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1 I n t r o d u c t i o n  

Since Fisher (1935) proposed randomization and permutation tests, these 

tests have been applied to a great number of topics, including two-sample 

problems, linear regression and correlation problems, and experimental de- 

signs (Good, 1994; Kennedy, 1995; Edgington, 1995; Manly, 1997). 

Several different methods of permutations have been proposed in the liter- 

ature in order to test the significance of the effects in the ANOVA model. 

Welch (1990) studied a general method for constructing permutation tests 

for various experimental designs based on invariance and sufficiency. Still 

and White (1981) and Good (1994) suggested randomization methods on 

the residuals of the restricted model when testing for the existence of in- 

teraction effects in the models, whereas ter Braak (1992) proposed another 

method of randomizing the residuals of the full model. In addition, by using 

simulations on relatively small data sets, Gonzalez and Manly (1998) com- 

pared the efficiency of the competing methods. More recently, Anderson and 

ter Braak (2003) set a guideline on permutation tests for the multi-factorial 

ANOVA models used. 

However, one statistical drawback for the approach of Still and White (1981) 

and ter Braak (1992) has been pointed out. That is, the observed distribu- 

tion of the random permutation differs from that of the original data. This 

may be evidence against the intuition behind random permutation tests. As 

an attempt to remedy this statistical issue, we propose a new test method- 

ology of random permutations in this paper. The proposed method differs 

from those of the previous studies in that we attempted to obtain uncor- 

related residuals by removing the correlations present among the residuals 

of the restricted models. In this process, we will apply the transformation 

using the decomposition of the idempotent matrix to correlated residuals in 

order to obtain uncorrelated residuals. That is, we are basing our random- 

ization method on uncorrelated residuals. In this study, we found that the 
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probability distribution of the permuted observations is the same as that  

of the original observations when no interaction effect is present. In this 

sense, we claim that  the proposed permutat ion method is statistically exact 

compared with the existing methods. This approach shares the same idea 

with the study on multiple linear regression by Huh and Jhun (2001). 

The structure of the paper  is as follows. Section 2 describes the model and 

presents the existing tests on random permutations.  In Section 3, we derive 

a new test methodology on random permutations. Then in Section 4, we 

compare the efficiency of the proposed method with those of existing studies 

by using simulations. In Section 5, we provide a numerical example as an 

application of our model, and finally, Section 6 summarizes and concludes 

the paper. 

2 M o d e l  a n d  E x i s t i n g  R a n d o m  P e r m u t a t i o n  T e s t s  

Consider the two-way ANOVA model, 

Yijk = /~+a i+ f~ j+ (a f l ) i j + e i j k ,  i = 1 , - . . , a ,  j = 1 , - - . , b ,  and k = 1 , . . . , n ,  

(1) 
where # is a fixed unknown parameter ,  ai  is the effect of level i of the 

t reatment  factor A, flj is the effect of level j of the t reatment  factor B, (afl)ij  

is an interaction term of t rea tment  factor A and B, and eijk is a remainder 

error term which follows a i i d  F ,  where F is a probabili ty distribution 

with the mean 0 variance cr 2. The null and alternative hypotheses for the 

interactions of the model are 

H o  : (afJ)11 . . . . .  ( a f l )ab  = 0 vs. H1 : not Ho.  (2) 

Under the normality assumption of error terms, the traditional F test statis- 

tic is 

a Ej=lb E ~ = l ( # i j .  - ltd.. - Y.j. + #...)2/(a - 1 ) ( b -  1) (3) 
FAB = a b n 

j = l  k= l  
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where 9ij. ( ~ k = l  y i j k ) / n ,  Yc. b , a n = ~ = (Z: j=I  ~ = 1  y, jk) /bn,  ~.j. = ( ~ , = 1  Ek--~ 

y i j k ) / a n ,  and 9 ( ~ i = l  b n ... = a ~ j = l  ~-~k=l y , j k  ) / abn .  Under the null hypothesis 

H0 in (2), F A B  is distributed as F ( ( a  - 1)(b - 1), ab(n - 1)). 

For the permutation testing of (2), there exist several permutation methods. 

Still and White (1981) suggested that  in order to test for interaction it is 

appropriate to randomize the observations after adjusting them to remove 

the overall effects of the factors. The adjusted values can be written as 

Yi*jk = Yijk -- 9,.. -- l)j. + Y .... Therefore, the F statistic can be obtained as 

~ = ~ ( y , ~ .  - + y . . . ) / (  1)(b 1) 
, ~ - = ~  - ~..  u j .  (4) 

F ~ B =  E ~ = l  b " -* -* -* 2 a - -  - 

Ej=I ZL~(~k - ~;~.)V~b(~ - i) 

It is easy to see that  F~B is equal to F A B  which is obtained directly from 

the raw data. Hence, the statistical significance of H0 can be evaluated from 

the Monte Carlo distribution of 

~ ,  E i = l  b n - v~.. - y.~. + ~-: )2/(~ _ 1)(b - 1) 
F~B = " , (5) 

E j = 1  ~-,'k=l(Y;jk - Y;<7.)2/ab( n - 1) 

where Y~*jk is an i j k  th element of ~* which is an abn x 1 randomly permuted 

vector of y *  = (Y~n , ' " ,Y~1 , , ' " ,Y~bn) .  Thus, the significance of H0 can 

be assessed by p - value = P [ F . ~ B  >- F A B ] .  This test is denoted by RPT1. 

Since, RPT1 is based on the correlated residuals Y,~k = Y~jk -- Y,.. -- Y j .  + Y .... 

it will not be exact for finite samples. However, following Good (2002), 

the studentized correlations between the residuals converge to a common 

value as the sample size increases; thus, the residuals are asymptotically 

exchangeable, and RPT1 is asymptotically exact. 

Ter Braak (1992) proposed a random permutation method using the usual 

residuals y~j~ = Y i j k -  ~/ij. instead of Yi*j~ = Yi jk- -~Ji . . -  Y.j. +Y.. . .  By using the 

freely randomized residuals yi~j~, F~AS can be calculated from equation (3). 

Then, significance of H0 can be assessed by p - value -- P [FA~ B > FAsJ. the 

This test is denoted by RPT2.  It also will not be exact for a finite sample 

since RPT2 is based on the correlated residuals Y~jk = Yijk -- Yij.. 
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Last, we consider a random permutat ion test based on freely randomizing 

observations. Let ~$ be the randomly permuted vector of y,  then FASB can 

be calculated from equation (3) by using ~$. Then, the significance of H0 

be assessed by p - v a l u e  = P[F~AB >-- FAB]. This test is denoted by can 

RPT3. 

3 E x a c t  R a n d o m  P e r m u t a t i o n  t e s t  

The permutation tests RPT1,  RPT2,  and RPT3 discussed in Section 2 are 

not exact, since the probability distribution of the permuted observations 

is different from that  of the original observations even when no interaction 

effect exists. In the same spirit as Huh and Jhun (2001), we propose an exact 

permutation test that  is an improvement of Still and White (1981). This 

is based on the uncorrelated residuals obtained from the transformation of 

the correlated residuals Y*jk = Yijk -- Y~.. -- Y.j. + ~h.. of Still and White 's  

(1981) method. To obtain a new random permutation test, we first consider 

the matrix representation of model (1). In matrix form, model (1) can be 

written as 

y = Xo~ + xoa + xb~ + Xsbaf~ + ~, (6) 

where y : (Y l l l , ' " ,Y l ln , ' " ,Ysbn) '  is abn x l response vector, and ~ : 

( e l l l ,  �9 �9 " ,  E l l n ,  �9 ' ' ,  Esbn) ! i s  abnx 1 error vector, X0 = i a ~ b ~ K ,  X a  = I s |  

Lb| Xb = i s | 1 7 4  X ,~  = Is |174 is, ~b and in are vectors of ones 

of dimension a, b and n, and Is  and Ib are identity matrices of dimension a 

and b respectively; | denotes the Kronecker product, and a = (al ,"  - -, naY, 

/~ = ( i l l , ' ' ' ,  ~ b )  t ,  and a/~ = ((aj3)n,-  - -, ( O / • ) l b ,  " " " , (O~fl)ab)'. In model (6), 

using the method of Kennedy (1995), the RPT1 of Still and White (1981) 

can be obtained in matrix notation as follows. Define Xsb = (Xa ! Xb) and 

' - ' Is| Jb| Hab = Xsb(XsbXab)  Xab, then it can easily be shown that  Hab = 

J n + J s | 1 7 4 1 7 4 1 7 4  using the generalized inverse of the partit ioned 

matrix (see Marsaglia and Styan, 1974), where Js = Lsi ' /a ,Jb = ibi'b/b, and 
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J,,  = ~ni tn /n  are the matrix of dimension a, b, and n whose elements are 

all 1 /a ,  1 /b ,  and l / n ,  respectively. Then, premultiplying I a ~  - Hab to both 

sides of (6), we get 

y" = x h a ~  + 6", (7) 

with y *  = (Iabn -- H a b ) Y ,  where the i j k  th element of ~* is y* i j k  = Y i j k  - -  

fl,.. - fl.j. + fl .... X~b  = (Iab~ -- H a b ) X a b  and e* = (Iabn -- Hab)E.  The idea is 

to remove the part of the design matrix corresponding to the parameters of 

not interests. The traditional F test statistic for the interaction is derived 

for the transformed model (7) as 

y"(Xh(X:. 'X:b)-Xh')y ' / (~-  l)(b- 11 
ri~ y',(io~ - xh(x:~b'Xh)-xh')~'/(ab(,~- 1)) (8) 

It can easily be shown that  the F~8  will be same as FAB in (3). Thus, the 

permutation method using ~", a randomly permuted vector of y*, is the 

same method as Still and White (1981). 

However, from equation (7) for the permutation method of Kennedy (1995) 

or Still and White (1981), we note that  

~* ,.~ (0 ,  a2( Iabn  - H a b ) ) .  

Consequently, ~'~, a randomly permuted vector of e*, is distributed differ- 

ently from e*. Hence, even under the null hypothesis H0, the distribution 

of ~* is not equal to that  of y*. This fact may hurt the intuitional rationale 

behind the random permutation test. We remedy this problem in the trans- 

formation using the decomposition of the idempotent matrix I,~bn -- Hab.  

Since Iab~ - Hab is an idempotent matrix of rank (abn - a - b + 1), there 

exists an abn x (abn - a - b + 1) matrix V such that  

V V '  = I . bn  -- Hab V ' V  = l a b n - a - b + l .  (9) 

Pre-multiplying V '  to both sides of (6), we obtain 

y*" = x 3 , ~  + ~*', (lO) 
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where y** = V'y*,  and X*~ and e** are analogously defined. Since, e** is 

distributed as (0, a2I=bn_a_b+l), ~'*,  a randomly permuted vector of e**, 

is distributed also as 

~'* ~.,(O, a2Iabn_a_b+l), 

because ~'* can be written as 

~** = pc**,  

where P is an (abn - a - b + 1) x (a/m - a - b + 1) permutation matrix, so 

that  

E(~**) = PE(r  = 0 V(~**) = PV(e**)P '  = a 2 P P  ' = a~I~,bn_a_b+l. 

Therefore, using equation (10), we obtain the following F statistic F ] ~  for 

testing the hypotheses of interaction in (2). 

**,(  ** , , ,  , , -  **,) -* 
y Xab(X~, b Xab ) Xab y / ( a -  1 ) ( b -  1) 

= (11)  
y'"(xo _a_b+l - X;;(X:;'X;;)-X;;')U"/(ab(.- 1)) 

"**'X** y * ' V V ' X *  " * " I  **' ** Since, .y ab = B = Y t a b n  - -  Hab)X*b = y * ' X ~  , Xab Xab -- -- 

* '  ' * * '  * Y * ' Y *  andy** 'y**  X* b V V  Xab = Xab (Iab~--Hab)Xab = ""ab "~"ab, = y * ' V V ' y *  = 

y*'(Iabn - gab)Y* = Y*'Y*, F,~*B is equal to FAB in (3) or F~ B in (4). 

Under H0, y** is not related to X*~ in (10), the statistical significance of 

Ha can be evaluated from the Monte Carlo distribution of 

( . . . . ,  . . _  . . , ) - . .  
~**' Xab(X* b Xab ) Xab y / ( a - -  1 ) ( b -  1) 

F~ B -- (12) 

where ~** is an (abn - a - b + 1) x 1 randomly permuted vector of y**. 

Thus, the significance of H0 can be assessed by p -  value--  P [ F ~  > F ] .  

This test is denoted by RPT4.  

RPT4 can be explained as follows. From model (7), since the obtained 

residuals are correlated with each other, uncorrelated residuals are obtained 
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using the transformation of the correlated residuals. To obtain the uncor- 

related residuals, a transformation matrix using the decomposition of the 

idempotent matrix is used. The proposed randomization is based on these 

uncorrelated residuals. Since the probability distribution of the permuted 

observations ~** is same as that  of y**, RPT4 satisfies the exchangeability 

property and is an exact permutation test. 

4 S i m u l a t i o n  s t u d y  

To explore the performance of the procedures proposed in Section 3 for 

testing the hypothesis (2) in the two-way ANOVA model, a simulation study 

is carried out. For the simulation study, we generate the parameters of the 

model from some distributions instead of having fixed values. By doing so, 

we may get the average performance of the methods introduced. In order to 

obtain the estimated significance level and power of the various methods, 

for each (a, b, n) combinations, the following steps are used. 

S tep  

S tep  

Step  

1. We generate the main effects a i , i  = 1 , - - . , a  and t3j,j = 1 , . . .  ,b 

from uniform(-50,50) and uniform(-20,20) distributions respectively with 

a b fl constraints ~'~i=1 ai  ---- 0 and )-~j=l J = 0. 

2. In order to obtain the estimates for significance level and power, we 

generate interaction effects as follows. For the estimation of the signifi- 

cance level, (afl)ij equals 0 for all i = 1 , . - . ,  a and j = 1,- . - ,  b ; and for 

the estimation of the power, (afl)ij is generated from uniform(-c,c) with 

constraints ~ = l ( a ~ ) i j  b a b 2 a = ~]j=l(a/~)ij = 0. Set ~AS = ~ i  ~ j ( a t 3 ) i j / a b  

as a parameter for the gradual increase of the interaction. 

3. For the values obtained in steps 1 and 2, we generate the error term 

eij~ from four different distributions, including N(0, 1), exp(1) - 1, t(4) 

and V ( - v ~ ,  V/-3). 

S tep  4. Apply the testing procedures, traditional F, RPT1, RPT2, RPT3, 

and RPT4 at significance level a = 0.05 for each generated sample, and 
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check whether  the  null hypothesis  is rejected or  not.  The  pe rmuta t ion  

tests are based on 1,000 Monte  Carlo replications. 

S t e p  5. Steps 1 to  4 are repea ted  10,000 times independent ly  in order  to  

est imate the  significance level and power of the test ing procedures.  

Comparison of estimated significance l eve l  

Table 1 gives the average es t imated  significance level for various (a, b, n)  

combinat ions and four different error distr ibutions at  nominal  size ~ = 0.05. 

Table  1 Average estimated significant level for various (a, b, n) combinations at 
nominal size c~ = 0.05 * 

(a, b, n) distribution 

(2,2,2) 

(2,2,3) 

(2,3,2) 

(2,3,3) 

(2,4,2) 

(3,4,3) 

N(0,1) 
Exp(1)-I 

t(4) 
U(-~, v~) 

N(0,1) 
Exp(1)-I 

t(4) 
U ( - ~ ,  ~ )  

N(0,1) 
Exp(1)-I 

t(4) 
U(-v~, 4~) 

N(0,1) 
Exp(1)-I 

t(4) 
U(-v~, v~) 

N(0,1) 
Exp(1)-I 

t(4) 
U(- ~ ,  v~) 

N(0,1) 
Exp(1)-i 

t(4) 
U(-~, V% 

F RPT1 RPT2 RPT3 RPT4 

0.0491 0.0348 0.0660 0.0856 0.0502 
0.0477 0.0333 0.0666 0.0833 0.0480 
0.0439 0.0304 0.0619 0.0782 0.0460 
0.0554 0.0408 0.0748 0.0884 0.0540 
0.0507 0.0491 0.0515 0.0385 0.0522 
0.0437 0.0429 0.0488 0.0313 0.0455 
0.0454 0.0458 0.0469 0.0333 0.0464 
0.0523 0.0501 0.0526 0.0409 0.0534 
0.0481 0.0463 0.0510 0.0436 0.0500 
0.0499 0.0495 0.0594 0.0469 0.0506 
0.0414 0.0418 0.0454 0.0393 0.0439 
0.0559 0.0531 0.0608 0.0516 0.0551 
0.0492 0.0500 0.0505 0.0464 0.0501 
0.0454 0.0486 0.0523 0.0422 0.0468 
0.0458 0.0495 0.0482 0.0430 0.0460 
0.0525 0.0513 0.0532 0.0500 0.0529 
0.0485 0.0483 0.0499 0.0442 0.0504 
0.0528 0.0537 0.0610 0.0487 0.0527 
0.0432 0.0443 0.0460 0.0380 0.0444 
0.0538 0.0528 0.0567 0.0490 0.0539 
0.0479 0.0483 0.0498 0.0468 0.0490 
0.0464 0.0481 0.0498 0.0450 0.0460 
0.0469 0.0510 0.0500 0.0452 0.0482 
0.0481 0.0488 0.0487 0.0471 0.0494 

* RPT1, RPTg, RPT3  and RPT4 are based on 10,000 Monte Carlo replications. 



Using the normal approximation, if the true significance level is 0.05, there 

is less than a 5% chance that a simulated significance level based on 10,000 

replications will be less than 0.046 or larger than 0.054. 

For (a, b, n) = (2, 2, 2), when the error term is normal the traditional F-test 

works well as expected. However, when the error term follows t(4) distribu- 

tion, the significance level of the F-test is underestimated. RPT1 underes- 

timates the nominal significance level while RPT2 and RPT3 overestimate 

it for all considered distributions of the error terms. These phenomena are 

presumably due to the fact that  the randomly permuted observations of 

Y~jk and Y~jk, which are used for permutation in RPT1, RPT2 and Yi~k, 
RPT3 respectively, are correlated. However, the estimated significance level 

of RPT4, which is proposed in this paper, is not significantly different from 

the nominal size. 

For (a, b, n) = (2, 2, 3), RPT1 and RPT2 improve a little bit, but RPT3 

underestimates the significance level especially for exp(1) - 1 and t(4) dis- 

tributions. Over all, RPT4 works relatively well. 

As the a, b and n increase, the correlations between the randomly permuted 

observations used for RPT1, RPT2, and RPT3 get weaker. Thus, we would 

expect that the difference between the procedures gets smaller as a, b and 

n increase (see Table 1). 

Comparison of est imated power 

Table 2 gives the estimated power for the various testing methods at signif- 

icance level a = 0.05 for (a, b, n) = (2, 3, 2) when the error term is N(0, 1), 

exp(1 ) -  1, t(4) and V ( - v ~ ,  v/3). 
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distribution OAB F RPT1 RPT2 RPT3 RPT4 

N(0, 1) 

Exp(1)-I  

t(4) 

u(-v~, v~) 

0.0000 
0.1663 
0.3850 
0.6134 
0.8763 
1.1196 
1.3636 
1.6152 
1.9391 
0.0000 
0.1663 
0.3850 
0.6134 
0.8763 
1.1196 
1.3636 
1.6152 
1.9391 

0.0000 
0.1663 
0.3850 
0.6134 
0.8763 
1.1196 
1.3636 
1.6152 
1.9391 

0.0000 
0.1663 
0.3850 
0.6134 
0.8763 
1.1196 
1.3636 
1.6152 
1.9391 

0.0481 0.0463 0.0510 0.0436 0.0500 
0.0643 0.0606 0.0662 0.0593 0.0637 
0.1261 0.1240 0.1316 0.1198 0.1260 
0.2539 0.2460 0.2579 0.2391 0.2470 
0.4695 0.4559 0.4702 0.4460 0.4502 
0.6772 0.6636 0.6802 0.6546 0.6529 
0.8440 0.8331 0.8445 0.8276 0.8209 
0.9371 0.9318 0.9369 0.9286 0.9249 
0.9802 0.9770 0.9768 0-9768 0.9733 
0.0499 0.0495 0.0594 0.0469 0.0506 
0.0705 0.0677 0.0828 0.0656 0.0703 
0.1658 0.1616 0.1891 0.1580 0.1659 
0.3342 0.3304 0.3649 0.3182 0.3305 
0.5503 0.5443 0.5871 0.5324 0.5386 
0.7271 0.7204 0.7619 0.7088 0.7073 
0.8485 0.8469 0.8711 0.8372 0.8332 
0.9116 0.9075 0.9302 0.9040 0.9015 
0.9706 0.9677 0.9789 0.9648 0.9600 

0.0414 0.0418 0.0454 0.0393 0.0439 
0.0537 0.0536 0.0578 0.0496 0.0560 
0.0940 0.0924 0.1019 0.0874 0.0936 
0.1765 0.1741 0.1878 0.1676 0.1743 
0.3074 0.3032 0.3230 0.2909 0.2970 
0.4743 0.4681 0.4973 0.4519 0.4602 
0.6254 0.6142 0.6411 0.6039 0.6069 
0.7526 0.7420 0.7666 0.7319 0.7296 
0.8649 0.8561 0.8785 0.8486 0.8459 

0.0559 0.0531 0.0608 0.0516 0.0551 
0.0639 0.0611 0.0688 0.0601 0.0629 
0.1255 0.1211 0.1328 0.1186 0.1250 
0.2321 0.2241 0.2338 0.2219 0.2236 
0.4344 0.4227 0.4304 0.4140 0.4167 
0.6552 0.6411 0.6412 0.6310 0.6283 
0.8450 0.8323 0.8306 0.8249 0.8190 
0.9531 0.9476 0.9437 0.9421 0.9378 
0.9949 0.9941 0.9909 0.9925 0.9888 

From Table  2, no te  t h a t  t h e  e s t i m a t e d  powers of all tes t s  increase  as the  

p a r a m e t e r  for the  degree  of t he  in te rac t ion  effect ~AB increases.  Also,  no te  

t ha t  the  differences in the  e s t i m a t e d  power of all tes t s  are  r a the r  small .  
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Tes t ing  for  m a i n  effects 

Suppose that the null hypothesis H0 in (2) is not rejected. Then, model (1) 

can be rewritten as 

yi j~ = # + a i + i 3 j + E i j k ,  i =  l , . . . , a ,  j = l , . . . , b ,  a n d k =  l , . . . , n .  (13) 

In model (13), consider hypotheses for the existence of the main effects. 

Ho : vq  . . . . .  aa  = 0 vs. H1 : not H0. (14) 

Under the normality assumption of error terms, the traditional F test statis- 

tic is 

~ia--x ~-'~'~b=l ~-'~'~=1 (Yi.. - Y...)2/( a - 1) 
Fa (15) 

E a = l  b n ~ j = l  ~ k = l ( Y i j k  -- fli.. -- fl.j. + Y...)2/(abn - a - b + 1)" 

Under the null hypothesis H~, FA is distributed as F ( a -  1, a b n -  a -  b+  1). 

For the permutation test, the permutation methods described in Sections 

2 and 3 can be easily extended for this problem. For RPT1, RPT2 and 

RPT3, the adjusted values used in permutations are Yi~k = Yijk -- yd . ,  

Ytijk = Yijk -- fl~.. -- yd. + Y .... and Yijk itself, respectively. 

For RPT4, since e*jk -- e i j k -  gd. are correlated, the uncorrelated error term 

Q*j*k can be obtained by using the singular transformation used in Section 

3. Therefore, distribution of F]* can be obtained as in (12) by using the 

random permutation of uncorrelated observations Yi*j*k. Then, the p-value 

of RPT4 can be calculated by comparing the observed FA value to the 

distribution. 

Three-way ANOVA m o d e l  

Based on invariance and suffiency, Welch (1990) considered testing for in- 

teraction effects in the three-way ANOVA model. 

Yijk = # + a i  +/~j + 7k + (aj3)ij + (aT)ik + (~7)jk + eijk (16) 

i =  l , . . - , a ,  j =  l , . . . , b ,  k =  l , . . . , c ,  



59 

with proper constraints for the parameters. In equation (16), the hypotheses 

for testing the interactions between factors B and C are as follows. 

g0:(~"{)11 . . . . .  (/~[)bc = 0 vs. H i :  not H0. (17) 

Under the normality assumption of error terms, the traditional F test is 

( b - 1 ) ( c - 1 )  . (18) F B C  = E , t ,  E~=, E~.,(v,Jk-~,..-~.J.-~..~+9,J.+~,.k+#.,~-O...) 2 

( a - 1 ) ( b - 1 ) ( c - 1 )  

Under the null hypothesis H o ,  F B c  is distributed as F ( ( b  - 1)(c - 1), (a - 

1 ) ( b - 1 ) ( c - 1 ) ) .  Now, the permutat ion methods described in Sections 2 and 

3 can also be easily extended for this problem. In this model, the adjusted 

values used in permutations are Yi~k = Yi jk  - -  Y i j .  - -  Y i . k  "~ ~]i.. for RPT1,  

Yi~k = Yi jk  - Yi.. - Y j .  - Y..k + Yij. + ~gi.k + Y . jk  - Y... for RPT2,  and Yi j k  itself 

for RPT3. RPT4 for this model is similar to that  for the two-way ANOVA 

model. Since ei~ k = r  - gij .  - gi.k + gi.. are correlated, the uncorrelated 

error term Q*j*k can be obtained by using the singular transformation used 

in (10). Therefore, the distribution of F ~  can be obtained by using the 

random permutation of uncorrelated observations Y*~k" Then, the p-value 

of RPT4 can be calculated by comparing the observed F B e  value to the 

distribution of F ~  . 

5 A Numerical  Example  

We will work on the same data  that  were also given as an example in 

Montgomery (1997, pp 288-289). The data  were collected from an article in 

the IEEE Transactions on Electron Devices (Nov. 1986, p. 1754), a s tudy on 

polysilicon doping. In this study, the base current was the response variable, 

with two levels of polysilicon doping (factor A) and three levels of anneal 

temperature (factor B). Table 3 provides the experiment and its result. 
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Table 3 Experiment and the resulting observed data 

Polysilicon Doping(ions) 
Anneal Temperature(~ 

900 950 1000 

1 x 1020 4.60 10.15 11.01 
4.40 10.20 10.58 

2 x 1020 3.20 9.38 10.81 
3.50 10.02 10.60 

In this example, we a t tempt  to answer the question of whether interaction 

effects between polysilicon doping and temperature exist. Table 4 provides 

the results from a number of testing procedures for interaction effects. 

Table 4 Results of testing procedures 

p-value 
Source F RPT1 RPT2 RPT3 RPT4 

Interaction (A'B) 0.0645 0.0727 0.0665 0.0596 0.0581 

We find that  in Table 4, under the normality assumption of errors, the 

traditional F test for interaction effects proved to be significant at the 10 

percent level. Thus, it is concluded that  a mild degree of interaction exists 

between polysilicon doping and temperature.  However, when the normality 

assumption is not satisfied, the result of the traditional F test cannot be 

justified. We therefore apply the permutation tests described in Section 2 

and Section 3. These permutat ion tests are based on 100,000 Monte Carlo 

replications. We find that  all the permutation tests in this experiment were 

still significant at about the 10 percent level. It is found that the p-value for 

RPT4, the new method of this study, was 0.0581, which was quite close to 

that  of RPT3. The p-values of RPT3 and RPT4 turned out to be smaller 

than those of other methods. 
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6 C o n c l u s i o n  

In this study, we proposed a new method of random permutations for testing 

interaction effects in balanced two-way and three-way ANOVA models. The 

advantage of this s tudy is that  our permutation method is statistically exact 

compared with the existing methods. We carried out a restricted simulation 

and confirmed the fact that  the proposed method outperformed the existing 

methods for small sample sizes. 
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