates of Σ1 and Σ2 in the two classes are:

Σ̂1 =
⎛
⎝ 6.3393 11.3247 8.8644

11.3247 45.3195 19.9976
8.8644 19.9976 18.3408

⎞
⎠, Σ̂2 =

⎛
⎝ 9.7366 5.6052 9.7523

5.6052 29.6873 7.9287
9.7523 7.9287 13.8089

⎞
⎠.
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Table 11 Confusion matrix for
the compound symmetry
correlation structure case
(Example 3)

Assigned Total % Errors

1 2

True = 1 6 0 6 0.00

True = 2 1 5 6 16.67

Total 7 5 12 8.33

Table 12 Confusion matrix for
the autoregressive of order 1
correlation structure case
(Example 3)

Assigned Total % Errors

1 2

True = 1 6 0 6 0.00

True = 2 1 5 6 16.67

Total 7 5 12 8.33

The maximum likelihood estimates of �1 and �2 are 0.0148 and −0.1293, respectively.
Table 11 gives the confusion matrix. In this case 8.33% of subjects was classified

incorrectly.

Case 4 The correlation matrix V i has an autoregressive structure of order 1.
The maximum likelihood estimates of Σ1 and Σ2 in the two classes are:

Σ̂1 =
⎛
⎝ 6.3186 11.3008 8.8241

11.3008 45.1515 19.9586
8.8241 19.9586 18.3253

⎞
⎠, Σ̂2 =

⎛
⎝ 9.5656 5.6329 9.5854

5.6329 29.4990 7.4972
9.5854 7.4972 13.5604

⎞
⎠.

The maximum likelihood estimates of �1 and �2 are 0.0169 and −0.1509, respectively.
Table 12 gives the confusion matrix. In this case also 8.33% of subjects was clas-

sified incorrectly.
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