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Abstract This paper deals with preservation of the reversed hazard rate order
between equilibrium random variables under formations of some reliability
structures. We further investigate a new aging notion based upon the reversed
hazard rate order between a random life and its equilibrium version. A non-
parametric method is developed to test the exponentiality against such a strict
aging property, some numerical results are presented as well.
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1 Introduction

The equilibrium distribution, which is also called as the integrated tail function,
plays an important role in theory of reliability, stochastic processes, maintenance
polices and many other areas of applied probability, it has attracted consider-
able interest of researchers during these decades. For more details, readers may
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refer to Abouammoh et al. (1993, 2000), Bhattacharjee et al. (2000), Mi (1998),
Bon and Illayk (2002), Mugdadi and Ahmad (2005) and Jean-Louis and Abbas
(2005), etc.

For ease of reference, let us first recall some stochastic orders and related
aging notions. For two nonnegative random variables X and Y with distribution
functions F, G and density functions f , g, let Xt = X − t|X > t, Yt = Y − t|Y > t
be residual life of X and Y at t ≥ 0, respectively.

Definition 1 (Shaked and Shanthikumar 1994; Müller and Stoyan 2002) As the
ratios and expectations below are well defined, X is smaller than Y in the

(i) likelihood ratio order (denoted by X ≤lr Y) if g(x)/f (x) increases in x;
(ii) hazard rate order (denoted by X ≤hr Y) if Ḡ(x)/F̄(x) increases in x;

(iii) reversed hazard rate order (denoted by X ≤rh Y) if G(x)/F(x) increases
in x;

(iv) mean residual life order (denoted by X ≤mrl Y) if EXt ≤ EYt for all t;
(v) stochastic order (denoted by X ≤st Y) if F̄(x) ≤ Ḡ(x) for all x;

(vi) harmonic mean residual life order (denoted by X ≤hmrl Y) if

⎡
⎣1

x

x∫

0

1
EXu

du

⎤
⎦

−1

≤
⎡
⎣1

x

x∫

0

1
EYu

du

⎤
⎦

−1

, for all x ≥ 0.

Definition 2 (Barlow and Proschan 1981; Cao and Wang 1991) X is said to be

(i) of increasing failure rate (IFR) if Xs ≥st Xt for all t ≥ s ≥ 0;

(ii) of increasing failure rate in average (IFRA) if − log F̄(x)
x is increasing in

x ≥ 0;
(iii) of decreasing mean residual life (DMRL) if E(Xs) ≥ E(Xt) for all

t ≥ s ≥ 0;
(iv) new better than used in the convex order (NBUC) if X ≤icx Xt for all

t ≥ 0;
(v) new better than used in expectation (NBUE) if EX ≥ E(Xt) for all t ≥ 0.

For X with µ = EX < ∞, the random variable X̃ is a random variable with
reliability function

F̄X̃(t) = 1
µ

∞∫

t

F̄(u) du, t ≥ 0.

In literature, it is found that the equilibrium distribution can also be used to
characterize some aging properties. Whitt (1985a,b) firstly proved that X is IFR
(DMRL, NBUE) if and only if X ≥lr (≥hr, ≥st) X̃, which were also derived
by Hu et al. (2001) as corollaries there by characterizations of the general-
ized aging notions. They also characterized some stochastic orders in terms of
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other orders between their corresponding equilibrium versions, for example, it
is proved there that X ≤hr (≤mrl, ≤hmrl) Y if and only if X̃ ≤lr (≤hr, ≤st) Ỹ.

This paper investigates the reversed hazard rate order between two equi-
librium random variables and a related aging notion based upon the reversed
hazard rate order between a random life and its equilibrium version. Rela-
tions between such an order and other known ones, behavior of such an order
under the formations of series or parallel system and the preservation under
the monotone transform are studied in Sect. 2. We also investigate a new aging
notion based upon the reversed hazard rate order between a random life and
its equilibrium version. Its preservation under the formation of parallel sys-
tem and the monotone transform as well as the nonhomogeneous shock model
are discussed in Sect. 3. And Sect. 4 develops a nonparametric method to test
exponentiality against such a strict aging property, some numerical results are
presented as well.

Throughout this paper, the term increasing is used instead of monotone non-
decreasing and the term decreasing is used instead of monotone non-increasing.
We assume that the random variables under consideration have 0 as the com-
mon left end point of their supports, and the expectation is assumed to be finite
when used.

2 Behavior of the reversed hazard rate order

Proposition 3 If X̃ ≤rh Ỹ , then X ≤st Y.

Proof X̃ ≤rh Ỹ implies that
∫ t

0 Ḡ(u) du∫ t
0 F̄(u) du

increases in t ≥ 0. Hence, for all t ≥ x ≥ 0,

Ḡ(t)

F̄(t)
≥

∫ t
0 Ḡ(u) du∫ t
0 F̄(u) du

≥
∫ x

0 Ḡ(u) du∫ x
0 F̄(u) du

.

Set x → 0+ and by L’Hospital’s rule, we have Ḡ(t)
F̄(t)

≥ Ḡ(0)

F̄(0)
= 1 for all t ≥ 0. That

is, X ≤st Y. ��
The following example tells that X ≤st Y does not imply X̃ ≤rh Ỹ.

Example 4 Consider two random variables X and Y with reliability functions

F̄(x) =
{

1 − 1
2 x, 0 ≤ x ≤ 1,

1
2 e−(x−1), x > 1,

Ḡ(x) =
{

1 − 1
2 x2, 0 ≤ x ≤ 1,

1
2 e−(x−1), x > 1.

It is easy to verify X ≤rh Y, and hence X ≤st Y. However, Mi (1998) claimed
that X̃ ≤st Ỹ is not valid. So, nor is X̃ ≤rh Ỹ. ��

Corollary 2.3 in Hu et al. (2001) claimed that X ≤hr Y is equivalent to
X̃ ≤lr Ỹ, which implies X̃ ≤rh Ỹ. The following example tells that the inverse
is invalid.
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Example 5 For X and Y with survival functions

F̄(x) =
{

1, 0 ≤ x ≤ 1,

1
2 e−x, x > 1,

Ḡ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, 0 ≤ x ≤ 1,

e2−2x, 1 < x ≤ 2,

e−x, x > 2,

∫ t
0 Ḡ(x) dx∫ t
0 F̄(x) dx

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, 0 ≤ t ≤ 1,
3
2 − 1

2 e2−2t

1+ 1
2 (e−1−e−t)

, 1 < t ≤ 2,

3
2 + 1

2 e−2−e−t

1+ 1
2 (e−1−e−t)

, t > 2,

is increasing in t. So, X̃ ≤rh Ỹ. However, for 1 < x ≤ 2, Ḡ(x)/F̄(x) = 2e2−x

decreases. That is to say, X ≤hr Y does not hold. ��
The next two results discuss preservation of the reversed hazard rate order

between equilibrium random variables.

Theorem 6 Let X1, . . . , Xn, Y1, . . . , Yn be i.i.d. copies of X and Y. If X̃ ≤rh Ỹ,
then

˜min
1≤i≤n

Xi ≤rh ˜min
1≤i≤n

Yi. (1)

Proof X̃ ≤rh Ỹ implies that, for any t ≥ 0,

∫ t
0 F̄(x) dx

F̄(t)
≥

∫ t
0 Ḡ(x) dx

Ḡ(t)
. (2)

Denote dW(x) = w(x) dx with w(x) = [Ḡ(t)F̄(x)−F̄(t)Ḡ(x)]I(x ≤ t). Inequality
(2) guarantees that

s∫

0

dW(x) =
t∫

0

[Ḡ(t)F̄(x) − F̄(t)Ḡ(x)] dx ≥ 0, for any s > t.

Note that X̃ ≤rh Ỹ implies
∫ t

0 Ḡ(x) dx∫ t
0 F̄(x) dx

is increasing in t ≥ 0, it holds that

∫ t
0 F̄(x) dx∫ t
0 Ḡ(x) dx

≤
∫ s

0 F̄(x) dx∫ s
0 Ḡ(x) dx

, for t ≥ s ≥ 0.

By (2), we have

∫ s
0 F̄(x) dx

F̄(t)
≥

∫ s
0 Ḡ(x) dx

Ḡ(t)
.
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That is, for any s ≤ t,

s∫

0

dW(x) =
s∫

0

[
F̄(x)Ḡ(t) − F̄(t)Ḡ(x)

]
dx ≥ 0.

Since h(x) = ∑n
i=1[Ḡ(t)F̄(x)]n−i[F̄(t)Ḡ(x)]i−1 is nonnegative and decreasing, by

Lemma 7.1(b) (Barlow and Proschan 1981), it holds that

s∫

0

h(x) dW(x) =
s∫

0

[
Ḡn(t)F̄n(x) − F̄n(t)Ḡn(x)

]
dx ≥ 0, s > 0.

In particular,

t∫

0

h(x) dW(x) =
t∫

0

[Ḡn(t)F̄n(x) − F̄n(t)Ḡn(x)] dx ≥ 0,

and thus,

∫ t
0 F̄n(x) dx

F̄n(t)
≥

∫ t
0 Ḡn(x) dx

Ḡn(t)
,

which asserts (1). ��
Theorem 7 For any differentiable, strictly increasing and concave function φ

with φ(0) = 0, if X̃ ≤rh Ỹ, then ˜φ(X) ≤rh ˜φ(Y).

Proof For any t ≥ 0,

P
(

˜φ(X) ≤ t
)

=
∫ t

0 P(φ(X) > x) dx

E[φ(X)] =
∫ φ−1(t)

0 φ′(x)F̄(x) dx

E[φ(X)] .

Thus, ˜φ(X) ≤rh ˜φ(Y) holds if and only if,

∫ φ−1(t)
0 φ′(x)Ḡ(x) dx
∫ φ−1(t)

0 φ′(x)F̄(x) dx

increases in t ≥ 0. Equivalently, for any t ≥ 0,

∫ φ−1(t)
0 φ′(x)F̄(x) dx

F̄(φ−1(t))
≥

∫ φ−1(t)
0 φ′(x)Ḡ(x) dx

Ḡ(φ−1(t))
.
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So, it is sufficient for us to verify that, for any s = φ−1(t) ≥ 0, and h(x) = φ′(x),

s∫

0

h(x)[Ḡ(s)F̄(x) − Ḡ(x)F̄(s)] dx ≥ 0.

Taking into account that h is nonnegative and decreasing, the conclusion asserted
can be easily derived in a similar manner to the proof of Theorem 6. ��

3 A related aging notion

The past decades witnessed some aging notions based upon a stochastic com-
parison between X and X̃. For example, Abouammoh et al. (1993) introduced
NBRUE (new better than renewal used in expectation) and HNBRUE (har-
monic new better than renewal used in expectation) based upon EX ≥ E[(X̃)t]
for all t ≥ 0 and EX ≥

[
1
t

∫ t
0

dx
E[(X̃)x]

]−1
for all t ≥ 0, respectively. At a later

time, they were further discussed by Bhattacharjee et al. (2000). Afterwards,
Abouammoh et al. (2000) proposed NRBU (new renewal better than used),
NRBUE (new renewal better than used in expectation) and HNRBUE (har-
monic new renewal better than used in expectation) through Xt ≤st X̃ for any
t ≥ 0, EXt ≤ EX̃ for any t ≥ 0 and X̃ ≤st Y, where Y is an exponential with
mean EX̃, respectively. However, the above three classes, as shown by Bon and
Illayk (2002), contain only the exponential random variables. By X ≥st (X̃)t for
all t ≥ 0, Abouammoh and Qamber (2003) discussed the so-called NBRU (new
better than renewal used), which is in fact NBUC (new better than used in the
convex order) due to Cao and Wang (1991). This section investigates the follow-
ing new aging notion, which appeared already in implicit form in Klefsjö (1982).

Definition 8 A random life X is said to be NBRUrh (new better than renewal
used in the reversed hazard rate order), if X̃ ≤rh X, or equivalently,

F(t)∫ t
0 F̄(u) du

increases in t ≥ 0. (3)

As the dual version, NWRUrh (new worse than renewal used in the reversed
hazard rate order), may be defined through X̃ ≥rh X.

Remark (i) The scaled total time on test transform (TTT) of a random vari-

able X is ϕ(t) = µ−1 ∫ F−1(t)
0 F̄(x) dx for 0 ≤ t ≤ 1, where F−1(t) = inf{x :

F(x) ≥ t}. Some aging properties can be translated to the correspond-
ing calculus properties of ϕ(t), for example, X is IFR if and only if ϕ(t)
is decreasing, X is NBUE if and only if ϕ(t) ≥ t, X is DMRL if and
only if (1 − ϕ(t))/(1 − t) is decreasing. It is well-known that the IFRA
property of X only implies that ϕ(t)/t is decreasing. For more details see
Barlow and Campo (1975), Barlow (1979), Bergman (1979) and Klefsjö
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(1982). Now, according to (3), X is NBRUrh if and only if its (scaled)
TTT is anti-star-shaped. Hence, IFRA implies NBRUrh. In fact, Klefsjö
(1982) also got this fact and claimed that the inverse implication does not
hold in a very simple discussion on this aging notion.

(ii) Note that the TTT transform gives the right inverse of the distribution
function of Xttt, which is called as the observed total time on test transform
and has important interpretations in actuarial science (Li and Shaked
2004), it also holds that X is NBRUrh if and only if Xttt has a star-shaped
distribution function.

3.1 Elementary properties

Jean-Louis and Abbas (2005) proposed that min
1≤i≤2

X̃i ≤lr ˜min
1≤i≤2

Xi if both X1 and

X2 are independent DMRL random lives. Here, we pay attention to max
1≤i≤2

X̃i

and ˜max
1≤i≤2

Xi.

Proposition 9 Suppose X1 and X2 are i.i.d. copies of X. If max{X̃1, X̃2} ≤lr
˜max

1≤i≤2
Xi, then X is NBRUrh.

Proof For any t ≥ 0,

P
(

˜max
1≤i≤2

Xi ≤ t
)

=
∫ t

0[1 − F2(u)] du

E[max{X1, X2}] ,

P
(

max{X̃1, X̃2} ≤ t
)

=
[∫ t

0 F̄(u) du
]2

E2X
.

Thus, max{X̃1, X̃2} ≤lr ˜max
1≤i≤2

Xi is equivalent to

1 + F(t)∫ t
0 F̄(u) du

increases in t ≥ 0.

This implies (3) and hence X is NBRUrh. ��
According to Whitt (1985a), X is NBUE if and only if X ≥st X̃. Because

the reversed hazard rate order is stronger than the stochastic order, NBRUrh

implies NBUE. Since IFRA does not necessarily imply DMRL, NBRUrh does
not necessarily imply DMRL either. One may wonder whether DMRL implies
NBRUrh. The following example gives a negative answer.

Example 10 For a random variable X with the reliability function

F̄(x) = (1 + x2) exp

{
−
(

x + 1
3

x3
)}

,
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the mean residual life at time t ≥ 0 is 1
1+t2

. So, X is DMRL. However, for

g(x) = F(x)∫ t
0 F̄(t) dt

, it holds that g(0.4) ≈ 0.695 > g(0.6) ≈ 0.624. Thus, X is not

NBRUrh. ��
As IFRA implies both NBRUrh and NBU, another question arises naturally:

Does NBU imply NBRUrh? Example below tells that this is not true either.

Example 11 Consider a random variable X with reliability function

F̄(x) = (1 − a)n, na < x ≤ (n + 1)a, 0 < a ≤ 1.

It is easy to check that X is NBU. However, for na < x ≤ (n + 1)a,

F(x)∫ x
0 F̄(t) dt

= 1 − (1 − a)n

a + a(1 − a) + · · · + (1 − a)n(x − na)

is decreasing. Thus, X is not NBRUrh. ��
Although NBUC implies NBUE, Example 12 tells that NBRUrh does not

imply NBUC.

Example 12 Consider a random variable X with its reliability function

F̄(t) =
{

1, 0 ≤ t ≤ 1
2 ,

1
2 e−t+1/2, t > 1

2 .

Since

F(t)∫ t
0 F̄(x) dx

=
{

0, 0 ≤ t ≤ 1
2 ,

1, t > 1
2 ,

increases in t ≥ 0, X is NBRUrh. However, for x > 1
2 , t > 1

2 ,

F̄(t)

∞∫

x

F̄(u) du ≤
∞∫

x

F̄(t + u) du.

Thus, X is not NBUC. ��
In combination with the above discussions and some results in Barlow and

Proschan (1981) and Cao and Wang (1991), we in fact get the following chain
of implications.

IFR 	⇒ IFRA 	⇒ NBRUrh

⇓ ⇓ ⇓
DMRL 	⇒ NBUC 	⇒ NBUE. (4)
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3.2 Parallel systems and monotonic transforms

All aging properties in (4) are preserved under the formation of parallel system
with i.i.d. components. The following theorem stresses that NBRUrh is pre-
served under the formation of parallel systems with independent components.

Theorem 13 If X1 and X2 are independent (not necessarily identical) and
NBRUrh, then, max{X1, X2} is also NBRUrh.

Proof Denote by Fi, fi the distribution function and the density function of Xi,
i = 1, 2. By (3), max{X1, X2} is NBRUrh if and only if

F1(x)F2(x)∫ x
0 [1 − F1(u)F2(u)] du

increases in x ≥ 0,

which is equivalent to

1 − F1(x)F2(x)∫ x
0 [1 − F1(u)F2(u)] du

≤ f1(x)

F1(x)
+ f2(x)

F2(x)
, for all x ≥ 0. (5)

Note that Xi is NBRUrh implies

F̄i(x)∫ x
0 F̄i(u) du

≤ fi(x)

Fi(x)
, i = 1, 2,

we have, for all x ≥ 0,

1 − F1(x)F2(x)∫ x
0 [1 − F1(u)F2(u)] du

= 1 − F1(x)∫ x
0 [1 − F1(u)F2(u)] du

+ F1(x)[1 − F2(x)]∫ x
0 [1 − F1(u)F2(u)] du

≤ F̄1(x)∫ x
0 F̄1(u) du

+ F̄2(x)∫ x
0 F̄2(u) du

≤ f1(x)

F1(x)
+ f2(x)

F2(x)
.

Thus, (5) and hence the asserted result is valid. ��
Now, let us discuss the preservation property of NBRUrh (NWRUrh) under

monotone transforms, which will be used in sequel.

Theorem 14 If X is an absolutely continuous NBRUrh random variable, then
for any differentiable, strictly increasing and concave (convex) function φ with
φ(0) = 0, φ(X) is also NBRUrh (NWRUrh).

Proof From (3), φ(X) is NBRUrh (NWRUrh) if and only if

F(φ−1(t))
∫ φ−1(t)

0 F̄(u)φ′(u) du
increases (decreases) in t ≥ 0.
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That is,

f (x)

F(x)
≥ (≤)

F̄(x)φ′(x)∫ x
0 F̄(u)φ′(u) du

,

where, x = φ−1(t) ≥ 0. Since X is NBRUrh (NWRUrh), for all x ≥ 0,

f (x)

F(x)
≥ (≤)

F̄(x)∫ x
0 F̄(u) du

,

it is sufficient to prove that, for all x ≥ 0,

F̄(x)∫ x
0 F̄(u) du

≥ (≤)
F̄(x)φ′(x)∫ x

0 F̄(u)φ′(u) du
.

Equivalently,

x∫

0

F̄(u)φ′(u) du ≥ (≤)φ′(x)

x∫

0

F̄(u) du, for all x ≥ 0.

Note that φ is increasing and concave (convex), φ′(x) is nonnegative and
decreasing (increasing). Hence, the above inequality follows immediately. ��
Remark (i) NBRUrh is not closed under the operation of mixtures, since

mixtures of some exponential lives often belong to DFR (see Barlow and
Proschan 1981).

(ii) NWRUrh is not closed under convolution. In fact, the convolution of
two independent exponential lives has increasing failure rate. To the best
of our knowledge, we do not know whether NBRUrh is closed under
convolution. This is still an open problem.

(iii) Since a parallel system of i.i.d. units with constant failure rate is IFR,
NWRUrh class is not closed under parallel systems.

(iv) Closures of NBRUrh under k-out-of-n structure and geometric compound
are not studied yet. These interesting topics will be our future work.

3.3 Poisson shock models

Assume a device subjected to a sequence of shocks which arrive at random in
time according to a non-homogeneous Poisson process with intensity λ(t) > 0.
Let further the device has the probability P̄k to survive the first k shocks, where
1 = P̄0 > P̄1 > · · · . Then the reliability function of the device is

H̄(t) =
∞∑

k=0

P̄k
[�(t)]k

k! e−�(t), t ≥ 0, (6)
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where

�(t) =
t∫

0

λ(u) du (7)

is the cumulative rate of occurrence. Put λ(t) ≡ λ, a positive constant, then

H̄0(t) =
∞∑

k=0

P̄k
(λt)k

k! e−λt, t ≥ 0, (8)

gives the reliability function of the device subjected to homogeneous Poisson
shocks. Shock models are of great interest in the context of reliability theory.
Esary et al. (1973) was among the first to study aging property and shocks
model, for other results please refer to Fagiouli and Pellerey (1994), Kayid and
Ahmad (2004) and Ahmad et al. (2002), etc.

Let us firstly define the discrete version of NBRUrh (NWRUrh) random life.

Definition 15 A distribution Pk = 1 − P̄k, k ∈ N is said to be D-NBRUrh (D-
NWRUrh) if

∑k−1
i=0 P̄i/Pk is decreasing (increasing) in k.

Recall that a nonnegative function h on � × � is TP2 (totally positive of
order 2) (see Karlin 1968) if h(x, y)h(x′, y′) ≥ h(x, y′)h(x′, y) for x ≤ x′, y ≤ y′.

Theorem 16 If {Pk} is D-NBRUrh (D-NWRUrh), then H0 in (8) is also NBRUrh

(NWRUrh).

Proof We only prove the case of NBRUrh, the case of NWRUrh can be proved
in a similar manner. For all t ≥ 0,

t∫

0

H̄0(x) dx =
t∫

0

∞∑
i=0

P̄i
(λx)i

i! e−λx dx

=
∞∑

i=0

P̄i

t∫

0

(λx)i

i! e−λx dx

=
∞∑

i=0

P̄i

λ

[
1 −

i∑
k=0

(λt)k

k! e−λt

]

=
∞∑

i=0

∞∑
k=i+1

P̄i

λ

(λt)k

k! e−λt

= 1
λ

∞∑
k=1

⎛
⎝

k−1∑
i=0

P̄i

⎞
⎠ (λt)k

k! e−λt.
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Thus, H0 is NBRUrh if and only if

∑∞
k=1 Pk

(λt)k

k! e−λt

∑∞
k=1

(∑k−1
i=0 P̄i

)
(λt)k

k! e−λt
increases in t ≥ 0. (9)

Let

�(i, k) =
{

Pk, i = 2,∑k−1
j=0 P̄j, i = 1,

then, (9) is equivalent to

�(i, t) =
∞∑

k=1

�(i, k)
(λt)k

k! e−λt

is TP2 in (i, t) ∈ {1, 2} × [0, ∞). {Pk} is D-NBRUrh, it can be verified that �(i, k)

is TP2 in (i, k) ∈ {1, 2} × N

+ and (λt)k

k! e−λt is TP2 in (k, t) ∈ N

+ × [0, ∞). From
the basic composition formula (see Karlin 1968), it follows that �(i, t) is TP2 in
(i, t) ∈ {1, 2} × [0, ∞). ��
Theorem 17 If Pk, k ∈ N, k ≥ 1 is D-NBRUrh (D-NWRUrh) and the cumula-
tive rate of occurrence in (7) is convex (concave), then H(t) in (6) is NBRUrh

(NWRUrh).

Proof According to Theorem 16, the random variable with reliability (8) is
NBRUrh (NWRUrh). Note that (6) gives the reliability function of a transform
�−1 of the random variable determined by (8) with λ = 1, from Theorem 14,
it follows immediately that the random variable with reliability function (6) is
also NBRUrh (NWRUrh). ��
4 A test for exponentiality against NBRUrh

4.1 Asymptotic normality of the test statistic

In life testing, many nonparametric methods have been proposed to test some
strict aging properties. Klefsjö (1983) built a test method for testing exponen-
tiality against IFRA based upon the empirical scaled TTT transform. In view
of the fact that a random life is NBRUrh if and only if its scaled TTT transform
is anti-star-shaped, this test is in fact designed against NBRUrh alternatives.
Mugdadi and Ahmad (2005) built testing procedures by comparing a random

life with its equilibrium version for H0: X F= X̃ versus K0: X̃ ≤F X, here
F = {st, icx}. This section will develop a testing method for H: X is exponential

versus K: X is NBRUrh but not exponential, or equivalently H1: X rh= X̃ versus

K1: X̃ ≤rh X, where X rh= X̃ means both X ≥rh X̃ and X ≤rh X̃. It should
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be pointed out here that in spirit our testing statistic is similar to that of the
procedure proposed for DMRL alternatives in Hollander and Proschan (1975).

Let v(x) = ∫ x
0 F̄(u)du, a natural measure of departure from H in favor of K is

	 =
∫ ∫

x<y

[v(x)F(y) − v(y)F(x)] dF(x) dF(y)

=
∫ ∫

x<y

v(x)F(y) dF(x) dF(y) −
∫ ∫

x<y

v(y)F(x) dF(x) dF(y).

Lemma 18 Let X1, X2, X3, X4 be i.i.d. copies of X which is NBRUrh. Then,

	 = 1
2

E[min{X1, X4}] − E[min{X1, X4}I(max{X2, X3} < X1)].
Proof

∫ ∫

x<y

v(y)F(x) dF(x) dF(y) =
∞∫

0

⎡
⎣

y∫

0

F(x) dF(x)

⎤
⎦ v(y) dF(y)

= 1
2

∞∫

0

F2(y)v(y) dF(y)

= 1
2

E[F2(X1)v(X1)]

= 1
2

E[min{X1, X4}I(max{X2, X3} < X1)],
∫ ∫

x<y

v(x)F(y) dF(x) dF(y) =
∞∫

0

⎡
⎣

∞∫

x

F(y) dF(y)

⎤
⎦ v(x) dF(x)

= 1
2

∞∫

0

v(x)[1 − F2(x)] dF(x)

= 1
2

∞∫

0

v(x) dF(x) − 1
2

∞∫

0

F2(x)v(x) dF(x)

= 1
2

∞∫

0

∞∫

u

dF(x)F̄(u) du − 	2

= 1
2

∞∫

0

F̄2(u) du − 	2

= 1
2

E min{X1, X4} − 	2,

the asserted follows immediately. ��
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Given X1, . . . , Xn, a random sample of X, an unbiased estimation of 	 is

	̂ = 1
n(n − 1)(n − 2)(n − 3)

∑
i1 �=i2 �=i3 �=i4

φ(Xi1 , Xi2 , Xi3 , Xi4),

with φ(X1, X2, X3, X4) = 1
2 min{X1, X4} − min{X1, X4}I(max{X2, X3} < X1). In

order to be scale invariant, we instead use δ = 	
µ

, which will be estimated by

the ratio unbiased statistic δ̂ = 	̂

X̄
.

Theorem 19 As n → ∞,
√

n(δ̂ − δ) is asymptotically normal with mean 0 and
variance σ 2 satisfies (10). Under H, the variance σ 2 = 1

210 .

Proof By the general theory of U-statistics and Von-Mises statistics (see Lee
1989), as n → ∞,

√
n(δ̂ − δ) is asymptotically normal with mean 0 and variance

σ 2, where

σ 2 = Var {E[φ(X1, X2, X3, X4) | X1] + E[φ(X2, X1, X3, X4) | X1]
+ E[φ(X2, X3, X1, X4) | X1] + E[φ(X2, X3, X4, X1) | X1]}

= Var
[
h1(X1) + h2(X1) + h3(X1) + h4(X1)

]
, (10)

h1(X1) = 1
2

X1∫

0

F̄(u) du − F2(X1)

X1∫

0

F̄(u) du,

h2(X1) = h3(X1) = 1
2

∞∫

0

F̄2(u) du −
∞∫

X1

⎡
⎣

x∫

0

F̄(u) du

⎤
⎦F(x) dF(x),

h4(X1) = 1
2

X1∫

0

F̄(u) du −
X1∫

0

xF2(x) dF(x) − X1

∞∫

X1

F2(x) dF(x).

Under H0, σ 2
0 = Var

[
e−Y − 3

2 e−2Y + 4
9 e−3Y

]
, here Y is exponential with mean

1. After some calculation, the asserted follows. ��
In practice, we can evaluate

√
nδ̂/

√
1

210 and reject H if the observed value
exceeds the 1 − α quantile of the standard normal distribution N(0, 1).

To assess the goodness, we evaluate the Pitman’s asymptotic efficacy of the
test,

PAE(δθ ) = 210
[

d
dθ

δθ

]2

θ→θ0

.
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Three of the most commonly used alternatives are

(i) The linear failure rate, F̄1(t) = exp
{−t − θ

2 t2
}
, for t, θ ≥ 0;

(ii) The Makeham family, F̄2(t) = exp
{−t − θ

(
e−t + t − 1

)}
, for t, θ ≥ 0.

(iii) The Weibull family, F̄3(t) = exp
{−tθ

}
, for t, θ ≥ 0.

The null is at θ = 0 in (i), (ii) and at θ = 1 in (iii). Direct calculation for the
above three alternatives gives the values 0.2532, 0.0583 and 1.2578, respectively.
The corresponding values for the test of Klefsjö (1983) are 0.2542, 0.0581 and
1.2536. Thus, our test works better in cases of the Makeham family and the
Weibull family.

4.2 Some numerical results

To demonstrate the test method above, we apply it to the data set in Bryson and
Siddiqui (1969), which are survival times in days from diagnosis of 43 patients
suffering from chronic granulocytic leukemia in Table 1 and the data set in
Abouammoh et al. (1994), which represents 40 patients suffering from blood
cancer from one of the Ministry of Health Hospitals in Saudi Arabia and the
ordered life times (in days) in Table 2.

We compute, via Monte Carlo method, the empirical critical points of δ̂ for
samples. Table 3 gives the upper percentile points for 90, 95, 99% and the
calculations are based on 5,000 simulated samples n = 5(5)40 and n = 43.

For the data sets in Bryson and Siddiqui (1969) and Abouammoh et al. (1994),
the corresponding values of δ̂ are 0.0066 and 0.0036. According to Table 3, this
suggests to reject H.

To be clearer, we also use the TTT plot to test the above data sets. Given an
ordered random sample X1,n, X2,n, . . . , Xn,n of X, the TTT transform is given

Table 1 Survival days of
chronic granulocytic leukemia
in Bryson and Siddiqui (1969)

7 47 58 74 177 232 273 285
317 429 440 445 455 468 495 497
532 571 579 581 650 702 715 779
881 930 900 968 1,077 1,109 1,314 1,334

1,367 1,534 1,712 1,784 1,877 1,886 2,045 2,056
2,260 2,429 2,509

Table 2 Survival days of
blood cancer in Abouammoh
et al. (1994)

115 181 255 418 441 461 516 739
739 789 807 865 924 983 1,024 1,062

1,063 1,165 1,191 1,222 1,222 1,251 1,277 1,290
1,357 1,369 1,408 1,455 1,478 1,549 1,578 1,578
1,599 1,603 1,605 1,696 1,735 1,799 1,815 1,852
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Table 3 Critical values for
percentiles of δ̂ based on 5,000
simulated samples

n 90% 95% 99%

5 0.0094 0.0119 0.0161
10 0.0052 0.0063 0.0084
15 0.0038 0.0047 0.0064
20 0.0032 0.0040 0.0054
25 0.0027 0.0034 0.0047
30 0.0024 0.0030 0.0043
35 0.0022 0.0028 0.0038
40 0.0020 0.0026 0.0035
43 0.0020 0.0025 0.0033
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0.4
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Y

Fig. 1 T(p)/p of the data set in Bryson and Siddiqui (1969)

by (Barlow et al. 1972) T(p) = H−1(p)/X̄, where

H̄−1(p) =

⎧⎪⎪⎨
⎪⎪⎩

nX1,np, 0 ≤ p < 1
n ,

∑i
j=1

n−j+1
n (Xj,n − Xj−1,n)

+(p − i
n )(n − i)(Xi+1,n − Xi,n),

i
n < p ≤ i+1

n ,

where 1 ≤ i ≤ n − 1 and X0,n ≡ 0.
For a NBRUrh life, it is reasonable to expect that T(p)/p decreases in p ∈

(0, 1), while for the exponential one, T(p)/p is close to 1 for all p ∈ (0, 1). For
the data set in Bryson and Siddiqui (1969), the TTT plot in Fig. 1 obviously
deviates from any horizontal line and hence rejects exponentiality, which con-
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Fig. 2 T(p)/p of the data set in Abouammoh et al. (1994)
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Fig. 3 [1 − T(p)]/(1 − p) of the data set in Abouammoh et al. (1994)

firms the result of our test. However, T(p)/p does not show a decreasing trend.
In fact, Fig. 2 in Aly (1992) suggests the data are from an HNBUE population.
For the data set of Abouammoh et al. (1994), the TTT plot in Fig. 2 rejects
exponentiality, which confirms the result of our test once again, and T(p)/p
shows a decreasing trend which coincides with the NBRUrh property. It may
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be of interest to point out that Abouammoh et al. (2000) confirms the DMRL
property of the data in Abouammoh et al. (1994). For a DMRL life, it is rea-
sonable to expect that the [1 − T(p)]/(1 − p) decreases in p ∈ (0, 1) (see Klefsjö
1983), and the TTT plot in Fig. 3 coincides with the test there.
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