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Abstract In this paper we consider regression models for count data allow-
ing for overdispersion in a Bayesian framework. We account for unobserved
heterogeneity in the data in two ways. On the one hand, we consider more
flexible models than a common Poisson model allowing for overdispersion in
different ways. In particular, the negative binomial and the generalized Poisson
(GP) distribution are addressed where overdispersion is modelled by an addi-
tional model parameter. Further, zero-inflated models in which overdispersion
is assumed to be caused by an excessive number of zeros are discussed. On
the other hand, extra spatial variability in the data is taken into account by
adding correlated spatial random effects to the models. This approach allows
for an underlying spatial dependency structure which is modelled using a condi-
tional autoregressive prior based on Pettitt et al. in Stat Comput 12(4):353–367,
(2002). In an application the presented models are used to analyse the number
of invasive meningococcal disease cases in Germany in the year 2004. Models
are compared according to the deviance information criterion (DIC) suggested
by Spiegelhalter et al. in J R Stat Soc B64(4):583–640, (2002) and using proper
scoring rules, see for example Gneiting and Raftery in Technical Report no. 463,
University of Washington, (2004). We observe a rather high degree of overdi-
spersion in the data which is captured best by the GP model when spatial effects
are neglected. While the addition of spatial effects to the models allowing for
overdispersion gives no or only little improvement, spatial Poisson models with
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spatially correlated or uncorrelated random effects are to be preferred over all
other models according to the considered criteria.

Keywords Bayesian inference · Count data · Overdispersion · Spatial
regression models · Zero inflated models

1 Introduction

A very popular model for count data is the Poisson distribution. However, in
the Poisson model equality of the variance and the mean is assumed which is
too restrictive for overdispersed data where the variance in the data is higher
than the expected one from the model. This paper aims to give an overview over
different models for spatially indexed count data allowing for overdispersion
in a Bayesian perspective. We follow two approaches for dealing with the extra
variability in overdispersed data. On the one hand, we consider a wider class of
models allowing for overdispersion, on the other hand spatial random effects
are introduced to capture unobserved spatial heterogeneity in the data.

Overdispersion with respect to the Poisson model can be modelled by intro-
ducing an additional parameter. In particular, we consider the negative binomial
(NB) distribution and the generalized Poisson (GP) distribution introduced by
Consul and Jain (1973). Both models allow an independent modelling of the
mean and the variance by the inclusion of an additional parameter.

When dealing with a data set with an excessive number of zeros, zero-inflated
models might be used, see for example Winkelmann (2003). In contrast to the
GP and the NB model, overdispersion in zero inflated models is caused by
the occurrence of more zero observations than expected. Zero inflated models
can be used in combination with any model for count data. Additionally to
the zero observations arising from the count data model an extra proportion
of zeros is incorporated. Lambert (1992) introduced the zero inflated Poisson
regression model, a Bayesian analysis of the zero inflated Poisson model is given
in Rodrigues (2003). Zero inflated regression models in combination with the
generalized Poisson distribution have been addressed in Famoye and Singh
(2003a,b) using maximum likelihood estimation, a Bayesian analysis without
the inclusion of covariates is given in Angers and Biswas (2003). Agarwal et al.
(2002) use a zero inflated Poisson regression model for spatial count data in a
Bayesian framework.

The second approach for modelling unobserved data heterogeneity is the
introduction of random effects. For spatially indexed data which are the focus
in this paper, spatial random effects associated with each region or site may be
used, allowing for the modelling of an underlying spatial dependency structure.

In this paper, we consider Poisson, NB, GP and zero inflated (ZI) regres-
sion models both including and without spatial random effects in a Bayesian
context. In contrast to classical inference the Bayesian approach allows to
adjust for parameter uncertainty by assigning prior distributions to the parame-
ters. Further, a spatial correlation structure is easily incorporated in a Bayesian
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setting by assuming an adequate prior distribution for the spatial random effects.
In this paper, we assume a proper Gaussian conditional autoregressive spatial
prior based on Pettitt et al. (2002) which takes the neighbourhood structure of
the data into account and allows for spatial dependencies. Since this results in a
high dimensional, complex posterior distribution, Markov Chain Monte Carlo
(MCMC) is used for parameter estimation.

We give an application of the considered models to disease mapping. In
particular, we analyse the number of invasive meningococcal disease cases
registered in Germany in the year 2004. Models are compared using the devi-
ance information criterion (DIC) suggested by Spiegelhalter et al. (2002) and
proper scoring rules, see for example Gneiting and Raftery (2004). We observe
a substantial degree of overdispersion in the data which is modelled best by
the GP distribution if spatial effects are neglected. While the addition of spatial
random effects gives no or little improvement to the models allowing for over-
dispersion, spatial effects turn out to be significant for the Poisson model. In
particular, according to the DIC and the scoring rules a spatial Poisson models
gives the best fit for these data. However, no smooth spatial pattern is mod-
elled. Instead some isolated regions with high risk are detected by the spatial
effects, indicating that the risk is not sufficiently explained by the incorporated
covariates in these regions.

This paper is organized as follows. In Sect. 2 the negative binomial, the
generalized Poisson and zero-inflated regression models are presented. The
conditional autoregressive prior assumed for the spatial effects is discussed in
Sect. 3, prior assumptions for the regression and model dependent overdisper-
sion parameters are given in Sect. 4. The DIC and the used proper scoring rules
are reviewed in Sect. 5. Finally, in Sect. 6 the presented models are applied
to analyse the number of invasive meningococcal disease cases in Germany is
given. Section 7 gives a summary of the results and draws conclusions.

2 Regression models for count data including overdispersion

A commonly used model for count regression data is Poisson regression, where
equality of mean and variance for each observation is assumed. Since this condi-
tion is not satisfied any more if overdispersion is present in the data, we consider
regression models, which allow the variance to be larger than the mean in this
section. For a detailed study of various count data models see Winkelmann
(2003).

2.1 Negative binomial (NB) regression

In a negative binomial regression model for independent count data obser-
vations Yi, i = 1, . . . , n with parameters r > 0 and µi > 0, denoted by Yi ∼
NB(r,µi), the density is defined by
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P(Yi = yi|r,µi) = �(yi + r)
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with

E(Yi|r,µi) = µi and Var(Yi|r,µi) = µi

(
1 + µi

r

)
.

The mean µi is assumed to depend on covariates xi and unknown regression
parameters β by

E(Yi|xi, β) = µi > 0.

The variance is the mean multiplied by the positive factor ϕi := 1 + µi
r and

therefore greater than the mean, i.e. overdispersion can be modelled in the
negative binomial distribution. We call the factor ϕi dispersion factor. Note,
that the dispersion factor takes observation specific values. In the limit r → ∞
the NB distribution converges to the Poisson distribution with parameter µi,
see Winkelmann (2003). The negative binomial distribution also arises from a
Poisson distribution where the parameter θi is assumed to be random and to

follow a Gamma distribution with mean E(θi) = µi and variance Var(θi) = µ2
i

r .
Therefore, overdispersion in the NB model can be interpreted by unobserved
heterogeneity among observations.

2.2 Generalized Poisson (GP) regression

The generalized Poisson distribution has been introduced by Consul and Jain
(1973) and is investigated in detail in Consul (1989). Independent response
variables Yi are called generalized Poisson distributed with parameters µi > 0
and λ, denoted by GP(µi, λ), if

P(Yi = yi|µi, λ) =

⎧⎪⎪⎨
⎪⎪⎩
µi[µi(1 − λ)+ λyi]yi−1 (1−λ)

yi! exp
[
−µi(1 − λ)− λyi

]
,

yi = 0, 1, 2, ...

0 for yi > m when λ < 0

(2)

where max(−1, − µi
m−µi

) < λ < 1 and m(≥ 4) is the largest positive integer for
which µi(1 − λ)+ mλ > 0 for negative λ. Mean and variance are given by

E(Yi|µi, λ) = µi and Var(Yi|µi, λ) = µi

(1 − λ)2
(3)

with µi depending on covariates xi and regression parameters β like in the
NB regression model. From (3) it is clear that ϕ := 1

(1−λ)2 can be interpreted
as an dispersion factor for the GP distribution. For λ = 0, the generalized
Poisson distribution reduces to the Poisson distribution with parameter µi, for
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λ < 0 underdispersion can be modelled, whereas for λ > 0 overdispersion is
obtained. The focus in this paper is the modelling of overdispersion, therefore
λ is assumed to take only values in the interval [0, 1) in the remainder of this
paper. Similar to the NB model, the GP distribution is a mixture of Poisson
distributions as has been proved by Joe and Zhu (2005). While the dispersion
parameter in the NB regression model depends on µi leading to a variance
function which is quadratic inµi, the dispersion parameter in the GP regression
model is the same for each observation and results in a linear variance function.
For a closer comparison of the NB and the GP distribution see Joe and Zhu
(2005) and Gschlößl (2006).

2.3 Zero inflated (ZI) regression models

For count data with an excessive number of zero observations zero inflated
(ZI) models can be used. These models allow for a higher number of zeros than
can be explained by standard models for count data. Additional to the zero
observations arising from the supposed count data distribution, a proportion of
extra zeros is assumed. ZI models have been widely used in the literature, for a
short overview see Winkelmann (2003).

Let π(yi|θ) be a distribution function for count data with unknown param-
eters θ . Then a zero inflated model with extra proportion p ∈ [0, 1] of zeros is
defined by [see Agarwal et al. (2002)]

P(Yi = yi|p, θ) =
{

p + (1 − p)π(yi = 0|θ) if yi = 0
(1 − p)π(yi|θ) if yi > 0

(4)

Mean and variance are given by

E(Yi|p, θ) = (1 − p)Eπ (Yi|θ) (5)

and

Var(Yi|p, θ) = p(1 − p)[Eπ (Yi|θ i)]2 + (1 − p)Varπ (Yi|θ). (6)

The introduction of latent indicator variables Z = (Z1, . . . , Zn)
′ leads to a model

which is easier to handle in a Bayesian context and in particular allows a Gibbs
step for p. Zi takes the value zi = 0 for all observations with yi > 0. For all zero
observations yi = 0, the latent variable takes the value zi = 0 if observation i
arises from the count data distribution π(yi|θ) and the value zi = 1 for extra
zeros. Marginally, Zi ∼ Bernoulli(p). Using the latent variables Z, the joint
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likelihood of Y = (Y1, . . . , Yn)
′ and Z is given by

f (Y, Z|p, θ) =
n∏

i=1

pzi[(1 − p)π(yi|θ)]1−zi

=
∏

i:yi=0

pzi[(1 − p)π(0|θ)]1−zi ·
∏

i:yi>0

(1 − p)π(yi|θ).

In this paper, we will focus on the zero inflated Poisson and the zero inflated
generalized Poisson regression models, which are special cases of the ZI model
(4). The zero inflated negative binomial distribution will not be discussed in this
paper, since the GP model turned out to be more adequate than the NB model
for the application considered later on.

2.3.1 Zero inflated Poisson (ZIP) regression

Here the Poisson distribution is assumed for the underlying count data distri-
bution, i.e. π(yi|θ) := π(yi|µi) = µ

yi
i

exp(−µi)
yi! where the parameter µi is again

assumed to depend on covariates xi and unknown regression parameters β.
Mean and variance of the ZIP regression model, denoted by ZIP(p,µi), are
specified by E(Yi|p,µi) = (1 − p)µi and Var(Yi|p,µi) = (1 − p)µi(µip + 1) =
E(Yi|p,µi)(µip + 1). For p > 0 the dispersion factor ϕi := µip + 1 of the
ZIP regression model is positive, i.e. the presence of extra zeros leads to
overdispersion.

2.3.2 Zero inflated generalized Poisson (ZIGP) regression

The ZIGP regression model was already introduced by Famoye and Singh
(2003b), in Famoye and Singh (2003a) a generalisation to k-inflated GP regres-
sion models is given which allow the modelling of data with an excessive
number of k-values (k = 0, 1, 2, . . . ). The ZIGP regression model, denoted by
ZIGP(p,µi, λ), is obtained if the density function of the GP distribution given in
(2) is chosen for π(yi|θ) and a regression is performed on µi. The mean and the
variance of the ZIGP regression model are given by E(Yi|p,µi, λ) = (1 − p)µi

and Var(Yi|p,µi, λ) = E(Yi|p,µi, λ)
[
pµi + 1

(1−λ)2
]
. The dispersion factor of the

ZIGP model is therefore given by ϕi := pµi + 1
(1−λ)2 . Here, overdispersion can

both result from the overdispersion parameter λ of the GP distribution and the
extra proportion of zeros p when p > 0.

3 Spatial effects using a Gaussian conditional autoregressive model

In addition to covariates we will incorporate spatial random effects in the
regression models in order to account for spatial heterogeneity as well as
spatial correlation in the data. We consider models for data aggregated in
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regions. A spatial dependency structure is imposed by assuming a prior distri-
bution for the spatial effects which takes the neighbourhood structure of the
area under consideration into account. In particular we consider a special case
of the Gaussian conditional autoregressive (CAR) model introduced by Pettitt
et al. (2002) . Assume the data to be distributed on J regions {1, . . . , J}. Then
the vector γ = (γ1, . . . , γJ)

′ of spatial effects is assumed to follow a multivariate
normal distribution, in particular

γ ∼ N(0, σ 2Q−1) (1)

where the elements of the precision matrix Q = (Qij), i, j = 1, . . . , J are given
by

Qij =
⎧⎨
⎩

1 + |ψ | · Ni i = j
−ψ i �= j, i ∼ j
0 otherwise

. (2)

We write i ∼ j for regions i and j which are contiguous and assume regions to
be neighbours if they share a common border. Ni denotes the number of neigh-
bours of region i. The conditional distribution of γi, given all the remaining
components γ −i, i = 1, . . . , J is given by

γi|γ−i ∼ N
( ψ

1 + |ψ | · Ni

∑
j∼i

γj, σ 2 1
1 + |ψ | · Ni

)
. (3)

The parameter ψ determines the overall degree of spatial dependence, for
ψ = 0 all regions are spatially independent, whereas for ψ → ∞ the degree of
dependence increases. Pettitt et al. (2002) show that Q is symmetric and positive
definite, therefore (1) is a proper distribution. Another convenient feature of
this CAR model is that the determinant of Q which is needed for the update of
ψ in a MCMC algorithm can be computed efficiently, see Pettitt et al. (2002) for
details. Many other authors have dealt with conditional autoregressive models.
An overview about CAR models is given in the book by Banerjee et al. (2004)
and in Jin et al. (2005) where also multivariate CAR models are discussed. The
most popular model is probably the intrinsic CAR model introduced by Besag
and Kooperberg (1995). The joint density for γ in the intrinsic CAR model is
improper in contrast to model (3) described above which has a proper joint
density.

Czado and Prokopenko (2004) consider a modification of model (3) which
is a proper model as well but reduces to the intrinsic CAR model in the limit.
Another modification of the intrinsic CAR model leading to a proper prior has
been presented by Sun et al. (2000).
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4 Bayesian inference

In order to account for parameter uncertainty and to allow for an underlying
spatial structure we consider the count data regression models discussed in
Sect. 2 in a Bayesian context. MCMC will be used for parameter estimation.
For more information on Bayesian data analysis and MCMC methods see Gilks
et al,. (1996) and Gelman et al. (2004).

Assume the response variables Yi, i = 1, . . . , n to be observed at J re-
gions. Besides the well known Poisson regression model Poi(µi) we consider
the NB(r,µi), GP(µi, λ), ZIP(p,µi) and ZIGP(p,µi, λ) model. In each of these
models the parameter µi, i = 1, . . . , n is specified by

µi = ti exp(x′
iβ + γR(i)),

where xi = (1, xi1, . . . , xik) denotes the vector of covariates and ti gives the
observation specific exposure defining statistically an offset. The vector β =
(β0, . . . ,βk) denotes the vector of unknown regression parameters. Note, that
an intercept β0 is included in the model. To allow for geographical differ-
ences in the J regions spatial random effects γ = (γ1, . . . , γJ) are introduced,
R(i) ∈ {1, . . . , J} denotes the region of the ith observation. The parameters β, γ ,
λ, p and r, respectively, are taken to be a priori independent and the following
prior distributions are chosen:

− π(β) ∼ N(0, τ 2Ik+1), with τ 2 = 100
− π(γ |σ 2,ψ) ∼ N(0, σ 2Q−1) with Q specified as in (2)

For the hyperparameters σ 2 and ψ the proper priors

− π(σ 2) ∼ IGamma(a, b) with a = 1 and b = 0.005
− π(ψ) ∼ 1

(1+ψ)2

are assumed. For the model specific parameters the following prior distributions
are chosen:

− GP Regression: π(λ) ∼ U([0, 1])
− NB Regression : π(r) ∼ Exponential(b), i.e. π(r) = be−rb, where π(b)

∼ Exponential(0.005)
− ZIP/ZIGP Regression: π(p) ∼ U([0, 1])
Most update steps of the MCMC algorithms are performed using a single com-
ponent Metropolis Hastings (MH) step. The algorithmic scheme for a spatial
regression model with an additional overdispersion parameter can be summa-
rized as follows:

− Update of overdispersion parameter θ (i.e. θ = λ for GP, θ = r for NB):
sample θ |y, β, γ

− Update of regression parameters: sample βj|y, θ , β−j, γ , j = 0, . . . , k
− Update of spatial effects

− Sample 1
σ 2 |γ ,ψ ∼ Gamma
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− Sample ψ |γ , σ
− Sample γj|y, θ , β, γ −j,ψ , σ , j = 1, . . . , J

Since the full conditional of σ 2 is Inverse Gamma, σ 2 can be sampled directly
using a Gibbs step. For the remaining parameters a MH step is used. In par-
ticular, the overdispersion parameter θ , the regression parameters β and the
spatial effects γ are updated component by component using an independence
proposal distribution. For the independence proposal we take a t-distribution
with v = 20 degrees of freedom with the same mode and the same inverse
curvature at the mode as the target distribution. The spatial hyperparameter ψ
is updated using a symmetric random walk proposal. For the Poisson regression
model the same algorithmic scheme can be used, neglecting the overdispersion
parameter.

To avoid convergence problems in the ZI models which arose in simulated
data due to correlation between the intercept β0, p and λ, we use collapsed
algorithms, in particular β0, p and λ are updated with the latent variables z
integrated out, i.e. based on model (4). Doing so convergence and mixing of
the samplers was improved considerably. The algorithmic scheme for the ZIGP
regression model is given by

− Updates with z integrated out
− Sample β0|y, p, λ, β−0, γ
− Sample p|y, λ, β, γ
− Sample λ|y, p, β, γ

− Update of latent variables: ∀ i with yi = 0

Sample zi|y, λ, p, β, γ ∼ Bernoulli
(

p
p + (1 − p) exp(−µi(1 − λ))

)

− Update of regression parameters: sample βj|y, λ, β−j, z, γ , j = 1, . . . , k
− Update of spatial effects

− Sample 1
σ 2 |γ ,ψ ∼ Gamma

− Sample ψ |γ , σ
− Sample γj|y, λ, β, z, γ −j,ψ , σ , j = 1, . . . , J

The latent variables z can be updated using a Gibbs step. Since the full con-
ditional of p is log concave, adaptive rejection sampling (ARS) introduced
by Gilks and Wild (1992) is used to update p. The parameters β, λ and γ

are updated using a MH step with an independence proposal distribution as
described above. For the ZIP regression model the same algorithm with λ fixed
to 0 can be used.

5 Bayesian model comparison

Bayes factors based on marginal likelihood provide a method for model compar-
ison, see Kass and Raftery (1995). Further, Bayesian model averaging (BMA),
see for example Hoeting et al. (1999), which is based on Bayes factors, presents
a method for model selection taking model uncertainty into account. However,
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for complex hierarchical models like those considered in this paper, the compu-
tation of Bayes factors requires substantial efforts, see Han and Carlin (2001).
Therefore we decided to use model choice criteria like the deviance informa-
tion criterion and proper scoring rules which can be easily computed using the
available MCMC output.

5.1 Deviance information criterion (DIC)

Spiegelhalter et al. (2002) suggest to use the following criterion for model com-
parison in Bayesian inference. Assume a probability model p(y|θ). The Bayesian
deviance D(θ), which is used as a measure for goodness of fit, is defined as

D(θ) = −2 log p(y|θ)+ 2 log f (y)

where f (y) is some fully specified standardizing term. To measure the model
complexity Spiegelhalter et al. (2002) introduce the effective number of param-
eters pD defined by

pD := E[D(θ |y)] − D(E[θ |y]).

Finally they define the deviance information criterion (DIC) as the sum of the
posterior mean of the deviance and the effective number of parameters

DIC := E[D(θ |y)] + pD.

According to this criterion the model with the smallest DIC is to be preferred.
pD and DIC are readily determined using the available MCMC output by taking
the posterior mean of the deviance to obtain E[D(θ |y)] and the plug-in estimate
of the deviance D(E[θ |y]) using the posterior mean E[θ |y] of the parameter θ .

5.2 Proper scoring rules

Apart from the DIC we use proper scoring rules for categorical variables for
comparing models, in particular we consider the Brier score and the logarithmic
score presented for example in Gneiting and Raftery (2004). While Gneiting
and Raftery (2004) use scoring rules for assessing the quality of probabilistic
forecasts, our focus is model comparison based on the posterior predictive distri-
bution. Under the probability model p(y|θ) a scoring rule assigns a value S(pi, yi)

for each observation yi, i = 1, . . . , n based on the posterior predictive proba-
bility vector pi = (pi1, pi2, . . . , pim). Here the component pik := P(yi = k|y)
denotes the posterior predictive probability that the ith observation takes the
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value k which can be estimated by

p̂ik := 1
R

R∑
j=1

p(yi = k|θ j)

where θ j, j = 1, . . . , R, denotes the jth MCMC iterate of θ after burnin. For com-
putational reasons we set pim := 1 − ∑m−1

k=1 pik where m − 1 gives the highest
response value observed in the data. This ensures that the probability vector pi
sums up to 1.

Models are then compared based on the mean score given by

S(θ) = 1
n

n∑
i=1

S(pi, yi).

We consider positive oriented scores here, i.e. the model with the highest mean
score is to be preferred. The Brier score first proposed by Brier (1950) is de-
fined by

S(pi, yi) = 2piyi − 1 −
m∑

k=1

p2
ik

where piyi = P(y = yi|θ) denotes the posterior predictive probability for the
true value yi under the considered model. The Brier score corresponds to the
expression

− 1
n

m∑
k=1

n∑
i=1

(pij − p̂emp
ik )2

where p̂emp
ik =

{
1 yi = k
0 otherwise

denotes the empirical probability that the ith

observation takes the value j. Hence, according to the Brier score the model
which minimizes the squared difference between the observed and the esti-
mated probabilities is considered best.

The logarithmic score is defined by

S(pi, yi) = log piyi

and therefore chooses the model which gives the highest probability for observ-
ing the true value. Both scores are proper, i.e. the highest score is obtained for
the true model, see Gneiting and Raftery (2004) for details. Further, when
parameter estimation is done using MCMC both scores are computed easily
based on the MCMC output as indicated above. Ideally, in order to avoid using
the data twice, parameter estimation should be based on about 75% of the data
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only, whereas the scores should be computed for the remaining 25% of the data.
However, since the data set analysed in the next section is rather small and our
focus is on comparing models rather than prediction, we will use the same data
for estimation and computation of the scores.

6 Application

6.1 Data description

In this section, the proposed models will be used to analyse the number of
invasive meningococcal disease cases reported in Germany during the year
2004. Meningococcal disease is caused by bacteria and can lead to serious, per-
ilous diseases, like for example meningitis, in which case we refer to invasive
meningococcal disease. In 2004, 600 cases of invasive meningococcal disease
were reported in Germany. Germany is divided into 439 regions, for each of
these regions the number of invasive meningococcal disease cases is given for
both men and women. However, in preliminary analyses no significant influ-
ence of gender could be detected, therefore we decided to model the total
number of cases without distinguishing between men and women. This means,
that we have only one observation yi, i = 1, . . . , 439 for each region. Since we
are interested in relative risks, population effects are eliminated by including
the expected number of cases in each region as an offset in the analysis. The
expected number of cases ti in each region i = 1, . . . , n is determined by the size
of the population popi in region i times the overall observed risk, i.e. the total

number of cases divided by the total population
∑n

i=1 yi∑n
i=1 popi

. A histogram of the

relative risks yi/ti in each region is given in Fig. 1. A high proportion (67.2%)
of the data is equal to zero, the average relative risk of meningococcal disease
is given by 1.06, however the variance of the relative risks yi/ti is given by 2.04
which is substantially higher than the mean and therefore already indicates the
presence of overdispersion in the data.

On a higher aggregation level Germany consists in 16 states. Besides the mod-
elling of overdispersion in the data, an interesting issue is to detect whether there
are areas with an increased risk of contracting invasive meningococcal disease.
In this case, vaccination could be strongly recommended in these risky regions.
Therefore, we include the 16 states as covariates in our model, which will be
modelled as factor covariates with state 1 as reference level.

Extra heterogeneity in the data, which might not be satisfactorily explained
by the state factors, can be handled by the model specific dispersion parameters
in the NB, the GP and the ZI models. While overdispersion in the NB and the
GP model can be interpreted as unobserved heterogeneity among observations,
zero inflated models would assume that part of the observations equal to zero
are extra zeros, i.e. in some regions the occurrence of invasive meningococcal
disease might not have been reported or detected.
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Fig. 1 Histogram of the observed relative risks yi/ti, i = 1, . . . , 439

On the other hand, heterogeneity in the data might also be taken into account
by assuming a finer geographic resolution, i.e. by including a random spatial
effect for each region. We will assume the CAR prior presented in Sect. 3 for
these spatial effects which allows for a spatial dependency structure. In contrast
to this approach, the effects of the states included as factor covariates can be
seen as unstructured effects on a lower resolution, since no correlation between
states is allowed.

We first analysed the data set in Splus using a Poisson model without spatial
effects including an intercept and the 16 states as factor covariates. The effects
of the four states Nordrhein-Westfalen, Mecklenburg-Vorpommern, Sachsen-
Anhalt and Thüringen were found to be significant and only the regression
indicators of these states will be included in the following. This model was used
as a starting model for the MCMC algorithms of the models discussed in Sect. 2.

6.2 Models

The MCMC algorithms for the Poisson, the GP, the NB, the ZIP and the ZIGP
regression models are run for 20,000 iterations. The parameter µi, i = 1, . . . , n
is specified for all models by

µi = ti exp(x′
iβ + γi)

with the same covariates included in each model and ti as defined above. All
models are fitted with and without spatial effects. Since we have only one
observation for each region we use the simplified notation γR(i) = γi. The first
5,000 iterations of the MCMC samplers are discarded as burnin, convergence is
achieved well before for all models. After convergence the mixing of the sam-
plers is satisfactorily good, the estimated empirical autocorrelations with lag 5
are in general well below 0.05 for the regression parameters in all non spatial
models and both the regression parameters and the spatial effects in the spatial
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GP and ZIGP models. Only in the spatial Poisson, ZIP and NB models a lag of
about 20 is needed in order to obtain autocorrelations of the regression param-
eters below 0.05, for the spatial effects the autocorrelations are below 0.05 at a
lag of 5 in the Poisson and ZIP models and a lag of about 10 in the NB model.
The estimated posterior means and 90% credible intervals for the regression
parameters are reported in Table 1 for all models. Estimation of the intercept
slightly differs between the models and also changes when spatial effects are
added, especially for the Poisson and ZIP models where large spatial effects are
observed, see below. Estimation of the state effects is rather similar in all mod-
els. For a comparison of the estimated overdispersion in the different models,
we consider the estimated dispersion factors ϕi (see Sect. 2) for the NB, GP, ZIP
and ZIGP regression models. In particular, we compute the mean, minimum,
maximum value and quantiles of the estimated posterior means ϕ̂i := 1

R

∑R
j=1 ϕ̂

j
i

of the dispersion factors in each model, where ϕ̂j
i denotes the jth MCMC iterate

for ϕi after burnin. The results are reported in Table 2. Note, that the dispersion
factor in the GP regression model is the same for all observations, whereas it
depends on the parameter µi and therefore is different for each observation in
the other models. Except for the ZIP model, all models exhibit a substantial
degree of overdispersion with respect to the Poisson model, regardless whether
spatial effects are included or not. In the non spatial NB model the average of

Table 1 Posterior means and 90% credible intervals for the regression parameters
(β1, . . . ,β4: effects for the states Nordrhein-Westfalen, Mecklenburg-Vorpommern, Sachsen-
Anhalt and Thüringen, respectively) in the different models for the meningococcal disease data

β̂0 β̂1 β̂2 β̂3 β̂4

No spatial effects
Poi −0.17 0.43 0.65 0.56 0.56

(−0.26, −0.09) (0.30, 0.57) (0.28, 1.02) (0.23, 0.87) (0.22, 0.88)
NB −0.15 0.42 0.67 0.54 0.48

(−0.25, −0.04) (0.23, 0.60) (0.23, 1.10) (0.16, 0.91) (0.09, 0.85)
GP −0.16 0.42 0.65 0.45 0.50

(−0.26, −0.06) (0.26, 0.58) (0.22, 1.06) (0.05, 0.84) (0.09, 0.88)
ZIP −0.13 0.43 0.69 0.60 0.59

(−0.23, −0.03) (0.27, 0.59) (0.29, 1.08) (0.25, 0.94) (0.24, 0.95)
ZIGP −0.15 0.42 0.67 0.47 0.52

(−0.26, −0.04) (0.23, 0.61) (0.22, 1.09) (0.05, 0.87) (0.09, 0.92)
With spatial effects
Poi −0.25 0.40 0.68 0.58 0.47

(−0.38, −0.14) (0.18, 0.61) (0.21, 1.13) (0.19, 0.97) (0.06, 0.86)
NB −0.18 0.41 0.68 0.55 0.48

(−0.29, −0.06) (0.20, 0.61) (0.23, 1.21) (0.17, 0.93) (0.08, 0.87)
GP −0.16 0.42 0.65 0.45 0.50

(−0.26, −0.06) (0.25, 0.58) (0.21, 1.06) (0.04, 0.84) (0.09, 0.88)
ZIP −0.23 0.39 0.68 0.60 0.49

(−0.36, −0.10) (0.16, 0.63) (0.22, 1.14) (0.19, 0.99) (0.07, 0.90)
ZIGP −0.15 0.42 0.66 0.48 0.52

(−0.26, −0.04) (0.23, 0.61) (0.22, 1.09) (0.06, 0.88) (0.10, 0.92)
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Table 2 Estimated posterior means for the model specific dispersion parameters in the considered
models with and without spatial effects, with the 2.5% and 97.5% quantiles given in brackets

ϕ̂i
Parameter γ Mean mean

(2.5%, 97.5%) Min 25% 50% 75% Max

r in NB Yes 6.433 1.293
(2.483, 22.552) 1.051 1.150 1.205 1.313 5.358

No 3.836 1.396
(2.202, 6.864) 1.064 1.200 1.273 1.428 7.053

λ in GP Yes 0.162
(0.098, 0.231)

1.432

No 0.163
(0.098, 0.232)

1.435

p in ZIP Yes 0.029 1.041
(0.001, 0.087) 1.007 1.020 1.028 1.044 1.536

No 0.056 1.081
(0.006, 0.125) 1.013 1.041 1.056 1.089 2.226

p in ZIGP Yes 0.019
(0.001, 0.064) 1.434

λ in ZIGP Yes 0.155 1.412 1.421 1.426 1.436 1.819
(0.088, 0.224)

p in ZIGP No 0.019
(0.001, 0.063) 1.440

λ in ZIGP No 0.157 1.417 1.427 1.432 1.442 1.826
(0.090, 0.227)

Further the mean (upper row), range and quantiles (lower row) of the estimated posterior means
of the dispersion factors ϕ̂i are given

the estimated posterior means of the dispersion parameter is given by 1.396 and
drops to 1.293 when spatial effects are included. The dispersion parameter in
the GP model is estimated by 1.435, results are hardly affected by the inclusion
of spatial effects. The extension from a GP to a ZIGP model has almost no
impact on the estimation of λ and the average dispersion parameter ϕi, the
proportion of extra zeros p is estimated very close to zero. The proportion of
extras zeros p is estimated as 5.6% in the non spatial and 2.9% in the spatial
ZIP model. According to the large 95% credible interval for p however, no
significant degree of zero inflation seems to be present. Unobserved heteroge-
neity still present in the data after adjusting for covariates is captured better by
the GP and NB model, whereas the assumption of extra zeros is obviously not
appropriate for this data. The range of the estimated spatial effects is reported
in Table 3. The largest spatial effects are obtained for the Poisson model where
unexplained heterogeneity in the data is captured by the spatial effects alone.
Results for the ZIP model are very close to the Poisson model which is to be
expected, since no significant proportion of extra zeros was detected. In the NB
model the range of the spatial effects is considerably smaller, however, part of
the data variability in the NB model is explained by spatial effects as well rather
than the parameter r alone. This is in contrast to the GP and ZIGP model,
where the estimated spatial effects are all very close to zero. Overdispersion in
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these models is captured by the parameter λ only, resulting in a high estimated
dispersion parameter.

The map plot of the estimated posterior means of the spatial effects in the
Poisson model, given in Fig. 2 roughly represents the spatial pattern of the
observed relative risk in each region yi

ti
, i = 1, . . . , n which is plotted in the

upper row in Fig. 3. The estimated posterior mean and median of the spatial
hyperparameter ψ in the Poisson model, see Table 3 are rather small, the lower
bound of the 95% credible interval is close to zero, indicating that the overall
degree of spatial dependence is very small. This is reflected in the estimated
spatial pattern which is not particularly smooth. Only some rather isolated
regions, which are marked in black in the right map in Fig. 2, have a significant
positive spatial effect according to the 80% credible intervals. In these regions
the observed number of invasive meningococcal disease cases was rather high
and most of them do not lie within the four states included as covariates, see
Fig. 3. Therefore without spatial effects the risk in these regions is not modelled
sufficiently. To investigate further that the degree of spatial smoothing is small,
we conducted a nonstructured spatial analysis of the Poisson model by allow-
ing for uncorrelated random effects for each region. Resulting posterior means
and 80% credible intervals for the random effects are very similar to the maps
shown in Fig. 2, thus confirming that the spatial effects capture unstructured
heterogeneity effects. In addition, the DIC, Brier and logarithmic scores are
similar to the ones reported in Tables 4 and 5 of the spatial Poisson model, thus
resulting in a similar fit.

The estimated posterior means of the relative risk µi/ti are plotted for the
non-spatial and spatial Poisson model in the lower row of Fig. 3. In the non-

-0.39 1.05 0 1

Fig. 2 Maps of the estimated posterior means (left) and 80% credible intervals (white 0 included
in credible interval, black strictly negative credible interval) of the spatial effects in the Poisson
regression model for the Meningococcal disease data



Modelling count data with overdispersion and spatial effects 547

<0.5 >1.9

<0.5 >1.9 <0.5 >1.9

Fig. 3 Maps of the observed relative risk yi/ti (upper row) and the estimated posterior means of
the risk µi/ti in the non-spatial (lower row, left) and spatial (lower row, right) Poisson regression
model for the meningococcal disease data

spatial Poisson model geographic differences are modelled by four state indi-
cators only. Since the risk in two of the states, which are neighbours, is about
the same, visually only three states can be distinguished in this plot. Note, that
for a better visual comparison we have built seven classes for the relative risk,
in particular, risks greater than 1.9 (the 80% percentile of the observed relative
risks) are summarized in one class. When spatial random effects are included,
the effects of the four risky states are still clearly visible, however the true spa-
tial pattern is reflected more accurately. Though the estimated spatial pattern is
smoother than the true one, in general regions with high or low risk are detected
reasonable well.
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Table 3 Range of estimated posterior means of the spatial effects as well as estimated posterior
means, medians and 95% credible intervals given in brackets for the spatial hyperparameters in the
considered models for the meningococcal disease data

Model (minj γ̂j maxj γ̂j) ψ̂ σ̂ 2

Mean Median Mean Median

Poisson (−0.383, 1.059) 0.394 0.207 0.541 0.422
(0.011, 0.431) (0.149, 0.615)

NB (−0.151, 0.345) 1.223 0.588 0.227 0.140
(0.015, 1.352) (0.012, 0.281)

GP (−0.009, 0.020) 2.604 1.194 0.012 0.005
(0.038, 2.199) (0.001, 0.011)

ZIP (−0.371, 0.998) 0.329 0.235 0.477 0.417
(0.013, 0.397) (0.169, 0.529)

ZIGP (−0.011, 0.019) 1.739 1.154 0.018 0.011
(0.044, 1.905) (0.001, 0.027)

Table 4 DIC, E[D(θ |y)] and
effective number of
parameters pD for the
different models

Model γ DIC E[D(θ |y)] pD

Poisson No 1291.8 1286.8 5.04
NB No 1273.9 1267.8 6.10
GP No 1265.6 1259.6 6.01
ZIP No 1291.8 1285.9 5.96
ZIGP No 1267.8 1261.5 6.35
Poisson Yes 1248.7 1159.1 89.56
NB Yes 1270.8 1240.0 30.74
GP Yes 1265.7 1258.3 7.32
ZIP Yes 1255.4 1175.1 80.31
ZIGP Yes 1267.6 1260.2 8.28

6.3 Model comparison using DIC

In order to compare the presented models the DIC, reviewed in Sect. 5.1, is
considered. In Table 4, the DIC, the posterior mean of the deviance and the
effective number of parameters are given for each model. Only in the Poisson

Table 5 Brier score and
logarithmic score for the
considered models with and
without spatial effects

Model γ Brier score Logarithmic score

Poisson No −0.6937 −1.4569
NB No −0.6883 −1.4363
GP No −0.6873 −1.4272
ZIP No −0.6921 −1.4549
ZIGP No −0.6878 −1.4291

Poisson Yes −0.6280 −1.2422
NB Yes −0.6717 −1.3779
GP Yes −0.6863 −1.4243
ZIP Yes −0.6481 −1.3251
ZIGP Yes −0.6900 −1.4529
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regression case a well defined normalizing constant f (y) (see Sect. 5.1) exists,
while in all other models the likelihood of the saturated model depends on the
unknown overdispersion parameters. Therefore we make the choice of setting
the normalizing function f (y) to 0. Consequently E[D(θ |y)] is based only on the
unscaled deviance which cannot be directly interpreted as an overall goodness
of fit measure of one specific model. However similar to likelihood ratio tests,
E[D(θ |y)] can be used for comparing the model fit of several models when the
complexity of the models, measured by the number of parameters, is the same.

For the non spatial models the lowest value of the DIC is obtained for the
GP model, while the DIC for the Poisson and the ZIP model takes the highest
value. Hence, according to the DIC the GP model is considered best among the
non spatial models, while the Poisson and ZIP model clearly perform worse.
The effective number of parameters pD is close to the true number of parame-
ters which is five for the Poisson regression model, six for the NB, GP and ZIP
regression models and seven for the ZIGP regression model.

When spatial effects are added, the posterior mean of the deviance and the
number of effective parameters in the GP and ZIGP models hardly change. As
mentioned in the previous section already, spatial effects are not significant in
these models, i.e. after adjusting for covariate information, there is no further
spatial heterogeneity in the data which might be captured by the spatial effects.
Instead any overdispersion present in the data seems to be sufficiently captured
by the model specific dispersion parameter. The DIC for the spatial NB model
is slightly better than for the non spatial one, hence spatial effects somewhat
improve the model. However, the spatial pattern is rather smooth as can be seen
from the effective number of parameters estimated by 30.74. For the Poisson
and ZIP regression model in contrast, a significant drop in the DIC is observed
when spatial effects are taken into account. This shows that there is some extra
variability in the data which is not sufficiently explained by the covariates only
in these models. Since the Poisson model does not allow for overdispersion
and the heterogeneity is not of a zero inflated nature, for these two models
the unexplained variability is covered by the spatial effects. According to the
DIC the spatial Poisson model gives the best fit and is to be preferred to a non
spatial GP model. Note, that the DIC must be used with care here, since strictly
speaking the DIC is defined for distributions of the exponential family only,
see van der Linde (2005). However, as noted earlier, the posterior mean of the
deviance E[D(θ |y)] can also be taken into account for comparing the model fit
of the non spatial models, since the number of parameters in these nonspatial
models are similar. This leads to the same ranking of the models as based on
the DIC.

6.4 Model checking using proper scoring rules

Apart from the DIC we also compute the Brier score and the logarithmic score
presented in Sect. 5.2 for each model, results are reported in Table 5. These
scores are based on the posterior predictive probabilities and the true observed
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number of cases. It should be kept in mind that the same data are used both
for parameter estimation and for computation of the posterior predictive prob-
abilities. However, as already indicated in Sect. 5.2 the use of training data
sets is difficult here, since our data set is very small. The results support the
conclusions drawn in the previous section. For the non spatial models the GP
regression model fits the heterogeneity in the data best, followed by the ZIGP
and NB regression model. The use of a non spatial ZIP regression model does
not seem to be appropriate, the gain in comparison to the non spatial Poisson
model for which the lowest scores are obtained is very small. The scores for the
GP and the ZIGP model hardly change by allowing for spatial effects, indicating
that the model specific dispersion parameters capture the data heterogeneity
well. Again a small improvement in the NB model is observed when spatial
effects are included. The scores for the spatial Poisson and ZIP model however,
are considerably smaller than for the other models. This confirms again, that
there is significant evidence that heterogeneity effects vary spatially and that
structured or unstructured spatial Poisson models give the best fit to the data.

7 Conclusions

We have presented several regression models for count data allowing for overdi-
spersion. Overdispersion is either modelled by the introduction of an additional
parameter as in the NB and GP model, by allowing for an extra proportion of
zero observations using zero inflated models or by combining zero inflated
models with overdispersed distributions.

Further, additionally spatial random effects are included in the models in
order to account for unobserved spatial heterogeneity in the data. This approach
allows for spatial correlations between observations.

These models were applied to analyse the number of invasive meningococ-
cal disease cases in Germany in the year 2004. The DIC, the Brier and the
logarithmic score were used for model comparison. The models allowing for
overdispersion gave a significantly better fit than an ordinary non spatial Pois-
son regression model. Among these non spatial models, the GP model fitted
the data best, while the overdispersion present did not seem to be caused by
the presence of extra zeros in the data. For the GP and the ZIGP model the
inclusion of spatial effects did not improve the models, in the NB model still
some significant spatial variation was detected. For the Poisson model which
does not allow for overdispersion and the ZIP model which is not modelling
the nature of the overdispersion appropriately, the inclusion of spatial effects
led to a significant improvement. According to the considered criteria the spa-
tial Poisson model is to be preferred to all other models. But we would like to
note that the spatial model fitted shows no smooth surface structure, it rather
indicates isolated specific regions where the covariates provide no adequate fit.
This might indicate that the occurrence of invasive meningococcal disease has
only a weak spatial component and is mostly sporadic over regions.
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Instead of analysing the number of cases of invasive meningococcal disease
for one year only, it might be interesting to include data over several years in the
analysis. Space–time interactions could be included in order to examine whether
the spatial pattern changed over the years. This is the topic of future research.
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