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Abstract It is frequent to encounter a time series of counts which are small
in value and show a trend having relatively large fluctuation. To handle such
a non-stationary integer-valued time series with a large dispersion, we intro-
duce a new process called integer-valued autoregressive process of order p with
signed binomial thinning (INARS(p)). This INARS(p) uniquely exists and is
stationary under the same stationary condition as in the AR(p) process. We
provide the properties of the INARS(p) as well as the asymptotic normality of
the estimates of the model parameters. This new process includes previous inte-
ger-valued autoregressive processes as special cases. To preserve integer-valued
nature of the INARS(p) and to avoid difficulty in deriving the distributional
properties of the forecasts, we propose a bootstrap approach for deriving fore-
casts and confidence intervals. We apply the INARS(p) to the frequency of
new patients diagnosed with acquired immunodeficiency syndrome (AIDS) in
Baltimore, Maryland, U.S. during the period of 108 months from January 1993
to December 2001.
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1 Introduction

In most cases, the data for the time series of counts exhibits dependency on past
observations that must be appropriately modeled. For this type of non-station-
ary integer-valued time series, the usual real-valued ARIMA model has been
used in many applications (Waiter et al. 1991; Anderson and Grenfell 1984;
Zaidi et al. 1989). However, the ARIMA model may be inappropriate in the
case of a rare disease. For example, the frequency of new patients per month
diagnosed with acquired immunodeficiency syndrome (AIDS) in Baltimore are
below 20 after 1997 and fading away thereafter.

For a time series of count data, integer-valued analogues of the stationary
ARMA models have been suggested (McKenzie 1986; Al-Osh and Alzaid 1987;
Alzaid and Al-Osh 1990; Jin-Guan and Yuan 1991; Aly and Bouzar 1994; Park
and Oh 1997; McCormick and Park 1997). These stationary integer-valued time
series models possess many features in common with the standard ARMA
models. Both can express their processes in the form of difference equations
and share a common behavior in their time correlations. A primary difference
between them is that the integer-valued time series model uses a binomial thin-
ning operator in place of the multiplication done in the standard ARMA model.
However, these integer-valued analogues are no longer valid for integer-valued
time series with a time trend.

Quasi-likelihood methods are especially useful for analysis of overdispersed
count data (Zeger and Qaqish 1988; McCullagh and Nelder 1989; Breslow 1990).
They defined separate mean and variance functions to avoid the overdisper-
sion problem, in which the empirical variance is greater than the theoretical
variance. The mean function usually includes lagged values of responses to
reflect the dependency of the response on its past and covariates to incor-
porate the general trend of the response variable. The variance function is
expressed as multiplication of the mean function and a constant dispersion
parameter to better fit the empirical variance. However, the constant disper-
sion parameter is often not large enough to describe the variability of count
data such as the variability of the AIDS data in Baltimore (see Sect. 5 for
details). This constant dispersion parameter has been relaxed by allowing the
dispersion parameter varying across observations through a regression model
(Dey et al. 1997; Cordeiro and Botter 2001). However, their methods may
not be directly applied to our time series since they assumed independent
observations.

We introduce a new operator called a signed binomial thinning to develop
a new integer-valued time series model for handling an overdispersed and
non-stationary integer-valued time series. We call this model integer-valued
autoregressive model of order p with signed binomial thinning (INARS(p)),
which can remove the time trend and seasonality by using the differencing
operator in the same way as the familiar continuous ARIMA model does. One
advantage of the INARS(p) is that it can handle negative integer-valued time
series, whereas the previous integer-valued time series models are only appli-
cable to nonnegative integer-valued time series. The INARS model also allows
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negative autocorrelations of the general pth order to an integer-valued time
series, whereas the previous integer-valued time series model can only work
with positive autocorrelations.

The previous integer-valued autoregressive models with order p (INAR(p))
have been considered, among other things, by Alzaid and Al-Osh (1990) and
Jin-Guan and Yuan (1991). They are different in autocorrelation structure and
conditional mean function. The INARS(p) persists these differences.

The most commonly used technique in constructing forecasts in time series
model is conditional expectations. However, this method lacks data coherency
when the time series is integer valued. To meet this integer valued nature of data,
the median was used as a forecast of an INAR(1) model (Freeland and McCabe
2004) and bootstrapping approaches have been suggested for INAR(p) models
(Cardinal et al. 1999; Jung and Tremayne 2006). There are several bootstrap
alternatives in the literature to construct prediction intervals for real-valued
autoregressive models of order p (AR(p)). Findley (1986), Masarotto (1990),
and Grigoletto (1998) used bootstrap methods to estimate the density of the
forecast errors including uncertainty due to parameter estimation. Thombs and
Schucany (1990) used the backward representation of AR(p) models to gener-
ate bootstrap series with a known p. Recently, Pascual et al. (2004) proposed
a bootstrap method which incorporates the variability arising from parameter
estimation into forecast intervals without requiring the backward representa-
tion of the process. We modify the bootstrap method of Pascual et al. (2004)
to preserve the integer-valued nature of data for forecasts and their confidence
intervals.

The rest of this paper is divided into six sections. In Sect. 2, we investi-
gate the autocorrelation structure and conditional expectation of INARS(2)
models under two different model assumptions. Then we show the stationa-
rity and ergodicity of the INARS(p) process under the same condition as
the previous INAR(p). In Sect. 3, the strong consistency of moment esti-
mators and asymptotic normality of the conditional least squares estimators
are shown. Section 4 includes a bootstrap approach to preserve the inte-
ger-valued nature of count data. In Sect. 5, the INARS(p) model is applied
to the AIDS cases in Baltimore from January 1993 to December 2001. The
INARS(p) model is compared with the usual AR(p) model and the quasi-like-
lihood model of Zeger and Qaqish (1988). Section 6 includes some concluding
remarks.

2 Integer-valued autoregressive process with signed binomial thinning

Differencing, a method commonly used to remove the time trend and seasonal-
ity from a time series, is adopted for a non-stationary integer-valued time series.
By the same notation as used in the usual ARIMA process, {∇d∇D

s Xt} is defined
as the differenced series of Xt where ∇Xt = Xt − Xt−1, ∇sXt = Xt − Xt−s, and
d and D indicate the repeated times of ∇Xt and ∇sXt, respectively.
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Fig. 1 Fitted values and confidence intervals using a Quasi-likelihood model and b INARS(5)

Hereafter, we denote ∇d∇D
s Xt by yt for simple notation. This differenced

series is still integer-valued but can be negative-valued. When a time series
linearly decreases as illustrated in Fig. 1 for AIDS, the differenced series Xt −
Xt−1 is much smaller than the original series Xt. This implies that when AR-
IMA model is fit to such a differenced time series, its goodness-of-fit worsens.
The differenced time series can not fit to the previous INAR(p)-type of models,
because the INAR(p) model applies only to a non-negative valued-time series.

To model this differenced time series with an integer-valued time series pro-
cess, we introduce a new operator represented by � and call it the “signed
binomial thinning" operator. This new operator is an extension of the previ-
ous binomial thinning as shown below. Let {wtj(α)} be i.i.d. Bernoulli random
variables with P(wtj(α) = 1) = |α| for each given t. Define sgn(x) = 1 if x ≥ 0
and sgn(x) = −1 if x < 0. Using this notation, the signed binomial thinning is
formally defined as

α � yt ≡ sgn(α)sgn(yt)

|yt|∑

j=1

wtj(α), (1)

where the subscript t in wtj(α) describes the observed time of process yt. For
simple notation, the subscripts t and α are dropped from wtj(α) if no confusion
arises. When yt ≥ 0 and α ≥ 0, the signed binomial thinning is reduced to the
binomial thinning denoted by α ◦ yt = ∑yt

j=1 wj.
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2.1 INARS(2) model

Before getting into a generalized INAR(p)-type of models using the signed
binomial thinning, we first consider, so-called, integer-valued autoregressive
model of order 2 with signed binomial thinning (INARS(2)) to illustrate its con-
nection to the two types of the previous INAR(2) models presented by Alzaid
and Al-Osh (1990) and Jin-Guan and Yuan (1991). The INARS(2) model is
given by

yt = α1 � yt−1 + α2 � yt−2 + εt (2)

where {εt} is a sequence of i.i.d. integer-valued random variables with mean µε

and variance σ 2
ε and 0 ≤ |α1|, |α2| ≤ 1.

When yt ≥ 0 and εt ≥ 0 for all t and α1 and α2 are also non-negative, the
INARS(2) of (2) becomes INAR(2) expressed by

yt = α1 ◦ yt−1 + α2 ◦ yt−2 + εt.

In this INAR(2) model, Alzaid and Al-Osh (1991) assumed that the con-
ditional distribution of (α1 ◦ yt, α2 ◦ yt) given yt is multinomial with param-
eter (α1, α2, yt) and is independent of the past history of the process. These
assumptions can be likewise adopted in the INARS(2) model after a slight

modification:
(∑|yt|

j=1 wj(α1),
∑|yt|

j=1 wj(α2)
)

given yt is multinomial with parame-

ter (|α1|, |α2|, |yt|) where |α1| + |α2| ≤ 1 and is independent of the past history
of the process. Then, we have the following results.

Proposition 1 When yt is a stationary INARS(2) process with the Alzaid and
Al-Osh type of assumptions described above, the covariance functions are

γ (1) = α1γ (0) + α1α2(γ (0) − E|yt|)
1 − α2

and γ (k) = α1γ (k − 1) + α2γ (k − 2),

where k ≥ 2 and γ (l) = cov(yt, yt−l) for l = 0, 1, . . ..

The proof and all subsequent theoretical proofs are provided in the Appen-
dix. These covariance are the typical forms of those from a continuous
ARMA(2,1) and are the same as those of INAR(2) model of Alzaid and Al-Osh
(1990). Generally, we can show that INARS(p)’s covariance function behaves
like those of ARMA(p, p − 1) under Alzaid and Al-Osh’s assumptions as the
covariance function of their INAR(p) behaves like those of ARMA(p, p − 1).
Moreover, the conditional expectation of E(yt|yt−1, yt−2) in INARS(2) is not
necessarily linear in yt−1 and yt−2 because the INAR(2) of Alzaid and Al-Osh
(1990) has been shown to be non-linear and is a special case of INARS(2).

On the other hand, Jin-Guan and Yuan (1991) assumed that the counting
series wtj(α)’s in the binomial thinning α ◦ yt = ∑yt

j=1 wtj(α) are not only i.i.d.
but also are independent of yt. Thus, α1 ◦ yt and α2 ◦ yt′ are conditionally
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independent given in yt and yt′ as long as their counting series are not the
same. Likewise, when we impose these Jin-Guan and Yuan’s assumptions on
the signed binomial thinning in defining the INARS(2) model, we have the
following covariance function and basic properties of signed binomial thinning
operator.

Proposition 2 When yt is a stationary INARS(2) with the assumptions of
Jin-Guan and Yuan (1991),

1. γ (1) = α1γ (0) + α2γ (1) and γ (k) = α1γ (k − 1) + α2γ (k − 2) for k ≥ 2
2. for integer-valued two random variables y1t and y2t which have the same sign

and the same counting series, E|α � y1t − α � y2t| = |α|E(|y1t − y2t|) and
E(α � y1t − α � y2t)

2 = α2E(y1t − y2t)
2 + |α|(1 − |α|)E(|y1t − y2t|).

The stationarity mentioned in Proposition 2 is not pre-requisite for the
second property (2) but this property will be used to show the stationarity of
INARS(p) in Sect. 2.2. The covariance function described in (1) of
Proposition 2 is the same as those of both the continuous AR(2) and the
Jin-Guan and Yuan’s INAR(2) model. Moreover, the conditional indepen-
dence of α1 � yt and α2 � yt′ given yt and yt′ also implies that the conditional
expectation E(yt|yt−1, yt−2) is a linear function of yt−1 and yt−2 in INARS(2)
(i.e., E(yt|yt−1, yt−2) = α1yt−1 + α2yt−2 + µε).

Based on above discussion on the connection between INARS(2) and two
types of the INAR(2) models, we can conclude that the INARS(p) under Alzaid
and Al-Osh’s (1990) assumption is different from that under Jin-Guan and
Yuan’s (1991) assumption. In particular, as discussed in Alzaid and Al-Osh
(1990), the conditional expectation of yt given past information in INAR(p)
model is non-linear and is extremely complex. Thus, the conditional expecta-
tion in INARS(p) under Alzaid and Al-Osh assumptions must be even more
complex. Accordingly estimating parameters and forecasting future values may
be intractable. For these reasons, from now on, we focus only on INARS(p)
under Jin-Guan and Yuan’s assumptions.

2.2 INARS(p) model

Using the signed binomial thinning operator, we are now able to define a new
process for an integer-valued time series model which allows negative integer-
valued and negative correlated time series.

yt =
p∑

i=1

αi � yt−i + εt, t = 0 ± 1, ±2, . . . (3)

where the signed binomial thinning operator � is given in (1), {εt} is a sequence
of i.i.d. integer-valued random variables with mean µε , and variance σ 2

ε , 0 ≤
|αi| ≤ 1 for i = 1, . . . , p. The {εt} are uncorrelated with yt−i for i ≥ 1 and count-
ing series wtj(α) in signed binomial thinning α � yt = ∑yt

j=1 wtj(α) are i.i.d. and
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independent of yt. Because the new process uses a signed binomial thinning, we
call the model given in (3) an integer-valued autoregressive process of order p
with signed binomial thinning (INARS(p)).

To show that the INARS(p) process is stationary and ergodic, we follow a
similar approach as that of Jin-Guan and Yuan (1991). Define

yn,t =
⎧
⎨

⎩

0, n < 0
εt, n = 0

α1 � yn−1,t−1 + · · · αp � yn−p,t−p + εt, n > 0
(4)

where Cov(yn,t′ , εt) = 0 when t′ < t for any n, and the signs of yn,t and yn′,t′
are the same when t = t′ for any n and n′. Then, using Proposition 2, we can
construct a INARS(p) process from yn,t as shown below.

Theorem 1 Suppose that all roots of the polynomial λp −α1λ
p−1 −· · ·−αp−1λ−

αp = 0 are inside the unit circle. Then, the process yt in L2 space uniquely satisfies

yt =
p∑

i=1

αi � yt−i + εt, t = 0 ± 1, ±2, . . . (5)

where yt = limn→∞ yn,t and Cov(yt′ , εt) = 0 for t′ < t. Furthermore, this process
yt is stationary and ergodic.

Note that the condition of Theorem 1 is the same stationary condition as that
for the usual ARMA model.

3 Estimation

The ergodicity and stationarity of the INARS(p) process for yt ensure that,
using Durrett’s (1991) approach,

1
n

n∑

t=1

yt
a.s−→ E(yt),

1
n

n∑

t=1

|yt| a.s−→ E(|yt|),

and
1
n

n∑

t=1

ytyt−k
a.s−→ E(ytyt−k) for k = 0, 1, 2, . . . . (6)

Let α̂i (i = 1, 2, . . . , p) be the estimator satisfying

γ̂k = α̂1γ̂k−1 + · · · + α̂iγ̂k−i + · · · + α̂pγ̂k−p

where γ̂k = γ̂−k and γ̂k = (1/(n − k))
∑n−k

t=1 (yt − ȳ)(yt−k − ȳ). Using α̂i,
define σ̂ 2

ε = (1/n)
∑n

t=1(ε̂t − ε̄n)2 +(1/n)
∑n

t=1 |yt| · ∑p
i=1 |α̂i|(1 − |α̂i|) and

ε̄n = (1/n)
∑n

t=1 ε̂t where ε̂t = yt − α̂1yt−1 − · · · − α̂pyt−p. Then, by (6), we
have the following results.
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Lemma 1 Let σ 2
ε = Var(εt) and µε = E(εt). Then, α̂i, σ̂ 2

ε , and ε̄n are strong
consistent estimators of respective parameters αi, σ 2

ε , and µε .

When we assume a conventional AR(p) model, the consistent estimator of
σ 2

ε given in Lemma 1 becomes (1/n)
∑n

t=1(ε̂t − ε̄n)2. Thus, the additional term
(1/n)

∑n
t=1 |yt| · ∑p

i=1 |α̂i|(1 − |α̂i|) in the consistent estimator of σ 2
ε also dis-

tinguish the INARS(p) from the AR(p). Let F t be a sigma-field generated by
{y1, . . . , yt}. Then, by the definition of signed binomial thinning, we have

E(yt|Ft−1) = µε +
p∑

i=1

αiyt−i

and Var(yt|Ft−1) =
p∑

i=1

|αi|(1 − |αi|)|yt−i| + σ 2
ε , (7)

implying the same conditional expectation but different conditional variance
compared to those of the continuous AR(p) model. Thus, the confidence inter-
val for the one-ahead best predictor (i.e., the conditional expectation given in
(7)) is wider in the INARS(p) than the AR(p). Moreover, since the variance
of INARS(p) model is varying over time t, the INARS(p) is an autoregressive
conditional heteroscedasticity model. These differences also produce asymp-
totic variances different from those of the usual AR(p) shown in the following
asymptotic result.

Let ξ = (µε , α1, α2, . . . , αp). Then, the conditional least squares estimators
(CLS) for ξ can be obtained by minimizing

Qn(ξ) =
n∑

t=p+1

[yt − E(yt|Ft−1)]2. (8)

It can be seen that all regularity conditions proposed by Klimko and Nelson
(1978) are satisfied to give the following asymptotic normality.

Theorem 2 Let ξ̂
LS
n be the CLS minimizing (8). Then, if Eε4

t < ∞, we have

√
n

(
ξ̂

LS
n − ξ

)
d→ N(0, V−1WV−1)

where

V =
[
E

(∂E(yp+1|Fp)

∂ξi

∂E(yp+1|Fp)

∂ξj

)]
,

W = E
[
A2

p(ξ)
∂E(yp+1|Fp)

∂ξi

∂E(yp+1|Fp)

∂ξj

]
,

and Ap(ξ) = yp+1 − E(yp+1|Fp).
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Table 1 Mean-squared errors for α1, α2, and λ in yt = α1 �yt−1 +α2 �yt−2 +εt where α2 = −0.3,
εt ∼ Poisson(λ) with λ = 1 (the numbers in parentheses are biases)

Sample α1 MSE Sample α1 MSE

size α1 α2 λ size α1 α2 λ

−0.7 0.019 0.019 0.041 −0.7 0.010 0.010 0.022
(−0.002) (0.012) (−0.005) (−0.001) (0.011) (−0.001)

50 −0.3 0.023 0.021 0.045 100 −0.3 0.011 0.009 0.021
(−0.001) (0.010) (−0.005) (0.005) (0.006) (−0.016)

0.3 0.024 0.021 0.065 0.3 0.010 0.010 0.028
(0.026) (0.017) (−0.036) (0.010) (0.005) (−0.015)

0.7 0.024 0.021 0.081 0.7 0.011 0.009 0.035
(0.025) (0.024) (−0.072) (0.017) (0.005) (−0.030)

Observe that

E(α � yt+k|Ft) = αyt+k for k ≤ 0 and

E(α � yt+k|Ft) = E
(
E(α � yt+k|Ft+k)

∣∣Ft
) = αE(yt+k|Ft) for k ≥ 1.

Thus, the conditional expectation of α � yt+k given Ft is

E(α � yt+k|Ft) = αE(yt+k|Ft).

This implies that the conditional expectation of yt+k which follows a INARS(p)
process is the same as that of the usual AR(p) process:

E(yt+k|Ft) =
p∑

i=1

αiE(yt+k−i|Ft) + µε . (9)

Hence, this E(yt+k|Ft) is the minimum variance predictor of yt+k conditioned
on Ft and obtained by recursion as the usual AR(p).

We perform Monte Carlo simulations to explore how well the CLS works.
Simulated samples are obtained from an INARS(2) process with α1 = −0.7,
−0.3, 0.3, and 0.7 but with fixing α2 = −0.3 because other values of α2 yield
a similar pattern as that in Table 1. We generate εt from Poisson with mean 1.
Although MSE and bias of λ slightly increase as α1 increases, based on MSEs
presented in Table 1, the CLS estimates are reliable for both sample sizes,
T = 50, 100.

4 Bootstrap approach

The detection of unusual high incidence in AIDS is of importance for a preven-
tion planning. Since forecasts of a time series are obtained under the assumption
that the current conditions and patterns hold in the future time, forecasts and
their confidence intervals are useful information to develop a statistical strategy
for public health officials to detect an unusual occurrence of AIDS.
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The most common procedure for constructing forecasts in time series model
is to use the conditional expectations because these conditional expectations
yield forecasts with minimum mean squared error as described in Sect. 3. How-
ever, this method does not preserve the integer-valued nature of the data in
generating forecasts when the time series is integer-valued. Moreover, confi-
dence intervals of forecasts in the INARS(p) model require the distribution
of forecasted errors, which may be impossible to obtain mainly because of the
distributional complexity accrued from the signed binomial thinning operator.

Some bootstrap approaches have been proposed as distribution free alter-
natives to obtain forecasts and their confidence intervals. Among others, we
employ the bootstrap method proposed by Pascual et al. (2004) after some
modifications to incorporate the nature of interger-valued time series as the
following five steps. Since we analyze the AIDS data given in Fig. 1, we use
yt = Xt − Xt−1 where Xt is a nonnegative integer valued original series.

Step 1: Compute residuals rt = yt − ∑p
i=1 α̂iyt−i for t = p + 1, . . . , n where n is

the sample size and α̂i’s are the conditional estimates from (8).
Step 2: Construct the empirical distribution for modified residuals r∗

t defined
by r∗

t = [rt] as in Cardinal et al. (1999), where [·] represents the value
rounded to the nearest integer.

Step 3: Draw a i.i.d sample r∗
t from the empirical distribution and define X∗

t
by the recursion: for t = 1, 2, . . . , n

X∗
t = X∗

t−1 +
p∑

i=1

α̂i � y∗
t−i + r∗

t

where X∗
t = 0 if X∗

t < 0 and y∗
t = X∗

t − X∗
t−1.

Step 4: Based on {y∗
2, y∗

3, . . ., y∗
T}, compute the conditional estimates α̂∗

1 , . . . , α̂∗
p.

Step 5: Compute future bootstrap observations by recursion:

X∗
T+h = X∗

T+h−1 +
p∑

i=1

α̂∗
i � y∗

T+h−i + r∗
t

where T denotes the last observation, X∗
t = 0 if X∗

t < 0, and y∗
t = yt

for t ≤ T.

Repeating Steps 3–5 B times, we have a bootstrap distribution function of

X∗
T+h given by F∗

XT+h
(x) = #{X∗b

T+h≤x}
B for b = 1, 2, . . . , B. The (1 −α)100% confi-

dence interval for XT+h is
(
F∗−1

XT+h
(α

2 ), F∗−1
XT+h

(1 − α
2 )

)
. As suggested in Alonso et

al. (2002), we generate INARS(p) resample from Step 3 with sample size equal
to n + 100 and discard the first 100 observations.

Step 2 and the procedure X∗
t = 0 if X∗

t < 0 in Steps 3 and 5 are used to reflect
the data coherency that original series Xt is non-negative integer-valued. The
greatest difference from the previous bootstrap methods for a continuous time
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series model is the signed binomial thinning operator used in Steps 3 and 5,
by which we incorporate the variability caused by the signed binomial thinning
operator into forecasts and confidence intervals. Since the INARS(p) model
includes the disturbance term εt with mean µε which is not necessarily zero, a
centering procedure for r∗

t is not needed in Step 2. This is another difference
from the bootstrap procedure for a conventional ARIMA model.

5 Application

The US Center for Disease Control and Prevention (CDC) releases data involv-
ing statistical information on AIDS. This includes demographic factors, case-
definition, date of diagnosis, and other information for AIDS. Our data analysis
takes the monthly numbers of new patients diagnosed with AIDS in which the
sexual orientation is taken account. We used the information of adult/adoles-
cent homosexual male in Baltimore.

The number of AIDS patients per month shows a clear linear time trend with
the numbers dropping below 20 after January 1997 as shown in Fig. 1. Thus, we
consider yt = Xt − Xt−1 for our data analysis. Since INARS(p) process has the
same autocorrelation structure as the usual continuous AR(p) process from the
proof of Lemma 1, the sample autocorrelation functions can be used to check
for the stationarity of yt and to select an appropriate p in the INARS(p). Using
the sample autocorrelation function of yt = Xt − Xt−1, we temporarily allowed
p to equal 6. Because the variance of the error term in INARS(p) is always
larger than that in the standard AR(p) as shown in Sect. 3, Table 2 shows that
µε and α6 in INARS(6) are not significant from Theorem 2, whereas those in
the standard AR(6) are significant. This means that the use of AR(6) as an
approximation of the INARS(6) may lead to incorrect model specification. It
is worth mentioning that CLS estimation gives the same estimates for both the
standard AR(p) and INARS(p) models and that the difference lies in the asym-
totic expression for the variance as given in Theorem 2. From the data analysis,
the following INARS(5) model is implemented:

Xt =Xt−1−0.816
(0.163)

�yt−1−0.603
(0.202)

�yt−2−0.547
(0.163)

�yt−3−0.535
(0.123)

�yt−4−0.227
(0.087)

�yt−5+εt,

(10)
where the numbers in parentheses are standard errors. All roots of the charac-
teristic equation of (10) are λ = −0.60, −0.49 ± 0.55i, and 0.39 ± 0.74i, indicat-
ing that all roots are inside the unit circle and the INARS(5) is stationary by
Theorem 1. We will further discuss for the final model selection between this
INARS(5) and the INARS(6) provided in Table 3, by comparing mean absolute
errors (MAE) and mean-squared errors (MSE) of their fitted values.

The AIDS data are also used to demonstrate advantages of the INARS(p)
model over the non-normal time series model such as a following quasi-likeli-
hood model introduced by Zeger and Qaqish (1988) with a constant dispersion
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Table 2 Parameter estimates and standard errors

µε α1 α2 α3 α4 α5 α6

Estimates −0.313 −0.885 −0.765 −0.712 −0.717 −0.473 −0.299
Standard error INARS(6) 0.679 0.220 0.212 0.209 0.185 0.177 0.158

AR(6) 0.105 0.096 0.122 0.125 0.125 0.123 0.096

Table 3 MAE and MSE for bootstrap fitted values and mean length of bootstrap 95% confidence
intervals

INARS(5) INARS(6) AR(5) AR(6) Quasi-likelihood

MAE 3.43 3.42 3.63 3.37 3.31
MSE 19.70 19.02 24.08 18.81 21.48
mean length of 95 % C.I 17.11 16.07 16.61 14.63 4.46

parameter.

E(Xt|Ft−1) = µt = exp(β0 + β1t × 10−3)(Xt−1)
α1 · · · (Xt−5)

α5

Var(Xt|Ft−1) = φµt (11)

where the 10−3 is used to maintain consistency of the estimated β1 (Davis and
Dunsmuir 2000) and φ is a dispersion parameter. Using the estimating equation
defined by the two moments given in (11),

log µt = 4.78 − 24.2t × 10−3 − 0.018 log Xt−1 − 0.015 log Xt−2

− 0.088 log Xt−3 − 0.185 log Xt−4 − 0.009 log Xt−5

and φ = 1.339 (12)

where all coefficients of Xt−1 through Xt−5, except the coefficient of Xt−4, are
not significant unlike those in the INARS(5) model.

We use the bootstrap approach described in Section 4 to select our final
model between the INARS(5) and the INARS(6) and to compare INARS
models with the quasi-likelihood model given in (12) and with the standard
AR models which have the same CLS as the corresponding INARS models.
The main reason to use the bootstrap method is to incorporate the integer-
valued nature of the AIDS data and to avoid the difficulty in calculating the
error of forecasts obtained from the INARS models. To produce coherent fit-
ted values or forecasts, we use the median of the bootstrap distribution for the
two INARS models, instead of the conditional expectation of the distribution,
which usually used in the standard ARMA model. For a fair comparison, we
also use bootstrap fitted values obtained by the conditional expectations and
confidence intervals, generated from the AR(5) and the AR(6) models. That
is, under AR(5) or AR(6), we apply the bootstrap procedures of Pascual et al.
(2004) to the AIDS data with the constraint of non-negativeness of Xt.
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Table 3 shows MAE and MSE for bootstrap fitted values and mean lengths of
95% bootstrap confidence intervals for INARS(5), INARS(6), AR(5), AR(6),
and the quasi-likelihood model using the AIDS data from July 1993 to Decem-
ber 2001.

The MAE and MSE of INARS(5) in fitted values are little different from
those of INARS(6). Thus, our final model is the INARS(5) by the parsimony
policy. Contrary to this, when we use AR models as an approximation, the
AR(6) is better than than AR(5) as expected in Table 2 because the coefficient
of lag six α6 of AR(6) model is significant. It is also interesting that MAE and
MSE of INARS(5) are smaller than those of AR(5), which may stem from the
coherent fitted values of INARS(5). Because INARS model has larger variance
than the corresponding AR model as discussed in Sect. 3, the mean lengths of
95% confidence intervals of INARS(5) and INARS(6) are wider than those of
AR(5) and AR(6), respectively.

Table 3 also shows that the MAE of quasi-likelihood model (12) is slightly
smaller than that of INARS(5). However, the mean length of its 95% confi-
dence intervals is too short. As a result, the quasi-likelihood model seriously
underestimates the variance of its fitted values as shown in Fig. 1. The under-
estimated variance by the quasi-likelihood model produces a very narrow con-
fidence interval. Most observations are located outside of the 95% confidence
intervals, implying that the quasi-likelihood model does not overcome the over-
dispersion problem in the AIDS data. On the other hand, the 95% confidence
bounds from the INARS(5) include most observations except three observa-
tions, implying that the INARS(5) is a good alternative model that can be used
to avoid the over-dispersion problem frequently arising from an integer-valued
time series.

Because the time series of the AIDS data is apparently fading away, instead
of forecasting future values, we split the data into two parts: the data from
January 1993 to December 2000 for estimating parameters; and the data from
January 2001 to December 2001 for out-of-sample forecast. Namely, we calcu-
late bootstrap out-of-sample forecasts and their 95% confidence intervals for
12 months from January 2001 to December 2001 by re-estimating INARS(5)
model using AIDS data from January 1993 to December 2000. Table 4 shows
that the 95% confidence intervals contain all observations, implying that any
AIDS incident during the 12 months is not an unusual event. The 95% con-
fidence interval used in this section is, in fact, slightly wider than a true 95%
confidence interval because we are using integers. The MAE of out-of-sample

Table 4 Bootstrap out-of-sample forecasts and 95% confidence intervals for year 2001

Month 1 2 3 4 5 6 7 8 9 10 11 12

Observation 10 3 10 9 5 9 8 3 3 3 2 0
Forecast 5 6 6 5 5 4 4 4 4 4 4 4
95% L95 0 0 0 0 0 0 0 0 0 0 0 0
CI U95 15 15 15 15 15 14 15 15 15 15 15 15
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forecasts is 2.83 which is smaller than that of fitted values (i.e., 3.43 in Table 3),
indicating stable forecasts of the INARS(5) model.

6 Conclusion

We developed a new integer-valued time series model for a non-stationary
time series, and called INARS(p) process, as a counterpart of the usual AR(p)
process. The INARS(p) can deal with negative-valued and negative-correlated
count data unlike the previous integer-valued time series model. We showed
that INRAS(p) process is ergodic and stationary under the same condition as
that of the conventional AR(p) process.

We showed that the conditional expectation in INARS(p) process for fore-
casts is identical to that in AR(p). However, the conditional expectation lacks
data coherency when the time series is integer-valued such as the AIDS data.
To preserve the integer-valued nature of data and to avoid the difficulty in
deriving the distributional properties of the forecasts of INARS(p) model, we
use a bootstrap approach as a distribution free alternative. Through this boot-
strap approach, we showed that INARS(p) model is more appropriate than the
corresponding AR(p) model for the AIDS data. Our data analysis also showed
that the confidence interval under a quasi-likelihood model is too narrow to
include the corresponding observation because of serious underestimation in
the variance of its fitted value. However, confidence intervals by the INARS(p)
include most of observations by the property of the INARS(p) process with
the signed binomial thinning. Thus, the INARS(p) is a good alternative to the
previous models in resolving the over-dispersion for integer-valued time series.

A Appendix: Proof of proposition 1

Since

E(α1 � yt · α2 � yt)

= E
(
sgn(α1)sgn(yt)

|yt|∑

j=1

wj(α1) · sgn(α2)sgn(yt)

|yt|∑

j=1

wj(α2)
)

= α1α2E|yt|(|yt| − 1),

where we used (
∑|yt|

j=1 wj(α1),
∑|yt|

j=1 wj(α2)) ∼ multinomial(|α1|, |α2|, |yt|) condi-
tioning on yt. Thus, since E(α � yt) = αE(yt), we have

cov(α1 � yt, α2 � yt) = α1α2(var(yt) − E|yt|). (13)

Using the conditional independence of α1 �yt and α2 �yt−1 given in yt, we have
E(α1 � yt · α2 � yt−1) = E

(
E(α1 � yt|yt)E(α2 � yt−1|yt)

) = α1E(yt · α2 � yt−1)
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and thus

cov(α1 � yt, α2 � yt−1) = α1cov(yt, α2 � yt−1). (14)

Now, using (13), (14), and stationarity, since cov(yt, α2 � yt−1) = cov(α1 �
yt−1 + α2 � yt−2 + εt, α2 � yt−1) = α1α2(var(yt) − E|yt|) + α2 cov(yt, α2 � yt−1),
we have

cov(yt, α2 � yt−1) = α1α2(γ (0) − E|yt|)
1 − α2

. (15)

Finally, using conditional expectation technique, we have

cov(α � yt, yt−k) = α · cov(yt, yt−k) for k ≥ 0. (16)

From INARS(2) expressed by yt = α1 � yt−1 + α2 � yt−2 + εt, we have

cov(yt, yt−1) = cov(α1 � yt−1, yt−1) + cov(α2 � yt−2, yt−1)

and cov(yt, yt−2) = cov(α1 � yt−1, yt−2) + cov(α2 � yt−2, yt−2). (17)

Plugging (15) and (16) into (17), we have the results.

B Appendix: Proof of proposition 2

1. By conditional independence of α1 � yt and α2 � yt′ given yt and yt′ , for
0 ≤ α1, α2 ≤ 1,

E(α1 � yt · α2 � yt′) = E
(
E(α1 � yt|yt)E(α2 � yt′ |yt′)

)

= α1α2E(ytyt′). (18)

Thus, the covariance function follows.
2. Since y1t and y2t have the same sign and the same counting series,

E|α � y1t − α � y2t| = E|
|y1t|∑

j=1

wj −
|y2t|∑

j=1

wj|. (19)

If |y1t| ≥ |y2t|, (19) equals E
∣∣∣
∑|y1t|

j=|y2t|+1 wj

∣∣∣= E
∣∣∣
∑|y1t|−|y2t|

j=1 wj

∣∣∣= E
∑|y1t|−|y2t|

j=1 wj.

Similarly, if |y2t| ≥ |y1t|, (19) equals E
∑|y2t|−|y1t|

j=1 wj. Hence, we have

E

∣∣∣∣∣∣

|y1t|∑

j=1

wj −
|y2t|∑

j=1

wj

∣∣∣∣∣∣
= E

||y1t|−|y2t||∑

j=1

wj = |α|E(
∣∣|y1t| − |y2t|

∣∣). (20)
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Finally, because y1t and y2t have the same sign,
∣∣|y1t| − |y2t|

∣∣ = ∣∣sgn(y1t)|y1t| −
sgn(y2t)|y2t|

∣∣ = |y1t − y2t|. This shows the first claim. From (20), we have

E(α � y1t − α � y2t)
2 = E

( ∑||y1t|−|y2t||
j=1 wj

)2. Thus, E
(
(
∑||y1t|−|y2t||

j=1 wj)
2
∣∣y1t, y2t

)

= α2(
∣∣|y1t|−|y2t|

∣∣)2+|α|(1−|α|)(∣∣|y1t|−|y2t|
∣∣). The relationship of

∣∣|y1t|−|y2t|
∣∣ =

|y1t − y2t| produces the result.

C Appendix: Proof of theorem 1

Since we let yt = limn→∞yn,t, both yt and yn,t have the same sign for any n. Thus,
by Proposition 2, E(α �yn,t −α �yt)

2 = α2E(yn,t −yt)
2 +|α|(1−|α|)E|yn,t −yt|.

It can be shown by the same approach of Jin-Guan and Yuan (1991) that

yn,t
L2−→ yt. Thus, E(α � yn,t − α � yt)

2 converges to 0 as n → ∞. Thus, the
process {yt} satisfies (5).

For uniqueness of such a process {yt}, suppose that we have another process

{y∗
t } such that yn,t

L2−→ y∗
t . Then, by Hölder inequality, for some constant c and

|λ| < 1,

E|yt − y∗
t | ≤ (

E(yn,t − yt)
2)1/2(E(yn,t − y∗

t )
2)1/2 = cλn.

Thus, E|yt − y∗
t | = 0 which implies yt = y∗

t almost surely. By L2 convergence of
yn,t to yt, limn→n Cov(yn,t′ , εt) = Cov(yt′ , εt). Since Cov(yn,t′ , εt) = 0 for t′ < t,
Cov(yt′ , εt) = 0 for t′ < t.

Since yn,t = 0 for n < 0, recursively solving the Eq. (4), regardless of t, yn,t
can be expressed as a function of εt, εt−1, . . .,εt−n with the same signed binomial
thinning operators which are expressed only by α1, α2, . . ., αp. Hence, the distri-
bution of yn,t depends only on n but not on t. This implies that for each n and T,
(yn,0, yn,1, . . . , yn,T) and (yn,k, yn,1+k, . . . , yn,T+k) have the same distribution for
every k. The L2 convergence of yn,t to yt as n → ∞ means that yn,t converges
to yt in probability. Thus,

∑T
i=0 aiyn,t+i converges to

∑T
i=0 aiyt+i in probability

for all real values of ai’s. This implies by Cramer-Wold device that

(yn,0, yn,1, . . . , yn,T)
d−→ (y0, y1, . . . , yT) and

(yn,k, yn,1+k, . . . , yn,T+k)
d−→ (yk, y1+k, . . . , yT+k). (21)

Since (yn,0, yn,1, . . . , yn,T) and (yn,k, yn,1+k, . . . , yn,T+k) have the same distri-
bution for every k, (y0, y1, . . . , yT) and (yk, y1+k, . . . , yT+k) also have the same
distribution for every k from (21). This show that yt is stationary.

Let w(t) be all counting series in α1 � yt−1 + . . . + �αp � yt−p and σ(y)

be a σ -field generated by a random variable y. Note that σ(yt, yt−1, . . .) ⊂
σ(w(t), εt, w(t − 1), εt−1, . . .). Because {w(t), εt} are independent sequence,
Kolmogorov’s Zero-One law implies that any event in the tail σ -filed denoted
by

⋂∞
t=1 σ(yt, yt+1, . . .), has probability 0 or 1. This shows by Durrett (1991) that

yt is ergodic.
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D Appendix: Proof of lemma 1

Since the process expressed by yt = ∑p
i=1 αi � yt−i + εt is stationary, it is easy

to see that

γk = α1γk−1 + α2γk−2 + · · · + αpγp−k (22)

where γk = Cov(yt, yt−k) and γk = γ−k by stationarity. Thus α̂i for i = 1, 2, . . . , p
is strongly consistent because γ̂k

a.s.−→ γk by (6).
Observe that

εt = yt −
p∑

i=1

αi � yt−i.

Thus, we have

E(εt) =
(

1 −
p∑

i=1

αi

)
µ (23)

where E(yt) = µ by stationarity. A little calculation shows that

E(ε2
t ) = (γ0 + µ2)

(
1 +

p∑

i=1

α2
i

)
+

p∑

i=1

|αi|(1 − |αi|)E|yt−i|

−2
p∑

i=1

αi(γi + µ2) + 2
∑

1≤i<j≤p

αiαj(γ|i−j| + µ2). (24)

Since

1
n

n∑

t=1

ε̂t = 1
n

(yt − α̂1yt−1 − · · · − α̂pyt−p),

Eq. (6) and strong convergence of α̂s imply that ε̄n converges (1 − ∑p
i=1 αi)µ

almost surely. Similarly, one also can show that, by (6) and consistency estima-
tors α̂’s,

1
n

n∑

t=1

ε̂2
t

a.s−→ (γ0 + µ2)

(
1 +

p∑

i=1

α2
i

)
− 2

p∑

i=1

αi(γi + µ2)

+2
∑

1≤i<j≤p

αiαj(γ|i−j| + µ2). (25)

Thus, (24) and (25) yield that σ̂ 2
ε converges to σ 2

ε almost surely.
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