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Abstract A change-point control chart for detecting shifts in the mean of
a process is developed for the case where the nominal value of the mean is
unknown but some historical samples are available. This control chart is a non-
parametric chart based on the Mann–Whitney statistic for a change in mean
and adapted for repeated sequential use. We do not require any knowledge
of the underlying distribution such as the normal assumption. Particularly, this
distribution robustness could be a significant advantage in start-up or short-run
situations where we usually do not have knowledge of the underlying distri-
bution. The simulated results show that our approach has a good performance
across the range of possible shifts and it can be used during the start-up stages
of the process.

Keywords Nonparametric methods · Change-point model · Mann–Whitney
statistic · Average run length · Estimated control limits · EWMA chart

Mathematics Subject Classification (2000) 62p30

1 Introduction

Statistical process control (SPC) has been widely used to monitor various indus-
trial processes. Most of research in SPC focuses on the charting techniques.
In most SPC applications, it is assumed that the parameters representing the
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quality characteristic of the process are known. However, the parameters are
rarely known in practice. As we know, control charts are often applied to a
two-phase procedure. This use of charts includes defining the in-control state of
the process and assessing process stability to ensure that the reference sample
is representative of the process. Once the in-control (IC) reference sample
is established, a common practice is to estimate the parameters of the pro-
cess from this reference sample and control limits are estimated for use in
Phase II.

However, when estimates are used in place of known parameters, the varia-
bility of the estimators will result in chart performance that differs from that of
charts designed with known parameters. Several authors have investigated the
effect of the estimated parameters on the performance of traditional control
charts, such as Quesenberry (1993) and Jones et al. (2001, 2004), etc. Recently,
a good literature review paper, Jensen et al. (2006) has given a thorough discus-
sion about the effect of parameter estimation on control chart properties. They
concluded that when the number of reference samples is small, the control
charts with estimated parameters would produce rather large bias in the IC
ARL from the nominal value and reduce the sensitivity of the chart to detect
the process changes in terms of out-of-control (OC) ARL. Moreover, the false
alarm probabilities of the charts increase drastically after short runs when the
parameters are estimated. To attain the similar performance of the known para-
meters, much more than 20–30 samples are required (Montgomery 2004; Ryan
1989). For example, for the traditional EWMA chart with λ = 0.2, 300 samples
of five observations are needed to achieve the desire level of IC performance.
Whereas, in most cases, it may not be feasible to wait for the accumulation of
sufficient large subgroups because the users usually want to monitor the process
at start-up stages. Hence, many authors have studied the design procedures of
the classical control charts with estimated parameters, such as Hillier (1967,
1969), Yang and Hillier (1970), Nedumaran and Pignatiello (2001) and Jones
(2002).

As traditional methods Phase I data is needed to carry out parameter esti-
mates that can be plugged into the Phase II calculations, these methods require
one to draw a conceptual line below the Phase I data, and separate the esti-
mation data (Phase I) from the ongoing SPC data (Phase II). It should be
noted that some procedures, such as self-starting control charts, avoid the dis-
tinction of Phase I and Phase II altogether and provide alternative approaches
when process parameters are unknown. Self-starting methods, which update
the parameter estimates with new observations and simultaneously check for
the OC conditions, are developed for the situations when reference samples
are sufficiently large to approximate control chart performance with the true
parameters, such as Hawkins (1987), Hawkins and Olwell (1997), Quesenberry
(1991, 1995) and Sullivan and Jones (2002).

As we know, when the parameters of the process are suspected to occur a
step shift, the detecting problems are similar to the sequential change-point
detection. The traditional model is given by
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Xi ∼
{

N(µ0, σ 2
0 ), for i = 1, 2, . . . , τ ,

N(µ1, σ 2
1 ), for i = τ + 1, . . . ,

(1)

where τ is called the change-point. This is addressed in Pollak and Siegmund
(1991), Siegmund and Venkatraman (1995), Lai (1995), Gombay (2000) and an
excellent review paper by Lai (2001) which presented a summary of
the methods as well as a class of sequential detection rules. Pignatiello and
Simpson (2002) proposed a control chart based on likelihood ratio approach
for the on-line detection which had a robust performance for the magnitude of
the shifts. These papers assumed that at least a part of parameters are known
in advance. Recently, Hawkins et al. (2003) (which is abbreviate to HQK in this
paper) has proposed a control chart for detecting the shifts in mean when the
parameters of the process are unknown. The HQK paper adapted the classi-
cal fixed sample change-point formulation which was based on the parametric
(normal) likelihood ratio statistic to a Phase II setting. In this setting as new
observation was observed, the change-point test was reapplied to all accumu-
lated data. They showed that this change-point formulation was not only able
to have the desired run-length behavior but also competitive with the best
of traditional formulations for detecting step changes in parameters. Hawkins
and Zamba (2005a) developed a parallel methodology for detecting changes
in variance. Hawkins and Zamba (2005b) proposed an attractive alternative to
the traditional charting method which was a single chart using the unknown-
parameter likelihood ratio test for a change in mean and/or variance. Their
change-point method is the motivation of our paper.

Most of the research that involves the development and evaluation of Phase
II control charts assumes some stochastic model which serves as an approxima-
tion. For example, univariate process data is often assumed to have a normal
distribution. But it is well recognized that in many applications, particularly
in start-up situations, the underlying process distribution is unknown, so that
statistical properties of commonly used charts, designed to perform best under
the normal distribution, could be potentially (highly) affected.

In above situation, it seems that development and application of nonpara-
metric control charts are highly desirable. Chakraborti et al. (2001) surveyed
the literature on univariate nonparametric control charts. For example, the
CUSUM chart proposed by Bakir and Reynolds (1979) was based on the
Wilcoxon signed-rank statistic. McDonald (1990) considered a CUSUM proce-
dure for individual observations, which was based on the statistic called “sequen-
tial ranks”. Another EWMA-type chart for individual observations proposed
by Hackel and Ledolter (1991) was constructed by the “standardized ranks” of
observations, which was determined by the in-control distributions. If it is not
available, they recommended using the ranking on previously collected refe-
rence data. They also indicated that IC ARL could be substantially larger if
the unknown in-control parameters must be estimated. Recently, a new non-
parametric chart based on the well-known Mann–Whitney statistic (Mann and
Whitney 1947) was proposed by Chakraborti and Van de Wiel (2005). Besides,
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nonparametric control charts in multivariate case have been discussed by Qiu
and Hawkins (2001, 2003).

In this paper, motivated by HQK paper, a change-point control chart for
detecting the shifts of mean is developed for the case where the nominal value
of process mean is unknown but some historical samples are available.

As the proposed approach does not require the in-control mean be known
prior, it avoids the need for a lengthy Phase I data-gathering step before charting
(although it is generally advisable to collect a few preliminary observations).
Even more, we do not require knowledge of the underlying distribution, so,
the distribution robustness of our proposed approach could be an advantage,
particularly, in start-up or short-run situations where we usually do not have
knowledge of the underlying distribution. Our proposed control chart is based
on the Mann–Whitney statistic for a change in mean. We demonstrate the
effectiveness of our proposed approach by the Monte Carlo method.

2 Nonparametric control chart based on change-point model

In this section, a brief description of the nonparametric change-point formu-
lation is firstly given. And then, our proposed control chart and its design are
considered.

2.1 The change-point model for a fixed sample

Suppose there are n independent observations {x1, . . . , xn}, and xi comes from
a continuous distribution F(x, µi), where µi is the location parameter. For sim-
plicity, let µi denote the population mean. The process is said to have a single
change in the mean after the τ th observation, if the first τ observations have
the same distribution F(x, µ1), and the remainder has a common distribution
F(x, µ2). If µ1 = µ2, the process is said to be in control. To make the model
more specific, we suppose that the process readings can be modeled by the
change-point model, which is

{
Xi ∼ F(x, µ1), for i = 1, 2, . . . , τ ,

Xi ∼ F(x, µ2), for i = τ + 1, . . . , n.
(2)

A straightforward nonparametric test to detect a mean change (or change-
point) would be the Mann–Whitney two-sample test. For any 1 ≤ t < n, the
Mann–Whitney statistic is defined as

MWt,n =
t∑

i=1

n∑
j=t+1

I(xj < xi), (3)
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where

I(xj < xi) =
{

1, xj < xi,

0, xj ≥ xi.

It is straightforward to get the expectation and variance under in-control as

E0(MWt,n) = t(n − t)
2

, Var0(MWt,n) = t(n − t)(n + 1)

12
. (4)

Ideally, no ties should occur because of the assumption of continuous popu-
lation. In practice, when there are ties in the data, the usual correction to the
variance of MWt,n can be made by multiplying the factor

1 −
r∑

i=1

gi(g2
i − 1)n−1(n2 − 1)−1, (5)

where r is the distinct number of values in the n observations and the ith value
occurs with frequency gi

(∑r
i=1 gi = n

)
. In this situation, the in-control variance

of MWt,n is

Var0(MWt,n) = t(n − t)(n + 1)

12

(
1 −

r∑
i=1

gi(g2
i − 1)n−1(n2 − 1)−1

)
.

The standardized Mann–Whitney statistic MWt,n is defined by

SMWt,n = MWt,n − E0(MWt,n)√
Var0(MWt,n)

. (6)

Note that when the process is in control, the distribution of SMWt,n is symmetric
about zero for each t (Mann and Whitney 1947), and large values of SMWt,n
indicate a negative shift, whereas small values indicate a positive shift.

Similar to Pettitt (1979), the test statistic for the hypothesis H0 : µ1 = µ2
can be defined as

Tn = max
1≤t≤n−1

|SMWt,n|. (7)

If Tn exceeds some critical value hn, then we conclude that there is a shift in the
mean. Otherwise, we conclude that there is no sufficient evidence of a shift. To
find suitable critical values hn, we can use the limiting distribution of Tn given
by Pettitt (1979).
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2.2 Our proposed control chart and its design

So far, the sample size n is assumed to be fixed. Now we consider the on-line
SPC applications. Suppose there are total m (m ≥ 1) IC historical individual
observations {xi, i = 1, 2, . . . , m} and n future observations. Define the maximal
standardized Mann–Whitney statistic for the k = m + n observations as

Tm,n = max
m≤t<k

|SMWt,(m+n)|. (8)

Using the methodology presented in HQK paper, it is natural to construct the
control chart based on the statistic Tm,n. That is to say, if Tm,n > hm,n, an out-of-
control signal will be given, where hm,n is chosen to obtain the given specified
IC ARL. However, if Tm,n ≤ hm,n, the monitoring continues and the (n + 1)st
future observation will be obtained. The procedure will be repeated. In this
paper, we call this chart as SMW chart.

Note that there is a little difference from HQK paper: Tm,n is not the maxi-
mum of SMWt,(m+n) for all t but m ≤ t < (m+n). From the view of change-point,
due to the m historical observations are IC, the shift should not occur in these
samples, that is to say, the maximum of SMWt,(m+n) is expected to be one value
of {SMWt,(m+n), t = m, m+1, . . . , m+n−1}. This modification is minor but will
decrease the false alarm and result in more effective in detecting the changes
under our considered m IC reference samples assumption.

But using the statistic Tm,n in (8) will arise a problem that the possible values
of Tm,n are very limited when n is small so that it is impossible to obtain the
enough accurate control limits hm,n. The reason is the distribution of Tm,n is
discrete. In this paper, we consider a trade-off scheme which balances the two
settings mentioned above. Redefine the maximal standardized Mann–Whitney
statistic for the k = m + n observations as following,

T ′
m,n = max

m−m0≤t<k
|SMWt,(m+n)|. (9)

where m0 is a chosen integer. However, for small m, such as m = 10 or 20, it
is also difficult to obtain the enough accurate control limits whatever m0 is. So,
the EWMA control chart is introduced.

As we know, due to the appearance of change-point, saying a negative shift,
not only the expectation value of Mann–Whitney statistic at the change-point
but also those in the two sides (at least nearby) of change-point have become
large. According to above thinking, we can use the EWMA method to cumulate
the slight increments and make the control chart signal more quickly. So, based
on the statistic SMWt,(m+n) given by Eq. (6), we propose another EWMA-type
chart. Define

Yj(m, n) = λ · SMWj,(m+n) + (1 − λ) · Yj−1(m, n), (10)
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where j = m − m0, m − m0 + 1, . . . , m + n − 1, Ym−m0−1(m, n) = 0 and λ (0 <

λ ≤ 1) is a smoothing constant. Let Ymax(m, n) = maxm−m0≤j<m+n |Yj(m, n)|,
our EWMA chart is given as follows

• After the nth future sample is monitored, compute Ymax(m, n).
• If Ymax(m, n) ≤ hm,n (hm,n is chosen to obtain the given specified IC ARL),

then conclude that there is no evidence of a shift and continue to monitor
the (n + 1)st future sample.

• If Ymax(m, n) > hm,n, then an out-of-control signal is triggered.

The difference between the SMW chart based on the Eq. (9) and the EWMA
chart based on the Eq. (10) is that after the (m + n)th sample is monitored, the
SMW chart is to calculate the maximum values of SMWt,(m+n) for m − m0 ≤
t < (m+n), but the EWMA chart is to calculate the maximum of exponentially
weighted moving averages of SMWt,(m+n).

In this paper, the smoothing constant λ in Eq. (10) is taken to be 0.2. In
general, smaller smoothing constants lead to quicker detection of smaller shifts
(Lucas and Saccucci 1990). In fact, when λ is equal to 1.0, the performance of
the EWMA chart is the same as that of SMW chart.

For the reason that the introduction of the weight, the possible values of
Ymax(m, n) can be attainted are much more than that of Tm,n, so, the accurate
calculation of the control limits becomes possible. Our simulations show that
the proper value of m0 can be chosen at the range of [4,10] for m ≥ 10. We
use m0 = 4 in this paper. For given the false alarm probability (FAP) α, the
control limit of our proposed EWMA chart, hm,n(α) can be obtained by solving
the following equations

Pr
(

Ymax(m, n) > hm,n(α)

∣∣∣Ymax(m, i) ≤ hm,i(α), 1 ≤ i < n
)

= α, n > 1,

Pr
(

Ymax(m, 1) > hm,1(α)
)

= α.

Due to the intricacy of this conditional probability, it seems to be impossible
to solve it analytically. So, similar to the method in HQK paper and Hawkins
and Zamba (2005a,b), we use one million sequences of length 500 which come
from the standard normal distributions to estimate them. According to HQK
paper, we also suggest starting monitoring after some preliminary or historical
samples are obtained. Hence, in this paper, we do not consider the case with
very small IC sample numbers such as m < 10. Table 1 shows the control limits
of EWMA chart for α values of 0.01, 0.005, 0.0027, and 0.002, corresponding to
IC ARLs of 100, 200, 370, 500, for m = 10 and 50, m0 = 4 and n values in the
range 1–490. As shown in Table 1, hm,n(α) increases initially, but then stabilizes.
The missing values in Table 1 can be approximated by the last entries in the
same column. A lot of simulations by generating independent sequences of
observations show that these control limits perform quite well. The noticeable
point is this control chart is completely distribution-free, that is to say, the ARLs
for different distributions are the same.
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Table 1 The hm,n(α) of our proposed EWMA chart

n IC ARL

m = 10 m = 50

100 200 370 500 100 200 370 500

1 1.250 1.305 1.340 1.354 1.310 1.376 1.425 1.444
2 1.355 1.430 1.481 1.501 1.420 1.508 1.576 1.605
3 1.453 1.539 1.604 1.633 1.518 1.625 1.708 1.752
4 1.535 1.641 1.721 1.750 1.605 1.732 1.820 1.869
5 1.602 1.719 1.818 1.853 1.684 1.820 1.918 1.967
6 1.660 1.789 1.896 1.936 1.742 1.889 2.006 2.055
7 1.711 1.852 1.965 2.014 1.796 1.947 2.074 2.133
8 1.754 1.906 2.019 2.072 1.840 2.006 2.133 2.191
9 1.789 1.945 2.072 2.121 1.874 2.045 2.182 2.250

10 1.820 1.992 2.116 2.170 1.903 2.084 2.221 2.289
11 1.844 2.016 2.150 2.219 1.933 2.123 2.260 2.338
12 1.875 2.047 2.180 2.248 1.957 2.152 2.299 2.377
13 1.891 2.078 2.219 2.277 1.977 2.172 2.328 2.406
14 1.914 2.102 2.248 2.316 1.996 2.191 2.357 2.436
15 1.926 2.117 2.268 2.336 2.006 2.211 2.387 2.465
16 1.941 2.133 2.287 2.355 2.021 2.230 2.406 2.484
17 1.953 2.156 2.307 2.375 2.030 2.240 2.416 2.504
18 1.965 2.168 2.326 2.404 2.045 2.250 2.426 2.523
19 1.977 2.180 2.341 2.414 2.050 2.260 2.440 2.533
20 1.988 2.195 2.355 2.434 2.060 2.270 2.455 2.543
22 2.004 2.219 2.385 2.473 2.069 2.289 2.484 2.562
24 2.016 2.234 2.414 2.492 2.079 2.309 2.494 2.582
26 2.031 2.250 2.429 2.512 2.089 2.318 2.504 2.602
28 2.039 2.266 2.448 2.531 2.099 2.328 2.514 2.611
30 2.055 2.281 2.463 2.551 2.108 3.338 2.523 2.621
35 2.070 2.297 2.482 2.570 2.113 2.357 2.543 2.641
40 2.086 2.328 2.512 2.609 2.123 2.367 2.562 2.660
50 2.109 2.352 2.556 2.648 2.138 2.387 2.582 2.680
60 2.121 2.367 2.580 2.678 2.147 2.396 2.602 2.699
70 2.133 2.383 2.596 2.688 2.157 2.406 2.621 2.719
80 2.141 2.391 2.609 2.707 2.162 2.416 2.641 2.738
90 2.145 2.406 2.619 2.717 2.167 2.426 2.650 2.748

115 2.156 2.422 2.639 2.736 2.172 2.436 2.655 2.758
140 2.168 2.430 2.650 2.746 2.177 2.440 2.660 2.768
165 2.172 2.438 2.658 2.756 2.179 2.445 2.665 2.777
190 2.176 2.445 3.668 2.766 2.182 2.455 2.670 2.782
240 2.184 2.453 2.673 2.775 2.187 2.460 2.675 2.787
290 2.461 2.683 2.785 2.465 2.680 2.792
390 2.688 2.790 2.689 2.797
490 2.795 2.800

As HQK paper did, we can also give a simple closed-form approximation
based on the regression fit. However, we found that the simple expressions
could not fit the table well. So, this fitted formula is not listed here. Though
these tabulated values are not very convenient for the engineers by hand, it can
be easily evaluated by the computer programs even some software in that the
storage for these datum is a trivial task.



Nonparametric chart 21

Fig. 1 The empirical distribution of run-length of EWMA chart for m = 30 (solid line) and
Geometric distribution (dotted line)

There is a vital issue remaining to be considered, which is the choice of
hm,n(α) for different m. From Table 1 we observe that the difference of control
limits for m = 10 and m = 50 is very small. The reason is the distribution of
Yj(m1, n) is approximately the same as that of Yj(m2, n) when m1, m2 are large
enough. So we expect the control limits of EWMA chart for different m are
very close. Extensive simulations have been done to verify this but here we only
present a few to illustrate. Figure 1 shows that the run-length distribution of
EWMA charts (30,000 simulations) for α = 0.005, m = 30 using the limits of
h10,t(0.005) given in Table 1. From this figure, we can see that the behavior of the
run-length for m = 30 are very close to the geometric distribution and the ARL
and standard deviation of run-length (SDRL) also demonstrate it. Actually,
the values of hm,t(α) for m = 15(5)45 are also obtained by the simulations
which are available from the authors. The empirical run-length distribution of
EWMA charts (100,000 simulations) for α = 0.005, m = 100(100)500 using the
values of h50,t(0.005) are also obtained (we do not report them here). Using
the control limits of m = 50, even for the m = 500, the IC ARL, SDRL and
distribution of run-length are quite satisfactory. Hence, we suggest that the
h50,t(α) is regarded as any limits of m > 50 when the requirement of in-control
behavior of run-length is not very strict.

2.3 The diagnostic aids and implementation

In the practical applications of quality control, there are two issues that need
to be considered. One is to detect if the process is in control, the other is
to point out the position of the shift if the process has shifted. Confirming the
process change-point would help engineers to identify the special cause quicker.
An estimator-based on the Mann–Whitney statistic of the change-point is used
to assist our EWMA chart. We assume that an out-of-control signal is given at
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observation m + n by our proposed EWMA chart, i.e. there are m IC historical
and n future observations, and a shift has occurred after the τ th future sample
(m ≤ τ < m + n). Our proposed estimator of the change-point τ of a step shift
is given by

τ̂ = arg
m≤t<m+n

max |SMWt,m+n|. (11)

Note that the estimator of change-point given by Pignatiello and Samuel
(2001) is based on the maximum likelihood, they also considered its efficiency
of this parametric estimator through simulation results. Timmer and Pignatiello
(2003) used the similar method to study the change point estimates for the
parameters of an AR(1) process. Our proposed estimator (11) is a nonpara-
metric one. Some limited simulations show that our proposed estimator is less
effective than the parametric likelihood method but it is still an accurate and
useful estimator of the position of change point. We do not investigate it in
detail here.

For ease to calculate, we can use the Wilcoxon rank-sum test, which is equi-
valent to the Mann–Whitney test by the relationship

MWt,n = Wt,n − t(t + 1)

2
, (12)

where Wt,n = ∑t
i=1 Ri, Ri is the rank of ith observation xi in the complete sample

of n observations. When the (n + 1)st observation is monitored, one need only
to compare xn+1 with xi, i = 1, 2, . . . , n and obtains the new sequence of ranks
R1, . . . , Rn+1. Using this method, the MWt,n is easy to calculate recursively, so
the computation of the EWMA statistics based on SMWt,n is trivial. However,
We think that it is not easy to implement the proposed control charts by hand,
because we must calculate many values of SMW once again and obtain statistic
Ymax(m, n) when a new observation is obtained. Therefore, it is necessary to use
computer.

3 An illustrative example

In this section, an illustrative example is given to introduce the implemen-
tation of our proposed EWMA control chart. In this example, the underlying
in-control distribution is chi-square with degree of freedom 4 (χ2(4)). There are
m = 15 IC historical observations, which are the first 15 rows in Table 2. Suppose
the mean has increased 0.75 standard deviation after the 5th future observation.
The control limits of the EWMA chart hm,n(0.005) for m = 10 are used which
yield almost IC ARL=200. The h10,n(0.005) for n = 1, 2, . . . , 13 and the statistics
Ymax(m, n) are tabulated in Table 2. It is clear that the EWMA chart signals
after eight OC observations. The maximum of SMWt,m+n for n = 15, 11, . . . , 27
is the SMW20,28 = 2.695, which indicates accurately the location τ of the shift.
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Table 2 Data for example
with a shift after 20th sample

n xn Ymax(m, n) h10,n−15(0.005)

1 2.061
2 1.113
3 4.298
4 6.972
5 1.675
6 3.614
7 3.446
8 8.057
9 4.702

10 2.827
11 1.637
12 4.925
13 7.506
14 1.170
15 2.308
16 3.606 0.249 1.305
17 7.425 0.462 1.430
18 0.277 0.535 1.539
19 5.455 0.153 1.641
20 3.597 0.100 1.719
21 6.068 0.550 1.789
22 4.618 0.647 1.852
23 8.384 1.291 1.906
24 6.015 1.457 1.945
25 5.792 1.607 1.992
26 6.267 1.763 2.016
27 6.134 1.898 2.047
28 9.937 2.195 2.078

4 Performance comparisons

4.1 Normal distribution setting

Our proposed nonparametric EWMA chart is compared with the chart propo-
sed by HQK paper under normal assumption. Without loss of generality, the
underlying IC distribution is assumed to be the standard normal distribution.
The performances of EWMA and HQK charts with m = 10, α = 0.005 and dif-
ferent values of τ are given in Table 3 (100,000 simulations). The values of τ are
chosen to be 10, 50, 100 and 250 for a representative illustration. Any series for
which a signal occurs before time τ is discarded. Note that in the HQK paper,
the author gave the control limits of m = 9 in Table 3 and some simulation
results in Table 4 with the control limits of closed-form approximations. For fair
comparisons, we obtain the rather accurate control limits for m = 10 through
the same simulation method presented by the HQK paper and use these control
limits to compare the two charts.

From Table 3, we observed

– As more future IC observations are collected, both two charts will be more
sensitive to the shifts, which is due to the updating information with new
observation.
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Table 3 The ARL comparisons between EWMA and HQK charts for N(0,1) data and m = 10,
α = 0.005

δ τ = 10 τ = 50 τ = 100 τ = 250

EWMA HQK EWMA HQK EWMA HQK EWMA HQK

0.00 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0
0.25 179.7 187.5 129.7 155.5 101.9 130.7 76.3 100.3
0.50 140.2 159.8 44.9 66.4 30.3 41.1 25.4 31.1
0.75 95.3 113.5 17.5 22.8 14.9 17.0 13.9 15.1
1.00 55.3 65.5 10.5 11.6 9.8 9.9 9.5 9.2
1.25 29.1 30.6 7.8 7.5 7.5 6.7 7.3 6.4
1.50 15.4 15.0 6.3 5.4 6.2 5.0 6.1 4.8
1.75 9.1 8.8 5.5 4.2 5.4 3.9 5.3 3.7
2.00 6.3 6.3 4.9 3.4 4.9 3.2 4.8 3.0
2.25 5.2 5.0 4.6 2.8 4.5 2.6 4.5 2.6
2.50 4.6 4.2 4.3 2.4 4.3 2.3 4.3 2.2
2.75 4.2 3.6 4.2 2.1 4.1 2.0 4.1 1.9
3.00 4.0 3.1 4.1 1.8 4.0 1.8 4.0 1.7

Table 4 The ARL comparisons between EWMA and HQK charts for χ2(4) data and m = 10 ,
α = 0.005

δ τ = 10 τ = 50 τ = 100 τ = 250

EWMA HQK EWMA HQK EWMA HQK EWMA HQK

0.00 200.0 59.5 200.0 59.7 200.0 59.5 200.0 59.1
0.25 199.5 56.2 139.2 49.2 99.7 46.1 64.3 43.9
0.50 170.3 51.6 41.9 34.8 24.8 29.2 20.2 25.3
0.75 124.0 44.2 15.5 20.4 12.5 16.5 11.5 14.5
1.00 81.1 34.2 9.5 11.9 8.6 10.2 8.2 9.3
1.25 49.0 23.7 7.2 7.8 6.8 7.0 6.6 6.6
1.50 29.1 15.4 6.1 5.7 5.8 5.2 5.7 4.9
1.75 17.7 10.2 5.4 4.4 5.2 4.0 5.1 3.9
2.00 11.6 7.3 4.9 3.5 4.8 3.2 4.7 3.1
2.25 8.1 5.6 4.6 2.9 4.5 2.7 4.5 2.6
2.50 6.5 4.5 4.4 2.4 4.3 2.3 4.3 2.2
2.75 5.5 3.8 4.3 2.1 4.2 2.0 4.2 1.9
3.00 5.0 3.3 4.2 1.9 4.1 1.8 4.1 1.7

– HQK chart is more effective than the EWMA chart when the shifts in the
process mean are moderate and large. The superiority of the HQK chart
becomes more significant as τ gets larger. This is not surprise to us because
our EWMA chart based on the Mann–Whitney test only uses the rank
information of the observations. This means that EWMA chart will not be
able to quickly detect large shifts. Note that this has been mentioned by
some literatures, such as Hackel and Ledolter (1991).

– For small shifts, the EWMA chart offers much faster detection than the
HQK chart. For example, when δ = 0.5 and τ = 50, the EWMA chart
has an ARL of 44.9 which is only 67% of ARL of HQK chart. At first
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glance, this seems inexplicable because the parametric likelihood should be
more effective than the nonparametric rank method when the distribution
is given. In fact, for the fixed samples, the Mann–Whitney test is about 0.96
times as efficient as two-sample t test for rather large sample sizes (Gibbons
and Chakraborti 2003). However, even when the underlying distributions
are normal, for the moderate samples, the power of Mann–Whitney test is
larger than that of two-sample t test because the t test needs to estimate the
variance of the process but the Mann–Whitney test does not. This advantage
of the nonparametric rank test has been addressed by many authors, see
Csorgo and Horvath (1997) for details. Also, we think the EWMA chart is
expected to be more sensitive to the small shifts.

4.2 Non-normal distribution setting

As we know, the performances of HQK chart rely on the normality assumption
of process distribution, although the HQK chart can also be used for other
distributions if the distribution of the process is known. However, sometimes,
the distribution of process is not only skewed, but also heavy-tailed (Woodall
and Montgomery 1999). For such skewed or/and heavy tailed populations, the
IC ARL of the HQK chart will be different from the normal case. So in start-
up or short-run situations where we usually do not have knowledge of the
underlying distribution, a nonparametric or distribution-free scheme such as our
proposed EWMA chart is suitable to be used. In this section, the performance
assessment of the EWMA control chart in detecting shift of mean is given when
the process data is from Chi-square with degree of freedom 4, Student t with
degree of freedom 4 and Lognormal distribution with location zero and scale
one. These three distributions are chosen because they can represent a wide
variety of shapes such as symmetric, skewed, heavy-tailed distributions. The
shifts in the mean of δ = 0.0(0.25)3 times standard deviation are considered.
However, to the best of our knowledge, there are no standard alternatives
to compare because other methods rely on the availability of values of IC
parameters or normality assumption. Here we list the IC and OC ARL of HQK
chart under above three distributions only to show the effectiveness of our
EWMA chart.

The simulation results for m = 10, α = 0.005 and different values of τ are
summarized in Tables 4, 5 and 6. These tables show that

– For all the distributions, the HQK chart based on the normal distribution
can not obtain the specific IC ARL but our EWMA chart is robust to these
distributions. As pointed out above, the HQK chart can also be designed
for other distributions if the distribution of the process is known, but such
distribution information may not be available at start-up stages.

– The EWMA chart has a good performance compared to the HQK chart
for all the distributions for the moderate or small shift. As the future IC
observations accumulate, the EWMA chart is more sensitive to the small
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Table 5 The ARL comparisons between EWMA and HQK charts for t(4) data and m = 10,
α = 0.005

δ τ = 10 τ = 50 τ = 100 τ = 250

EWMA HQK EWMA HQK EWMA HQK EWMA HQK

0.00 200.0 61.4 200.0 59.0 200.0 58.4 200.0 58.4
0.25 177.4 59.6 113.9 52.2 81.2 48.2 57.7 45.3
0.50 132.3 53.2 31.1 34.3 22.0 27.2 19.0 23.5
0.75 81.6 41.9 13.1 18.3 11.6 14.4 10.9 12.9
1.00 44.3 28.7 8.6 10.6 8.1 8.9 7.8 8.2
1.25 23.5 18.2 6.7 7.0 6.4 6.1 6.3 5.7
1.50 13.2 11.8 5.7 5.1 5.5 4.5 5.4 4.3
1.75 8.6 8.2 5.1 3.9 5.0 3.6 4.9 3.4
2.00 6.5 6.1 4.7 3.2 4.6 2.9 4.6 2.8
2.25 5.4 4.9 4.5 2.6 4.4 2.4 4.4 2.3
2.50 4.9 4.1 4.3 2.3 4.3 2.1 4.2 2.0
2.75 4.5 3.5 4.2 2.0 4.1 1.8 4.1 1.7
3.00 4.3 3.0 4.1 1.7 4.1 1.6 4.1 1.5

Table 6 The ARL comparisons between EWMA and HQK charts for lognormal(0,1) data and
m = 10, α = 0.005

δ τ = 10 τ = 50 τ = 100 τ = 250

EWMA HQK EWMA HQK EWMA HQK EWMA HQK

0.00 200.0 28.7 200.0 30.9 200.0 31.9 200.0 35.3
0.25 193.8 28.2 142.3 30.4 105.6 31.7 71.7 36.4
0.50 161.1 27.7 49.6 29.4 29.1 30.9 22.8 36.8
0.75 127.1 26.9 20.1 28.0 14.8 29.2 13.5 34.1
1.00 97.2 25.6 12.0 25.8 10.4 26.2 9.9 26.4
1.25 74.3 24.0 9.1 22.7 8.4 22.0 8.1 20.4
1.50 56.4 22.1 7.6 19.3 7.2 17.8 7.0 16.9
1.75 43.8 19.8 6.7 15.9 6.4 14.3 6.3 13.4
2.00 34.0 17.5 6.1 13.0 5.9 11.5 5.8 11.0
2.25 27.3 15.3 5.7 10.7 5.5 9.4 5.5 9.0
2.50 22.0 13.4 5.4 8.8 5.2 7.9 5.2 7.4
2.75 18.2 11.7 5.1 7.4 5.0 6.6 5.0 6.2
3.00 15.4 10.3 5.0 6.3 4.9 5.7 4.8 5.3

shifts. So, the advantage of our proposed nonparametric scheme for non-
normal setting is very apparent.

– For the detection of large shifts, the performances of the EWMA chart
under these distributions are similar to the normal case. It usually needs
to take a few observations to detect a shift, no matter how large the shift
is. For example, it is impossible to signal in less than four observations for
δ = 3.0.

When the quality characteristic is from other skewed and heavy-tailed dis-
tributions, the similar results could be obtained.
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5 Conclusions and considerations

Based on the classical nonparametric rank change-point formulation, an
EWMA control chart is introduced to detect shifts in the mean of the process.
This chart can be designed easily and performs well in the case that process para-
meters are unknown while some historical samples are available. Furthermore,
this chart is distribution-free. By the simulations, we show that the EWMA chart
has good performance for small and moderate shifts whatever distribution is.
However, there are also drawbacks to this EWMA chart. This chart reduces the
sensitivity to outliers and is less efficient than the parametric method for the
detection of the large shifts. We think that the EWMA chart performs robustly
enough for the non-normal distributions and also avoids a lengthy Phase I ana-
lysis. Hence it can be used in the start-up stage of the process where no more
distribution or parameter information in hand.

In many applications, the change of process variation also needs to be detec-
ted. Hawkins and Zamba (2005a,b) applied parametric change point formula-
tion to detect a shift in variance and both/or mean and variance, respectively.
However, the use of rank statistic in such setting may have some difficulties,
because there is no suitable test statistic based on ranks of the observations,
which is satisfactory for the dispersion problem without some further restric-
tions. The design and performance of the nonparametric change point charts
for scale parametric are under investigation by authors.

As pointed out by one referee, besides our considered case that m IC refe-
rence samples are available, our proposed nonparametric method can be desi-
gned to monitor the process under other circumstances. Hence, another ongoing
effort of the authors is to compare the proposed EWMA control chart with other
nonparametric schemes under various settings.
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