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Abstract The maximum likelihood estimator (MLE) and the likelihood ratio test
(LRT) will be considered for making inference about the scale parameter of the
exponential distribution in case of moving extreme ranked set sampling (MERSS).
The MLE and LRT can not be written in closed form. Therefore, a modification
of the MLE using the technique suggested by Maharota and Nanda (Biometrika
61:601–606, 1974) will be considered and this modified estimator will be used to
modify the LRT to get a test in closed form for testing a simple hypothesis against one
sided alternatives. The same idea will be used to modify the most powerful test (MPT)
for testing a simple hypothesis versus a simple hypothesis to get a test in closed form
for testing a simple hypothesis against one sided alternatives. Then it appears that the
modified estimator is a good competitor of the MLE and the modified tests are good
competitors of the LRT using MERSS and simple random sampling (SRS).
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250 W. Abu-Dayyeh, E. Al Sawi

1 Introduction

Ranked set sampling (RSS) as was introduced by McIntyre (1952) is useful for cases
when the variable of interest can be more easily ranked than quantified. The aim of
RSS is to increase the efficiency of the sample mean as an estimator for the population
mean µ. Takahasi and Wakimoto (1968) established the theory of RSS. They showed
that the mean of the RSS is an unbiased estimator for the population mean and is more
efficient than the mean of SRS. Dell and Clutter (1972) studied the effect of error in
ranking on the efficiency of RSS. The RSS has many statistical applications in biology
and environmental studies (see Barabesi and El-Sharaawi 2001).

RSS has been under great investigation (see Stokes 1977; Stokes and Sager 1988;
Lam et al. 1994; Mode et al. 1999; Al-Saleh and Al-Sharfat 2001; Al-Saleh and Zheng
2002; Al-Saleh and Al-Omari 2002). Samawi et al. (1996) used extreme ranked set
sample (ERSS) which is easier to use than the usual RSS procedure to estimate the
population mean in case of symmetric distributions. Al-Odat and Al-Saleh (2000)
introduced the concept of varied set size RSS, which is coined here as Moving Extreme
Ranked Set Sampling (MERSS) and they found that this modification can be more
efficient and applicable than the simple random sampling technique (SRS).

To obtain a MERSS of size 2m: first, select m simple random samples of sizes
1, 2, 3, . . . , m, respectively and then identify the maximum of each sample by eye
or by some other cheap method, without actual measurement of the characteristic of
interest. Then repeat this for another m simple random samples but for the minima.
Repeat the above steps r times until the desired sample size, n = 2rm is obtained.

In order to get a closed form approximate of the MLE of θ , some terms of the
likelihood equation will be replaced by their expectations. This technique was used
for studying the MLE by Maharota and Nanda (1974) for censored data, Zheng and
Al-Saleh (2002) for RSS and Al-Saleh and Al-Hadrami (2003a,b) for MERSS.

In Sect. 2 of this paper, we will study the MLE and a modification of it which will be
denoted by MMLE for estimating the scale parameter of the exponential distribution
based on MERSS, assuming perfect ranking. Then the MMLE will be compared
with other estimators including that of Al-Saleh and Al-Hadrami (2003b) through
their variances. In Sect. 3, the MMLE will be used to construct a new test, which is a
modification of the likelihood ratio test (MLRT), for testing a simple hypothesis against
one-sided simple alternative about the scale parameter of the exponential distribution
using MERSS. In Sect. 4, the most powerful test (MPT) for testing a simple hypothesis
against a simple hypothesis will be modified to construct a new test in closed form
for the same testing problem using MERSS. The new test will be called a modified
uniformly most powerful test (MUMPT). Then the new tests will be compared with
the LRT based on SRS and MERSS through their power functions in Sect. 5.

2 Modified MLE

For a set size m, let {Xm:m, Xm−1:m−1, . . . , X1:1, Y1:m, Y1:m−1, Y1:m−2, . . . , Y1:1} be
a MERSS from an exponential distribution with scale parameter θ which has the
following pdf and df:
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f (x, θ) = 1

θ
e− x

θ , x > 0, θ > 0

F(x, θ) = 1 − e− x
θ , x > 0, θ > 0

respectively. Note, that Xi : i is the i th order statistic of a simple random sample of
size i from the exponential distribution with scale parameter θ and similarly Y1:i is
the 1st order statistic of a simple random sample of size i from the same distribution,
i = 1, 2, . . . , m.and all random samples are independent Then the likelihood and the
log likelihood functions are:

L(θ) =
m∏

i=1

i f (xi :i ; θ)[F(xi :i ; θ)]i−1i f (y1:i ; θ)[1 − F(y1:i ; θ)]i−1

L∗(θ) = C +
m∑

i=1

log f (xi :i , θ)+
m∑

i=1

log f (y1:i , θ)

+
m∑

i=1

(i − 1) log F(xi :i , θ) +
m∑

i=1

(i − 1) log(1 − F(y1:i , θ))

where C is a constant respectively. This implies that the likelihood equation is given by:

m∑

i=1

∂
∂θ

[
1
θ

e− xi :i
θ

]

1
θ

e− xi :i
θ

+
m∑

i=1

∂
∂θ

[
1
θ

e− y1:i
θ

]

[
1
θ

e− y1:i
θ

]

+
m∑

i=1

(i − 1)

∂
∂θ

[
1 − e− xi :i

θ

]

[
1 − e− xi :i

θ

] −
m∑

i=1

(i − 1)

∂
∂θ

[
1 − e− y1:i

θ

]

[
e− y1:i

θ

] = 0

which can rearranged as:

θ − x̄ + ȳ

2
− 1

2m

m∑

i=1

(i − 1)

[
y1:i − xi :i e− xi :i

θ

1 − e− xi :i
θ

]
= 0 (2.1)

(2.1) has been obtained by Al-Saleh and Al-Hadrami (2003b). Then it was proved by
them that the MLE exists and is unique but we can not find it in closed form. Then they
replaced the last term of the left-hand side (2.1) by its expectation and then solved for
θ to get the following estimator:

θ̂∗ = d(X̄ + Ȳ ) (2.2)
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where

d = 1

2

⎡

⎢⎢⎣
1

1 − 1
2m

∑m
i=1 i(i − 1)

[
1
i2 −∑i−2

j=0
1

(2+ j)2

(
i−2

j

)
(−1) j

]

⎤

⎥⎥⎦ (2.3)

which is called a modified MLE of θ . Then they proved that it is unbiased for θ .
We will suggest another modification of the MLE by replacing

∑m
i=1 (i − 1)

[
Xi :i e− Xi :i

θ

1−e− Xi :i
θ

]
instead of the last term of (2.1) by its expectation. Then

we solve it for θ to get the following estimator of θ :

∧
θ∗

1 =
∑m

i=1 Xi :i +∑m
i=1 iY1:i

2m + c1
(2.4)

where

c1 = 1

θ

m∑

i=1

E

⎛

⎝(i − 1)Xi :i
e− Xi :i

θ

1 − e− Xi :i
θ

⎞

⎠

=
m∑

i=2

i−2∑

j=0

i(i − 1)

(
i − 2

j

)
(−1) j 1

(2 + j)2 (2.5)

Al-Saleh and Al-Hadrami (2003b) did not give the variance of
∧
θ∗. In the next result,

we will show that
∧
θ∗

1 is an unbiased estimator of θ and give the variances of
∧
θ∗ and

∧
θ∗

1 .

Theorem

(a)
∧
θ∗

1 is an unbiased estimator of θ .
(b)

Var(
∧
θ∗) = d2θ2

m2

⎡

⎢⎢⎢⎢⎣
2

m∑

i = 1

i−1∑

j=0

i(−1) j

(
i − 1

j

)

( j + 1)3

−
m∑

i=1

⎛

⎜⎜⎜⎜⎝

i−1∑

j=0

i(−1) j

(
i − 1

j

)

( j + 1)2

⎞

⎟⎟⎟⎟⎠

2

+
m∑

i=1

1

i2

⎤

⎥⎥⎥⎥⎥⎦

123



Modified inference about the mean of the exponential distribution 253

(c)

Var

(∧
θ∗

1

)
= θ2

(m+c1)2

⎡

⎢⎢⎢⎢⎢⎣
2

m∑

i=1

i−1∑

j=0

i(−1) j

(
i −1

j

)

( j + 1)3 −
m∑

i=1

⎛

⎜⎜⎜⎜⎝

i−1∑

j=0

i(−1) j

(
i −1

j

)

( j +1)2

⎞

⎟⎟⎟⎟⎠

2

+m

⎤

⎥⎥⎥⎥⎥⎦

where d and c1 as in (2.3) and (2.5) respectively.

Proof The proof of part (a) is easy and therefore it will not be given. The proofs of
parts (b) and (c) are similar and therefore the proof of (c) will be given.

Since Y1i is the 1st order statistics of a simple random sample of size i from an
exponential distribution with parameter θ , the pdf of Y1i is given by:

g1i (y; θ) = i[1 − F(y; θ)]i−1 f (y, θ) = i
(

e− y
θ

)(i−1) e− y
θ

θ
= i

θ
e− y(i)

θ , y > 0

which implies that the distribution of Y1i is an exponential distribution with parameter
θ
i which in turn implies that Var(Y1i ) = θ2

i2 . Similarly since Xii is the maximum of a

simple random sample of size i from an exponential distribution with parameter θ , the
pdf of Xii is given by:

gii (x; θ) = i[F(x; θ)]i−1 f (x, θ) = i
(

1 − e− x
θ

)(i−1) e− x
θ

θ

= i

θ

i−1∑

j=0

(−1) j
(

i − 1
j

)
e− x( j+1)

θ , x > 0

which implies that:

Var(Xii ) = i

θ

i−1∑

j=0

(−1) j

(
i − 1

j

) ∞∫

0

x2e− x( j+1)
θ dx

−
⎡

⎣ i

θ

i−1∑

j=0

(−1) j

(
i − 1

j

) ∞∫

0

xe− x( j+1)
θ dx

⎤

⎦
2

= θ2

⎡

⎢⎢⎢⎢⎣
2i

i−1∑

j=0

(−1) j

(
i − 1

j

)

( j + 1)3

⎤

⎥⎥⎥⎥⎦
−

⎛

⎜⎜⎜⎜⎝
i

i−1∑

j=0

(−1) j

(
i − 1

j

)

( j + 1)2

⎞

⎟⎟⎟⎟⎠

2

123



254 W. Abu-Dayyeh, E. Al Sawi

Then:

Var(
∧
θ∗

1 ) = 1

(m + c1)2

[
m∑

i=1

Var(Xii )+
m∑

i=1

i2Var(Y1i )

]

= θ2

(m + c1)2

⎡

⎢⎢⎢⎢⎢⎣

m∑

i=1

⎡

⎢⎢⎢⎢⎣
2i

i−1∑

j=0

(−1) j

(
i − 1

j

)

( j + 1)3

⎤

⎥⎥⎥⎥⎦
−

⎛

⎜⎜⎜⎜⎝
i

i−1∑

j=0

(−1) j

(
i − 1

j

)

( j + 1)2

⎞

⎟⎟⎟⎟⎠

2

+ m

⎤

⎥⎥⎥⎥⎥⎦

The variances of
∧
θ∗

1 and
∧
θ∗ given by (2.6) and (2.7) respectively and the efficiency

of
∧
θ∗

1 with respect to each of the estimators
∧
θ∗, θ̂SRS and θ̂MERSS where the efficiency

of
∧
θ∗ wrt an estimator

�

θ is given by E f f (
�

θ
∗
1,

�

θ) = var(
�
θ )

var(
�
θ

∗
1)

are reported in Table 1 for

m = 1, . . . , 10. Note that the efficiency between any two of these estimators does not
depend on θ and therefore it was calculated only for θ = 1. The last 2 columns of
Table 3 are taken from Al-Saleh and Al-Omari (2002).

From Table 1, we may conclude:

(a) The efficiency of
∧
θ∗

1 wrt θ̂SRS is more than 1 for m = 2, . . . , 10, which means

that,
∧
θ∗

1 is more efficient than θ̂SRS.

(b) The efficiency of
∧
θ∗

1 with respect to
∧
θ∗ is more than 1 for m = 2, . . . , 10, which

means that,
∧
θ∗

1 is more efficient than
∧
θ∗. This coincides with what Zheng and

Al-Saleh (2002) claims without proof that the larger the number of terms that you
replace with their expectations the less efficient the modified estimator becomes.

(c) The efficiency of
∧
θ∗

1 with respect to θ̂MERSS is less than 1, but not far from 1.

Thus
∧
θ∗

1 is a good competitor of θ̂MERSS.

Table 1 Summary of study for
∧
θ∗

1 for Exp (1)

M var(
�
θ

∗
1) var(

�
θ

∗
) E f f (

�
θ

∗
1,

�
θ

∗
) E f f (θ̂MERSS, θ̂SRS) E f f (

�
θ

∗
1, θ̂SRS) E f f (

�
θ

∗
1, θ̂MERSS)

1 0.5 0.5 1 1 1 1

2 0.209877 0.21875 1.042277 1.1971 1.21601 1.01518

3 0.122934 0.130752 1.063595 1.3381 1.33558 0.99808

4 0.083264 0.089389 1.073558 1.4989 1.48172 0.98864

5 0.061262 0.066001 1.077349 1.6743 1.63225 0.97489

6 0.047564 0.05126 1.077705 1.8380 1.77372 0.96498

7 0.038352 0.041271 1.076106 1.9628 1.87533 0.95547

8 0.031804 0.034138 1.073385 2.1171 1.98150 0.93599

9 0.026951 0.028838 1.070024 2.1737 2.01968 0.92878

10 0.023235 0.024776 1.066328 2.3114 2.13585 0.92408
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3 The LRT and modified LRT

We will consider testing:

H0 : θ = θ0 vs. H1 : θ > θ0 (3.1)

We can assume without loss of generality that θ0 = 1. Then the LRT for testing (3.1)
of size α based on SRS is given by:

φs(x1, x2, . . . , xn) =
{

1, 2
∑n

i=1 xi > χ2
2n,α

0, otherwise
(3.2)

where X1, X2, . . . , Xn .is a SRS from an exponential distribution with mean θ . Note
that the LRT and the UMPT for testing (3.1) based on SRS are the same. Note, that
the power function of φs is given by:

Kϕ(θ) = Pθ

[
2m∑

i=1

Xi ≥ χ2
α,4m

2

]

= Pθ

[
2

∑2m
i=1 Xi

θ
≥ χ2

α,4m

θ

]
= 1 − G

(
χ2

α,4m

θ

)
(3.3)

where G is the df of χ2
4m distribution.

The LRT for testing (3.1) based on MERSS is given by:

φLRT(x1, x2, . . . , xm, y1, y2, . . . , ym) =
{

1, λLRT > k
0, otherwise

where λLRT =
f

(
x1,x2,...,xm ,y1,y2,...,ym ,

�
θ 2

)

f (x1,x2,...,xm ,y1,y2,...,ym ,1)
, where

�

θ2 is the MLE of θ where θ belongs
to 	 = [1,∞) and k is determined so that the size of the test is α. It is easy show that
�

θ2 = max(1, θ̂merss) where θ̂merss is the MLE of θ under MERSS.

Next, we will consider a modification of the LRT based on
∧
θ∗

1 and will be denoted
by φ1

LRT . The statistic of φ1
LRT is obtained from the statistic of φLRT(λ) by replacing

�

θ2 by
∧

θ∗
11 where

∧
θ∗

11 = max(
∧
θ∗

1 , 1) and
∧

θ∗
11 is given in (2.3), i.e., φ1

LRT is given by:

φ1
LRT(x1, x2, . . . , xm, y1, y2, . . . , ym) =

{
1, λ∗

1 > d1
0, otherwise

where λ∗
1 =

⎧
⎪⎨

⎪⎩

f

(
x1,x2,...,xm ,y1,y2,...,ym ,

∧
θ∗

11

)

f (x1,x2,...,xm ,y1,y2,...,ym ,1)
,

∧
θ∗

11 > 1

1,
∧

θ∗
11 ≤ 1
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and d1 is determined so that the test has size α. Then φ1
LRT can be written as:

φ1
LRT(x1, x2, . . . , xm, y1, y2, . . . , ym)

=

⎧
⎪⎪⎨

⎪⎪⎩
1, e

∑m
i=1 (xi :i +iy1:i )

(
∑m

i=1 (xi :i +iy1:i ))2m

m∏
i=1

⎡

⎣ 1−e
− (2m+c1)xi :i∑m

i=1 (xi :i +iy1:i )
1−e−xi :i

⎤

⎦
i−1

> k1 and
∧

θ∗
11 > 1

0, otherwise

and k1 is determined so that the test has size α.
The critical points of the tests φ1

LRT and φLRT are given in Table 1. Also, numerical
comparisons between the power functions of φ1

LRT, φLRT and φMU will be done in
Sect. 6 using Mathematica 4 using 10,000 iterations.

4 Modified uniformly most powerful tests (MUMPT)

First, consider testing:

H0 : θ = 1 vs. H′
1 : θ = θ1, θ1 > 1

By the Neyman–Pearson Lemma, the UMPT for testing H0 vs. H1 is given by:

φ(x1, x2, . . . , xm, y1, y2, . . . , ym) =
{

1, λ2 > k2
0, otherwise

(4.1)

where

λ2 = f (x1, x2, . . . , xm, y1, y2, . . . , ym, θ1)

f (x1, x2, . . . , xm, y1, y2, . . . , ym, 1)

= e
∑m

i=1 (xi :i +iy1:i )(1− 1
θ1

)

θ2m
1

m∏

i=1

⎡

⎣1 − e
− xi :i

θ1

1 − e−xi :i

⎤

⎦
i−1

(4.2)

and k2 is found so that the size of the test is α. It is clear that the equation λ2 > k2
can not be simplified further to get a statistic in closed form and φ depends on θ1

because of the term
∏m

i=1

[
1−e

− xi :i
θ1

1−e−xi :i

]i−1

. Thus, the UMPT for testing (3.1) does not

exist. Therefore, we will replace
∏m

i=1

[
1−e

− xi :i
θ1

1−e−xi :i

]i−1

in (2.4) by its expectation to get

a test in closed form. The new test will not depend on θ1 and therefore, we will use it
to test H0 versus H1 in (3.1). We will call the new test a modified UMPT and will be
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denoted by φMU . Then the new test can be simplified to:

φMU (x1, x2, . . . , xm, y1, y2, . . . , ym) =
⎧
⎨

⎩
1,

�

θ
∗
1 > d2 and

∧
θ∗

11 > 1

0, otherwise

where d2 is found so that the size of the test is α and θ∗
1 is the MMLE of θ , which is

given in (2.3).

5 Comparisons and conclusions

We will compare the power of the tests φS, φLRTφ1
LRT and φMU via their power func-

tions. We simulate the power functions of the tests for θ = 1.25, 1.50, 1.75, 2, 2.25,

2.5, 2.75, 3.0, 3.25, 3.50 and for m = 3, 4, 5, . . . , 10 and α = 0.05. The critical
points of the tests φ1

LRT, φLRT and φMU respectively are reported in Table 2. We will
give only the power function of the φLRT and the efficiency of each of the other tests
with respect to φLRT, where the efficiency of a test φ∗ with respect to φLRT is defined

by eθ (φ
∗, φLRT) = Kφ∗ (θ)

KφLRT (θ)
. These efficiencies are summarized in Tables 3, 4, 5, 6.

The larger eθ (φ
∗, φLRT) the better the test φ∗.

6 Conclusions

Based on Tables 4, 5, 6, we may conclude the following:

(a) For fixed θ , the power of all the tests increases as m increases. The power has
been given only for φLRT.

(b) For fixed sample size, the power of all tests increases as θ increases. The power
has been given only for φLRT.

(c) φLRT and φ1
LRT are almost equivalent.

(d) φLRT and φ1
LRT are better than φS for all values of m and θ .

(e) φMU is better than φS in all cases except when θ = 1.25 and m is small.
(f) The efficiency of φS and φMU with respect to φLRT decreases as m increases for

small values of θ .

Table 2 The critical points of
φLRT, φ1

LRT and φMU
m φLRT φ1

LRT φMU

3 1.1370 1.1837 12.0307

4 1.1512 1.2044 15.7852

5 1.1240 1.1945 19.7216

6 1.1434 1.2128 23.7172
7 1.1359 1.2053 27.7508

8 1.1599 1.2371 32.0811

9 1.1724 1.2439 36.3651

10 1.1603 1.2288 40.6678
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Table 3 Power function of φLRT

m 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

3 0.1781 0.3618 0.5321 0.6704 0.7752 0.8436 0.9004 0.9342 0.9565 0.9700

4 0.2141 0.4493 0.6560 0.8022 0.8913 0.9388 0.9677 0.9823 0.9911 0.9950

5 0.2564 0.5459 0.7684 0.8945 0.9570 0.9806 0.9926 0.9971 0.9986 0.9994

6 0.3034 0.6323 0.8529 0.9484 0.9847 0.9945 0.9985 0.9996 0.9997 0.9999

7 0.3440 0.7113 0.9108 0.9771 0.9956 0.9986 0.9998 0.9999 1.0000 1.0000

8 0.3799 0.7694 0.9445 0.9902 0.9989 0.9995 1.0000 1.0000 1.0000 1.0000

9 0.4264 0.8288 0.9702 0.9960 0.9996 0.9999 1.0000 1.0000 1.0000 1.0000

10 0.4704 0.8767 0.9846 0.9987 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4 eθ (φ1
LRT

, φLRT)

m 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

3 1.0037 1.0013 0.9997 1.0017 1.0005 1.0002 1.0001 0.9991 0.9993 0.9996

4 0.9916 0.9960 0.9964 0.9984 0.9999 1.0002 0.9997 0.9995 0.9998 0.9999

5 1.0010 0.9982 0.9982 1.0004 0.9992 0.9996 1.0001 0.9999 1.0000 1.0000

6 1.0047 1.0021 1.0003 1.0006 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

7 0.9976 0.9995 0.9995 1.0002 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

8 1.0028 0.9997 1.0003 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000

9 0.9966 0.9974 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0050 0.9991 1.0000 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000

Table 5 eθ (φS , φLRT)

m 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

3 0.8984 0.8292 0.8269 0.8502 0.8643 0.8890 0.8996 0.9206 0.9305 0.9485

4 0.8407 0.7790 0.7927 0.8227 0.8639 0.8948 0.9197 0.9366 0.9585 0.9648

5 0.7800 0.7327 0.7678 0.8161 0.8673 0.9178 0.9369 0.9628 0.9714 0.9806

6 0.7251 0.7117 0.7621 0.8330 0.8937 0.9351 0.9614 0.9804 0.9903 0.9901

7 0.6686 0.6889 0.7686 0.8597 0.9241 0.9613 0.9802 0.9901 0.9900 1.0000

8 0.6581 0.6888 0.7941 0.8887 0.9410 0.9705 0.9900 0.9900 1.0000 1.0000

9 0.6332 0.6757 0.8040 0.9036 0.9604 0.9801 0.9900 1.0000 1.0000 1.0000

10 0.5952 0.6844 0.8328 0.9312 0.9701 0.9900 1.0000 1.0000 1.0000 1.0000

Finally, the modified tests based on the MERSS studied in this chapter are nearly
as efficient as the exact LRT based on the MERSS and the UMPT based on SRS
(Tables 4, 5, 6). Therefore, we recommend the use of the MERSS than the SRS and
the modified tests of the exact tests.
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Table 6 eθ (φMU , φLRT)

m 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

3 0.8168 1.0028 1.0033 1.0086 0.9976 1.0045 0.9957 0.9933 0.9944 0.9968

4 0.8080 1.0269 0.9988 1.0002 0.9964 0.9993 0.9978 0.9987 0.9977 0.9989

5 0.7678 0.9985 0.9851 0.9917 0.9930 0.9984 0.9981 0.9991 0.9996 1.0000

6 0.7521 0.9811 0.9769 0.9920 0.9954 0.9992 0.9992 0.9996 1.0001 1.0000

7 0.7643 0.9707 0.9763 0.9932 0.9969 1.0002 0.9998 1.0000 1.0000 1.0000

8 0.7433 0.9766 0.9862 0.9968 0.9987 1.0001 1.0000 1.0000 1.0000 1.0000

9 0.7312 0.9731 0.9892 0.9986 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

10 0.7309 0.9736 0.9916 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
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