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Abstract In this paper we introduce the distribution of
Xc

1
Xc

1+Xc
2
, with c > 0, where

Xi , i = 1, 2, are independent generalized beta-prime-distributed random variables,
and establish a closed form expression of its density. This distribution has as its limit-
ing case the generalized beta type I distribution recently introduced by Nadarajah and
Kotz (2004). Due to the presence of several parameters the density can take a wide
variety of shapes.

Keywords Gauss hypergeometric function · Generalized beta-prime distribution ·
Incomplete beta function · Meijer’s G-function · Predictive distribution · Income
distribution
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1 Introduction

The importance of the density of a ratio of random variables taken to a certain power,
c > 0, with parameter c as a weighting factor has been identified in the literature (see
e.g., Mathai and Moschopoulos 1997; Nadarajah and Kotz 2004). In the present paper,
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324 A. Bekker et al.

we introduce the distribution of

Uc = Xc
1

Xc
1 + Xc

2
,

where Xi , i = 1, 2, are independent generalized beta-prime (GBP) distributed vari-
ables, denoted by Xi ∼ G B P (αi , βi , λi ), with probability density function (pdf)

fi (x;αi , βi , λi ) = λ
αi
i

xαi −1

B (αi , βi ) (1 + λi x)αi +βi
, x > 0, αi , βi , λi > 0 (1)

This generalized beta-prime distribution has attracted useful applications in many
areas including system availability and measuring information in predictive distribu-
tions, see Dyer (1982), Amaral-Turkman and Dunsmore (1985), Sarhan (1995) and
Pham-Gia and Turkkan (2002). Both the generalized beta-prime distribution and the
gamma distribution are special cases of the parameter-rich generalized hypergeomet-
ric distribution defined by Mathai and Saxena (1966) where the gamma distribution is
a limiting case of (1) if λi is substituted with λi/β and β → ∞ (Bekker 1990). This
additional parameter, λi in the generalized beta-prime density (1) results in a more
versatile distribution that’s more responsive to modeling needs (Pham-Gia and Duong
1989).

For positive random variables (such as gamma and exponential), their powers Xc,
with c positive, are often encountered, resulting in the so-called “Weibullized” distri-
butions (see e.g., Gupta and Nadarajah 2004, p. 118; Malik 1967; McDonald and Xu
1995; Bekker et al. 2000). A particularly interesting feature of the variable Xc, with X
having the generalized beta-prime distribution, is the flexibility of its hazard function.

For independent X1 ∼ gamma (α, ϕ1) and X2 ∼ gamma (β, ϕ2), it is well known
that the densities of the type I and type II ratios X1/(X1 + X2) and X1/X2 are the stan-
dard beta and standard beta-prime, respectively, provided ϕ1 = ϕ2 = ϕ. In the general
case, however, the second ratio has the G B P (α, β, λ) distribution with λ = ϕ1/ϕ2.
Therefore, we refer to the distribution of Uc, as defined before, as the type I distribution
of independent “ Weibullized” generalized beta-prime variables.

Some properties of the distribution of Uc are presented and it also turns out that
density of Nadarajah and Kotz (2004) (see Eq. (7) in their paper) is a special limiting
case of the density of Uc. This parameter-rich distribution of Uc can take a wide variety
of shapes and can be applied in Bayesian statistics and economics.

2 Mathematical preliminaries

Before we prove the main results, we shall state some results which are necessary in
proving our results. It is well known in the literature (see e.g., Gradshteyn and Ryzhik
2000) that the Gauss hypergeometric function and Meijer’s G-function are defined as
follows:
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Independent “Weibullized” generalized beta-prime variables 325

Definition 1 The Gauss hypergeometric function in 3 parameters a, b and c, denoted
by 2 F1, is defined as follows:

2 F1 (a, b; c; x) =
∞∑

n=0

(a, n) (b, n)

(c, n)
.
xn

n! , |x | < 1,

with the Pochhammer coefficient
(a, n) = a (a + 1) (a + 2) · · · (a + n − 1), for n ≥ 1 and (a, 0) = 1.

Definition 2 Meijer’s G-function G(x) = Gm,n
p,q

[
x

∣∣∣∣
a1, . . . , ap

b1, . . . , bq

]
is defined as

Gm,n
p,q

[
x

∣∣∣∣
a1, . . . , ap

b1, . . . , bq

]

= 1

2π i

∫

L

∏m
j=1 Γ

(
b j + s

)∏n
j=1 Γ

(
1 − a j − s

)
∏q

j=m+1 Γ
(
1 − b j − s

) ∏p
j=n+1 Γ

(
a j + s

) x−sds,

where the integral is taken along the complex contour L . Under some fairly general
conditions on the integers m, n, p and q, and on the parameters ai , i = 1, . . . , p and
b j , j = 1, . . . , q, the above integral exists. (For a discussion of the G-function, see
Mathai 1993).

Now we state the following results that will be needed (see Mathai and Saxena
1973, p. 37), Gradshteyn and Ryzhik 2000, p. 1025), also Erdélyi et al. 1953, p. 87).

Result 1

2 F1 (a, b; c; 1 − x) = Γ (c)

Γ (a) Γ (b) Γ (c − a) Γ (c − b)
G2,2

2,2

[
x

∣∣∣∣
1 − a 1 − b

0 c − a − b

]
,

(2)

provided c − a, c − b �= 0,−1,−2, . . . , and a more general relation relates p Fq to

the G-function G p,1
q+1,p.

Result 2 The cumulative distribution function (cdf) of Xi , where Xi ∼ G B P(αi ,

βi , λi ), is F(t) =
B λi t

1+λi t
(αi ,βi )

B(αi ,βi )
, with the incomplete beta function given by

Bx (a, b) =
x∫

0

ya−1 (1 − y)b−1 dy = a−1xa
2 F1 (a, 1 − b; a + 1; x) . (3)
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326 A. Bekker et al.

3 Main results

In this section the type 1 distribution of the ratio of independent “ Weibullized” gen-
eralized beta-prime variables will be derived and some properties discussed.

Theorem 1 Let Xi ∼ G B P (αi , βi , λi ), i = 1, 2, be independent. The variable

Uc = Xc
1

Xc
1+Xc

2
, where c > 0 is a constant, possesses the density:

f (u) = K1 (1 − u)(α2/c)−1 u−(1+α2/c)

×2 F1

[
α2 + β2, α1 + α2;α1 + α2 + β1 + β2; 1 − λ2

λ1

(
1 − u

u

)1/c
]

,

0 < u < 1, (4)

where K1 = B(α1+α2,β1+β2)
cB(α1,β1)B(α2,β2)

(
λ2
λ1

)α2
.

Proof Let Xi , i = 1, 2, be independent nonnegative random variables with densities
of the form Ai xαi −1

i gi (xi ). The joint density is A1 A2xα1−1
1 xα2−1

2 g1(x1)g2(x2).

Changing the variables from (X1, X2) to
(

Uc = Xc
1

Xc
1+Xc

2
, Z = Xc

1 + Xc
2

)
, we note

the inverse transformation

X1 = (Uc Z)
1
c , X2 = ((1 − Uc) Z)

1
c .

The Jacobian of the transformation is

c−2u
1
c −1 (1 − u)

1
c −1 z

2
c −1.

The joint density is given by

A1 A2c−2u
1
c −1 (1 − u)

1
c −1 z

2
c −1 (uz)(α1−1)/c ((1 − u) z)(α2−1)/c

×g1

(
(uz)

1
c

)
g2

(
((1 − u) z)

1
c

)

= A1 A2c−2u
α1
c −1 (1 − u)

α2
c −1 z(α1+α2)/c−1g1

(
(uz)

1
c

)
g2

(
((1 − u) z)

1
c

)

and the marginal density of Uc becomes

A1 A2c−2u
α1
c −1 (1 − u)

α2
c −1

∞∫

0

z(α1+α2)/c−1g1

(
(uz)

1
c

)
g2

(
((1 − u) z)

1
c

)
dz. (5)

In this case A1 =λ
α1
1 /B(α1, β1), A2 =λ

α2
2 /B(α2, β2), g1(x1) = 1/(1+λ1x1)

α1+β1

and g2(x2) = 1/(1 + λ2x2)
α2+β2 .
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Independent “Weibullized” generalized beta-prime variables 327

Let p1 = λ1u
1
c and p2 = λ2 (1 − u)

1
c . Then the above integral in (5) becomes

∞∫

0

z(α1+α2)/c−1
(

1 + p1z
1
c

)−(α1+β1)
(

1 + p2z
1
c

)−(α2+β2)

dz

= cp−(α1+β1)
1 p−(α2+β2)

2

∞∫

0

vα1+α2−1
(

p−1
1 + v

)−(α1+β1)
(

p−1
2 + v

)−(α2+β2)

dv

= cp−(α1+α2)
1 B (α1 + α2, β1 + β2)

×2 F1

(
α2 + β2, α1 + α2;α1 + α2 + β1 + β2; 1 − p2

p1

)
(6)

(see Erdélyi et al. 1954b, p. 233). Using (5) and (6), we arrive at (4).

Remark
1. The density of T = X1

X2
= [Uc (1 − Uc)]

1
c utilizing (4) becomes ctc−1

(1+tc)2 f
(

tc

1+tc

)
.

It involves the Gauss hypergeometric function, instead of Appell’s function, as derived
by Pham-Gia and Turkkan (2002, Eq. (10)).

2. For given independent gamma variables Yi , i = 1, . . . , 4, and Uc as defined in
the above theorem, we have

Uc = Xc
1

Xc
1 + Xc

2
=

(
Y1
Y2

)c

(
Y1
Y2

)c +
(

Y3
Y4

)c = (Y1Y4)
c

(Y1Y4)
c + (Y2Y3)

c ,

Z1 = Y1Y4 has the density:

f (z;α1, α4; γ1, γ4) = γ1γ4

Γ (α1) Γ (α4)
G2,0

0,2 (zγ1γ4 |α1 − 1, α4 − 1 ) , z > 0 (7)

The density of Z2 = Y2Y3 possesses a similar expression, and hence, Uc also has
the density of the ratio of the c-th powers of products of independent gamma variables
(Springer and Thompson 1970). On the other hand, (7) shows that Uc is the ratio of
random variables whose densities are defined by G2,0

0,2 functions.
The next theorem shows that the distribution of W = Xc

1/
(
Xc

1 + Xc
2

)
, where

Xi , i = 1, 2, are gamma variables with same scale parameter
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328 A. Bekker et al.

(Xi ∼ gamma (αi , β) , i = 1, 2), derived by Nadarajah and Kotz (2004) can be
obtained as limiting case from (4). However, Eq. (7) in their paper should be:

f (w) = w−(1+α2/c) (1 − w)α2/c−1

α2cB (α1, α2)

{
α2 2 F1

(
α2, α1 + α2;α2 + 1;−

(
1 − w

w

)1/c
)

−
(

1 − w

w

)1/c
α2 (α1 + α2)

(α2 + 1)

× 2 F1

(
α2 + 1, α1 + α2 + 1;α2 + 2;−

(
1 − w

w

)1/c
)}

Using relation (9.2.12) in Lebedev (1965, p. 243), the above density reduces to

f (w) = 1

cB (α1, α2)
w−α2/c−1 (1 − w)α2/c−1

(
1 +

(
1

w
− 1

)1/c
)−(α1+α2)

,

0 < w < 1 (8)

Note the absence of parameter β in this equation.

Theorem 2 Let Xi ∼ G B P
(
αi , β, λ

β

)
, i = 1, 2, be independent. Then Uc = Xc

1
Xc

1+Xc
2

where c > 0 is a constant, has as density (8) if β → ∞.

Proof From (4) the density of Uc for this special case is:

f (u) = B (α1 + α2, 2β)

cB (α1, β) B (α2, β)
(1 − u)(α2/c)−1 u−(1+α2/c)

×2 F1

[
α2 + β, α1 + α2;α1 + α2 + 2β; 1 −

(
1 − u

u

)1/c
]

, 0 < u < 1

(9)

Note the absence of the parameter λ in (9). For large values of β,

Γ (2β) Γ (α1 + β) Γ (α2 + β)

Γ (β) Γ (β) Γ (α1 + α2 + 2β)
= 2−(α1+α2) (10)
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Independent “Weibullized” generalized beta-prime variables 329

Furthermore,

lim
β→∞ 2 F1

[
α2 + β, α1 + α2;α1 + α2 + 2β; 1 −

(
1 − u

u

)1/c
]

= lim
β→∞

∞∑

k=0

(
1 + k−1

α2+β

)
· · ·

(
1 + k−k

α2+β

) (
1 − ( 1−u

u

)1/c
)k

(
1 + k−1

α1+α2+2β

)
· · ·

(
1 + k−k

α1+α2+2β

) (α1 + α2)k (α2 + β)k

k! (α1 + α2 + 2β)k

= 2α1+α2

(
1 +

(
1

u
− 1

) 1
c
)−(α1+α2)

(11)

From (9) and using (10) and (11), the result follows.

Remark From Theorem 2 follows that Tc =
(

X1
X2

)c
has as limiting case, when β →

∞, the density:

f (t) = 1

cB (α1, α2)
t−

( α2
c +1

) (
1 + t−

1
c

)−(α1+α2)

, 0 < t < ∞.

Theorem 3 The cumulative distribution function of Uc with pdf (4) is

F(u) = 1 − K2

{
λ2

λ1

(
1 − u

u

)1/c
}α2

× G2,3
3,3

(
λ2

λ1

(
1 − u

u

)1/c ∣∣∣∣
1 − α2, 1 − α2 − β2, 1 − α1 − α2

0, β1 − α2, −α2

)
, (12)

where K −1
2 =

∏2

i=1
B (αi , βi ) Γ (αi + βi ) .

Proof We have:

F(u) = P

(
Xc

1

Xc
1 + Xc

2
≤ u

)

= P

(
X2 ≥

(
1 − u

u

)1/c

X1

)

= 1 − EX1

{
P

(
X2 ≤

(
1 − u

u

)1/c

x1 |X1 = x1

)}

= 1− λ
α1
1∏2

i=1B (αi , βi )

∞∫

0

B
x1λ2

(
1−u

u

)1/c

[
1+x1λ2

(
1−u

u

)1/c
]

(α2, β2) xα1−1
1 (1+λ1x1)

−(α1+β1)dx1
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330 A. Bekker et al.

= 1 − λ
α1
1

α2
∏2

i=1 B (αi , βi )

∞∫

0

xα1−1
1 (1 + λ1x1)

−(α1+β1)

{
x1λ2

( 1−u
u

)1/c

1 + x1λ2
( 1−u

u

)1/c

}α2

× 2 F1

(
α2, 1 − β2;α2 + 1; x1λ2

( 1−u
u

)1/c

1 + x1λ2
( 1−u

u

)1/c

)
dx1 (13)

by using relation (3). Now, using Kummer relation (Erdélyi et al. 1953, Eq. (2),
p. 105), Eq. (13) can be written as

F(u)=1− 1

α2
∏2

i=1 B (αi , βi )

{
λ1λ2

(
1 − u

u

)1/c
}α2 ∞∫

0

xα1+α2−1
1 (1+λ1x1)

−(α1+β1)

×2 F1

(
α2, α2 + β2;α2 + 1;−x1λ2

(
1 − u

u

)1/c
)

dx1 (14)

If we now express Gauss hypergeometric function in terms of Meijer’s
G-function, as given by (2), and use the expression of the Stieltjes transform of a
G-function (Mathai and Saxena 1973, p. 86), (14) becomes expression (12).

Alternatively the cdf of Uc can be obtained in terms of incomplete beta functions
as illustrated in the corollary below.

Corollary 1

F(u) = K1

u∫

0

(1 − t)
α2
c −1 t−

(
1+ α2

c

)

×2 F1

(
α2 + β2, α1 + α2;α1 + α2 + β1 + β2; 1 − λ2

λ1

(
1 − t

t

)1/c
)

dt

= K1

∞∑

k=0

(α2 + β2)k (α1 + α2)k

(α1 + α2+β1+β2)k k!
u∫

0

(1−t)
α2
c −1 t−

(
1+ α2

c

)
(

1− λ2

λ1

(
1−t

t

)1/c
)k

dt

where K1 is defined as before.

Let z = λ2
λ1

( 1−t
t

)1/c
, then

F(u) = 1 − K1

∞∑

k=0

c
(α2 + β2)k (α1 + α2)k

(α1 + α2 + β1 + β2)k k!
(

λ2

λ1

)α2

λ2
λ1

(
1−u

u

)1/c

∫

0

zα2 (1 − z)k dz

= 1 − B (α1 + α2, β1 + β2)

B (α1, β1) B (α2, β2)

∞∑

k=0

(α2 + β2)k (α1 + α2)k

(α1 + α2 + β1 + β2)k k!
B λ2

λ1

(
1−u

u

)1/c (α2, k + 1)

B (α2, k + 1)

(15)
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Independent “Weibullized” generalized beta-prime variables 331

Expressing the cdf in terms of incomplete beta functions, (15) might appear to be
less cumbersome than Eq. (12).

In the next theorem an expression for the hazard function of Uc, H(u) = f (u)
1−F(u)

,

is given. Its inverse [H(u)]−1 is the Mills’ ratio, used in economics, to measure the
ratio of the tail area of the distribution to its bounding ordinate f (u).

Theorem 4 Let Uc has pdf (4) then the hazard function is given by

H(u) = α2 (cu (1 − u))−1

×

⎧
⎪⎪⎨

⎪⎪⎩
1 + K3

G2,3
3,3

(
λ2
λ1

(
1−u

u

)1/c
∣∣∣∣
1 − α2, 1 − α2 − β2, 1 − α1 − α2

1, β1 − α2, −α2

)

2 F1

[
α2 + β2, α1 + α2;α1 + α2 + β1 + β2; 1 − λ2

λ1

(
1−u

u

)1/c
]

⎫
⎪⎪⎬

⎪⎪⎭

−1

(16)

where K −1
3 = B (α1 + α2, β1 + β2)

∏2
i=1 Γ (αi + βi ).

Proof Using (4) and (12), expression (16) follows immediately. The hazard function
in this case can also be expressed in terms of incomplete beta functions, by utilizing
(4) and (15).

The moments of Uc can be expressed as values of G-functions, as shown below.

Theorem 5 Let Uc has pdf (4) then

E(U h
c ) = K2

Γ (h)

(
λ2

λ1

)α2

(2π)2(1−c) cγ−2

×G2c+1,2c+1
2c+1,2c+1

((
λ2

λ1

)c ∣∣∣∣
�(c, 1 − α2 − β2) , � (c, 1 − α1 − α2) , 1 − α2/c

�(c, 0) , � (c, β1 − α2) , h − α2/c

)

where �(n, ζ ) represent the set of parameters
(

ζ
n ,

ζ+1
n , . . . ,

ζ+n−1
n

)
For c = 1, we

have:

E(U h) = 1(∏2
i=1 Γ (αi ) Γ (βi )

)
Γ (h)

×
(

λ2

λ1

)α2

G3,3
3,3

(
λ2

λ1

∣∣∣∣
1 − α2 − β2, 1 − α1 − α2, 1 − α2

0, β1 − α2, h − α2

)

Proof From (4) we can write the h-th moment about the origin, h ≥ 1, as

E(U h
c ) = K1

1∫

0

uh−α2/c−1 (1 − u)α2/c−1

×2 F1

[
α2 + β2, α1 + α2;α1 + α2 + β1 + β2; 1 − λ2

λ1

(
1 − u

u

)1/c
]

du

(17)
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332 A. Bekker et al.

with K1 as defined as before. Setting v = (1−u)
u , (17) can be written as

E(U h
c ) = K1

∞∫

0

vα2/c−1 (1 + v)−h

×2 F1

[
α2 + β2, α1 + α2;α1 + α2 + β1 + β2; 1 − λ2

λ1
v1/c

]
dv

Using relation (2), and the relation (1 + v)−h = 1
Γ (h)

G1,1
1,1

(
v

∣∣∣∣
1 − h

0

)
, the above

equation becomes:

E(U h
c ) = K2

cΓ (h)

(
λ2

λ1

)α2
∞∫

0

vα2/c−1G1,1
1,1

(
v

∣∣∣∣
1 − h

0

)

×G2,2
2,2

(
λ2

λ1
v1/c

∣∣∣∣
1 − α2 − β2, 1 − α1 − α2

0, β1 − α2

)
dv

where K2 is defined as before.
Using the expression of the Mellin transform of the product of two G-functions (see

Mathai and Saxena 1973 p. 80), when c is an integer, the result follows. For c = 1,
the equation reduces easily to a simpler expression.

Alternatively E(U h
c ) can be expressed as follows:

Corollary 2 From (17), let z = λ2
λ1

( 1−u
u

) 1
c , then

E(U h
c )

= K1

(
λ1

λ2

)α2 ∞∑

k=0

c
(α2 + β2)k (α1 + α2)k

(α1 + α2 + β1 + β2)k k!
∞∫

0

zα2−1
(

1+
(

λ1

λ2
z

)c)−h

(1−z)k dz

= K1

(
λ1

λ2

)α2 ∞∑

k=0

cB (k + 1, α2)2 F1

(
h, α2;α2 + k + 1;−

(
λ1

λ2

)c)

× (α2 + β2)k (α1 + α2)k

(α1 + α2 + β1 + β2)k k!
where K1 is defined as before (see Erdélyi et al. 1954a, p. 337).

4 Discussion

Thanks to the presence of several parameters, density (4) can take a wide variety
of shapes: U-shapes, unimodal shapes, concave curves, as can be seen from Figs. 1,
2, 3, 4, 5, which illustrates some of the shapes of density (4) for selected values of
(αi , βi , λi ), i = 1, 2, and c. Uc, as defined before, is composed out of generalized
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Fig. 1 Pdf (4) for
(α1, α2) = (0.5, 0.5) and
(β1, β2, λ1, λ2) = (4, 4, 1, 1)

with c = 0.8 (solid line), c = 1
(dashed line) and c = 4
(dot-dashed line)
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Fig. 2 Pdf (4) for
(α1, α2) = (1, 1) and
(β1, β2, λ1, λ2) = (4, 4, 1, 1)

with c = 0.8 (solid line), c = 1
(dashed line) and c = 4
(dot-dashed line)
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Fig. 3 Pdf (4) for
(α1, α2) = (4, 4) and
(β1, β2, λ1, λ2) = (4, 4, 1, 1)

with c = 0.8 (solid line), c = 1
(dashed line), c = 1.8
(dot-dashed line) and c = 4
(dotted line) f(

u
)

u
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beta-prime variables with more parameters than gamma distributed variables, there-
fore as expected this parameter-rich density (4) has more flexibility than density (8),
for example the bimodal form in Fig. 3 (see also Theorem 2). The effect of different
values of λi and βi , i = 1, 2, is also illustrated in Figs. 4 and 5, for example the skewed
U-shape form in Fig. 4. The estimation of the parameters of the density (4) will be
dealt with in a subsequent paper.

Figure 6 shows density (9) when Xi ∼ G B P
(
αi , β, λ

β

)
, i = 1, 2, for different

values of β, as well as density (8) if α1 = α2 = 4 and c = 1. As β increases, the
graph of pdf (9) tends to the graph of pdf (8), as proved in Theorem 2.
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Fig. 4 Pdf (4) for
(α1, α2) = (0.5, 0.5) and
(λ1, λ2, c)= (1, 1, 1) with
(β1, β2) = (0.5, 0.5) (solid line),
(β1, β2) = (0.5, 4) (dashed
line), and (β1, β2) = (4, 2)

(dot-dashed line)
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Fig. 5 Pdf (4) for
(α1, α2) = (0.5, 4) and
(β1, β2, c)= (4, 4, 1) with
(λ1, λ2) = (0.1, 4) (solid line),
(λ1, λ2) = (0.5, 4) (dashed
line), (λ1, λ2) = (0.8, 4)

(dot-dashed line) and
(λ1, λ2) = (4, 2) (dotted line)

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

u

f(
u

)

Fig. 6 Pdf (8) (solid line); Pdf
(9) with β = 0.5 (dashed line),
β = 4 (dot-dashed line) and
β = 4 (dotted line)
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The following applications, the first in Bayesian statistics and the second to eco-
nomics, show the potential of further uses of this distribution in other applied fields.

Bayesian statistics: Predictive distribution of the ratio of independent sample
variances from a normal population

Let us consider T1 ∼ N (µ1, λ1), where both the mean µ1 and the precision (inverse
of the variance) λ1 are unknown. Let (µ1, λ1) have as prior the normal-gamma dis-
tribution, denoted by (µ1, λ1) ∼ Ng (µ1, λ1; A, B, α1, β1), i.e., µ1 ∼ N (A, Bλ1)

and λ1 ∼ Ga (α1, β1)with B being a positive constant. Similarly, let T2 ∼ N (µ2, λ2)

with (µ2, λ2) ∼ Ng (µ2, λ2; C, D, α2, β2)and let T1 and T2 be independent.
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Let s2
1 and s2

2 be two independent sample variances with sizes n1 and n2 respec-
tively, taken from the two populations. A result in Bayesian statistics states that, under
normal sampling, the predictive density of Y1 = n1s2

1 = ∑n
i=1 (xi − x)2 is a Gamma–

gamma distribution, i.e., Gg
( 1

2 (n1 − 1) , α1, 2β1
)

(Bernardo and Smith 1994), and

is hence independent of A and B. Equivalently, Y1 ∼ G B P
(

1
2 (n1 − 1) , α1,

1
2β1

)
,

as pointed out in Pham-Gia and Turkkan (2002), the Gamma–gamma distribution
is a reparametrized form of the generalized beta prime. Similar results hold for Y2

= n2s2
2 . Their ratio Uc =

(
n1s2

1

)c

(
n1s2

1

)c+(
n2s2

2

)c then has the density given by (4), and for

c = 1, it is the predictive density of the ratio of two random sample variances, coming
respectively from the two populations. If n1 = n2 = n and c = 1/2, we then have
the predictive density of the ratio of two independent sample standard deviations,
V = s1

s1+s2
, as

f (v) = B (n − 1, 2α)
(
B

( n−1
2 , α

))2

(1 − v)
n−3

2

v
n+1

2
2 F1

(
2α, n − 1; n − 1 + 2α; 2ν − 1

ν2

)
,

0 < v < 1.

Economics: Relative value of the unreported income part in a national income
distribution

An important subject encountered in economics is the study of the distribution of
individual incomes on a national basis, and several common distributions, such as
the Gamma, Beta, Lognormal, Pareto, and some more specialized ones, such as the
Singh-Maddala, and its generalization, as given in McDonald and Xu (1995), are used
as models.

A specific problem considered in Ransom and Cramer (1983) is the presence of
disturbances in the reporting of incomes, which lead to errors and under or over-
reporting. All these disturbances are considered together there, as forming a normal
random variable, resulting in a total income distribution of X1 + X2 where X1 is nor-
mal and X2 is the reported income, distributed as either Gamma, Lognormal or Pareto.
In a similar way, but using positive skewed distributions, which are more appropriate
for their problem, Pham-Gia and Turkkan (1997) considered the case of X1 represent-
ing all unreported individual incomes, including those from the underground econ-
omy, and fitted gamma distributions to X1 and X2, resulting in a convenient closed
form expression for the density of X1 + X2. The 1988 Canadian income distribution
(Pham-Gia and Turkkan 1997) was used as an example, and based on the recognition
of the fact that the values reported for large incomes, and affecting the distribution
tail, are not reliable, the beta model was also used, as in Ryscavage (1989).

For this problem, let X1 represent the unreported income, and let both X1 and X2 be
G B P random variables. Hence, U = X1/ (X1 + X2) represents the relative value of
the unreported income, with respect to the total income, and its distribution should be
very informative for the understanding of how this unreported part could influence the
whole distribution. First, let X2 be represented, adequately, by a G B P variable. For
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Fig. 7 Pdf (4) for c = 1,

α1 = α2 = 6.15,
β1 = β2= 2.12,
λ1= 7.87, λ2= 1.185
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Fig. 8 The hazard function (16)
for β = 0.5 (solid line), β = 1,

(dashed line), β = 2
(dot-dashed line), β = 4
(dot-dot-dashed line)
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example, let X2 ∼ G B P (6.15, 2.12, 1.18) with the values of the parameters obtained
by the moments method, as presented in Pham-Gia and Duong (1989). For the unre-
ported income X1, estimated as 15% of X2, it can be represented, quite adequately
also, by the distribution G B P (6.15, 2.12, 7.87), so that µX1 ≈ 0.15µX2 . It should
be clearly stated that since very little is known about X1, and its shape is certainly
unknown, this hypothesis is only one among several possible candidates. However,
due to the versatility of the G B P distribution, the closed form of the density of U ,
and the variety of shapes it can have, we have a very convenient approach here, unlike
the one used by Ransom and Cramer (1983).

By taking c = 1, we have the distribution of U , the relative magnitude of X1, as
given by (4). We can also study this ratio according to different scenarios related to the
shape of the density of X1, by changing the values of the three parameters of the latter,
while maintaining its mean fixed. In Fig. 7, we have P (U ≥ 0.418) = 0.10, which
means that, under the hypotheses made, it is in 10 % of the cases only that we have the
relative value of the unreported income exceeding 41,8% of the total income. Similarly,
by taking X1 ∼ G B P (1.23, 2.12, 1.57), for example, we have now, P (U ≥ 0.426) =
0.10, which has a similar interpretation. The ratio Xc

1/
(
Xc

1 + Xc
2

)
has a similar mean-

ing as before, but is now related to the power c of the reported, and unreported, incomes
and has its density given by (4).

Figure 8 shows the hazard function for λ1 = λ2, α1 = 2, α2 = 4, c = 1, and
β1 = β2 = β, for different values of β. For the case of our distribution of the 1988
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Fig. 9 Mills’s ratio for c = 1,
α1 = α2 = 6.15,
β1 = β2= 2.12,
λ1= 1.18, λ2= 7.87

0.4 0.5 0.6 0.7 0.8 0.9

0.025

0.05

0.075

0.1

0.125  

0.15

0.175 

u

[H
(u

)]
-1

Canadian income the, Mills’s ratio [H(u)]−1of U is given by Fig. 9, obtained directly
from (16), with appropriate values given to the parameters.
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