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Abstract Marshall–Olkin semi-Burr and Marshall–Olkin Burr distributions
are introduced and studied. Their various characteristics in reliability analysis
are derived. Applications in time series analysis are discussed.
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1 Introduction

By various methods new parameters can be introduced to expand families of
distributions for added flexibility or to construct covariate model. Introduc-
tion of a scale parameter leads to accelerate life model and taking powers of
a survival function introduces a parameter that leads to the proportional haz-
ards model. A method of adding a parameter to a family of distribution was
suggested by Marshall and Olkin (1997). Here we propose a method for intro-
ducing two parameters in to a family of distribution. This can be viewed as a
generalization to the method suggested by Marshall and Olkin (1997). Starting
with a survival function F and density function f , the two-parameter family of
survival function is proposed and is as follows:
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Ḡα,γ (x) =
[

αF̄(x)

1 − ᾱF̄(x)

]γ
; −∞ < x < ∞, 0 < α < ∞, 0 < γ < ∞. (1.1)

When α = 1 we get Ḡ1,γ (x) = [
F̄(x)

]γ
and in particular when α= γ = 1 , we

get Ḡ1,1(x)= F̄(x).

gα,γ (x) = γ

[
αF̄(x)

1 − ᾱF̄(x)

]γ−1
αf (x)[

1 − ᾱF̄(x)
]2 , (1.2)

where Ḡ and g are the survival function and the density function of new family
of distribution. The hazard rate function is

rα,γ (x) = gα,γ (x)

Ḡα,γ (x)
= γ f (x)

F̄(x)
[
1 − ᾱF̄(x)

] . (1.3)

Burr (1942) introduced 12 families of distributions that could take on a vari-
ety of shapes and tractable to work with. Of these, the Burr type XII distribution
has received the most attention in the literature. It has been applied in a variety
of areas. Indeed the Burr type XII distribution is often simply called Burr dis-
tribution in literature. Since it is a particularly flexible distribution applications
have proved to be much wider. Applications may be found in areas of qual-
ity control, duration of failure time modeling, income distribution modeling,
bio-assay and hypothesis testing.

Rodriguez (1977) devoted special attention to the type XII whose distribu-
tion function is given by

F̄(x) =
(

1
1 + xβ

)γ
; 0 < x < ∞, 0 < α < ∞, 0 < γ < ∞. (1.4)

The density function is unimodal with mode at x =
(
β−1
γβ+1

)1/β
if β >1 and 0 if

β < 1. We can see that a number of data that we come across in practice may
exhibit some periodic movements and have several local maxima. To model
such situations, the Pareto distribution seems to be inadequate and the search
ended in the so-called semi-Pareto distribution, which accommodates Pareto
and in the meantime exhibiting periodic movements.

Definition 1.1 A random variable X with positive support is said to follow semi
Pareto distribution denoted by SP(β) if its survival function is of the form

F̄(x) = 1
1 + ψ(x)

, (1.5)
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where ψ(x) satisfies the functional equation

pψ(x)=ψ
(

p
1/βx

)
; β > 0, 0 < p < 1. (1.6)

The solution of the functional equation is ψ(x)= xβh(x) where h(x) is peri-
odic in ln(x) with periodicity − 2πβ

ln p . For proof see Kagan et al. (1973, p. 163). For

example if h(x)= eθ cos(β ln(x)) it satisfies the functional equation with p = e−2π

and ψ(x) monotone increasing with 0 < θ < 1. Alice and Jose (2003) used the
method introduced by Marshall and Olkin (1997) to define Marshall–Olkin
semi Pareto distribution.

The Burr type XII distribution, which gives a wide range of values of skew-
ness and kurtosis, can be used to fit almost any given set of unimodal data. Some
times we encounter data, which exhibit periodic nature and at the same time
cannot be modeled by semi-Pareto distribution. In such situations it becomes
necessary to introduce a more general class of distribution, which includes the
semi Pareto distribution.

Definition 1.2 A random variable X with positive support is said to follow
semi-Burr distribution denoted by SB(β, γ ) if its survival function is of the form

F̄(x) =
(

1
1 + ψ(x)

)γ
, γ > 0, (1.7)

where ψ(x) satisfies the functional Eq. (1.6).

Marshall–Olkin semi-Burr distribution is introduced and its reliability char-
acteristics are studied in Sect. 2. As a special case of Marshall–Olkin semi-Burr
distribution, Marshall–Olkin Burr distribution is studied. Estimation of param-
eters is done. In Sect. 3, application of the Marshall–Olkin Burr distribution
in time series model building is discussed. In Sect. 4, the Marshall–Olkin semi-
Burr distribution is used to model the daily exchange rate of Chinese Yuan with
US dollar.

2 Marshall–Olkin semi-Burr distribution

Substituting (1.5) in Eq. (1.1) we get the Marshall–Olkin semi-Burr (MOSB
(α,β, γ )) distribution whose survival function is given by

Ḡ(x) =
(

α

α + ψ(x)

)γ
; α, γ ,β > 0

=
(

1

1 + 1
α
ψ(x)

)γ
,

(2.1)

whereψ(x) satisfies the functional Eq. (1.6). Note that it turns out to be a three-
parameter semi-Burr distribution defined in (1.7). Now the probability density



424 K. Jayakumar, T. Mathew

function of MOSB(α,β, γ ) is given by

g(x) = γ

α

(
α

α + ψ(x)

)γ+1

ψ ′(x); α, γ ,β > 0.

The hazard rate function of MOSB(α,β, γ ) is

h(x) = γ

α

(
α

α + ψ(x)

)
ψ ′(x); α, γ ,β > 0.

Here we study the special case when ψ(x)= xβh(x), where h(x)= eθ cos(β ln(x)).

Ḡ(x) =
(

1

1 + 1
α

xβeθ cos(β ln(x))

)γ
.

g(x) =
(

1

1 + 1
α

xβeθ cos(β ln(x))

)γ
γβxβ−1eθ cos(β ln(x)) (1 − θ sin(β ln(x)))

1 + 1
α

xβeθ cos(β ln(x))
.

Plot of the Marshall–Olkin semi-Burr distribution for various values of α, β, γ
and θ is presented in Fig. 1. The figures give a comparative study in the behav-
ior of g(x) with respect to α, β, γ and θ . The periodic characteristic is mainly
governed by θ , α and β governs the tail behavior. In Fig. 1, α = 0.5 corresponds
to dotted line, α = 1 corresponds to solid line and α = 2 corresponds to dashed
line.

The hazard rate is

r(x) = γβxβ−1eθ cos(β ln(x)) (1 − θ sin(β ln(x)))

1 + 1
α

xβeθ cos(β ln(x))
.

Plot of the hazard rate of Marshall–Olkin semi-Burr distribution for various
values of α, β, γ and θ is presented in Fig. 2. γ = 0.5 corresponds to dashed line,
γ = 1 corresponds to solid line and γ = 5 corresponds to dotted line. From the
figure it can be seen that the hazard rate has both peaks and trough.

The use of odds ratio and proportional odds is becoming more prevalent in
engineering, reliability and survival analysis when the data exhibit nonpropor-
tional hazards. However, in some situations where the survival data indicate a
non-monotone hazard rate, modeling by either proportional hazard or propor-
tional odds may be lacking in their description of the situation. Yao et al. (2003)
proposes the log-odds rate (LOR) to characterize the distribution of failure, to
provide a graphical examination of situations where the survival data indicate
a nonmonotone hazard rate but monotone log odds rate, and further proposes
the log odds rate as a new way of viewing and modeling the failure process in
the region of aging. When h(x)= eθ cos(β ln(x)), the log-odds function is
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Fig. 1 Marshall–Olkin semi Burr distribution for various values of α, β, γ and θ
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Fig. 2 Hazard rate of Marshall–Olkin semi Burr distribution for γ = 0.5, 1 and 5
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Fig. 3 Plot of the log-odds rate for the Marshall–Olkin semi-Burr distribution for γ = 0.5 (solid
line), 1 (dotted line) and 5 (dashed line)

ln

(
F(x)

F̄(x)

)
= ln

((
1

1 + 1
α

xβeθ cos(β ln(x))

)−γ
− 1

)
.

The monotone LOR (Yao et al. 2003) is

LOR(t) = f (t)

F(t)F̄(t)

= γβxβ−1eθ cos(β ln x) (1 − θ sin(β ln x))(
α + αxβeθ cos(β ln x)

) (
1 −

[
α

α+xβeθ cos(β ln x)

]γ ) .

Figure 3 presented below gives a comparative study of the monotone LOR of
the Marshall–Olkin semi-Burr distribution for various values of α, β, γ and θ .
γ = 0.5 corresponds to solid line, γ = 1 for dotted line and γ = 5 for dashed line.

The Burr type XII distribution is widely used in areas such as business, engi-
neering, reliability, hydrology and mineralogy as failure model and its properties
have been studied by Burr and Cislak (1968) and Tadikamalla (1980). As a spe-
cial case of the Marshall–Olkin semi-Burr distribution, we introduce and study
the Marshall–Olkin Burr distribution.
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A random variable X with positive support is said to follow Pareto distribu-
tion denoted by P(β) if its survival function is of the form

F̄(x) = 1
1 + xβ

, β > 0. (2.2)

When F̄(x) = 1
1+xβ , (1.1) becomes

Ḡ(x) =
(

α

α + xβ

)γ
, 0 < α < ∞, 0 < β < ∞, 0 < γ < ∞, 0 < x < ∞.

=
(

1

1 + 1
α

xβ

)γ
. (2.3)

The distribution with survival function (2.3) is called Marshall–Olkin Burr dis-
tribution denoted by MOB(α,β, γ ).

The corresponding density function is

g(x) = γβ

α

(
α

α + xβ

)γ+1

xβ−1.

If X has MOB(α,β, γ ) distribution, then

E
(
Xs) =

α
s
β �

(
γ − s

β

)
�

(
1 + s

β

)
�(γ )

.

Thus,

E (X) =
α

1
β �

(
γ − 1

β

)
�

(
1 + 1

β

)
�(γ )

and

V(X) =
α

2
β

(
�

(
γβ−2
β

)
�

(
β+2
β

)
�(γ )− �

(
γβ−1
β

)2
�

(
β+1
β

)2
)

�(γ )2
.

Mode(X) =
⎧⎨
⎩

[
α
(β−1)
(γβ+1)

](
1
β

)
, β > 1

0 otherwise

Median(X) = α
1
β

((
1
2

)− 1
γ − 1

) 1
β

.



On a generalization to Marshall–Olkin scheme 429

Moment measure of skewness

β1 =
�

(
γβ−3
β

)2
�

(
β+3
β

)2
�(γ )

�
(
γβ−2
β

)3
�

(
β+2
β

)3

and moment measure of kurtosis

β2 =
�

(
γβ−4
β

)
�

(
β+4
β

)
�(γ )

�
(
γβ−2
β

)2
�

(
β+2
β

)2 .

The density plots of Marshall–Olkin Burr distribution with α = 0.1 (dotted
line) α = 1 (solid line) and α = 10 (dashed line) for various values of γ and β
is given in Fig. 4.

The hazard rate function is

h(x) = γβxβ−1

α + xβ
.

A comparative study of the hazard rate of the Marshall–Olkin Burr distribution
for various values of α, β and γ is given in Fig. 5. Dotted line corresponds to
α = 0.2, solid line for α = 1 and dashed line for α = 5.

For β < 1, the hazard rate is maximum at x = 0 and decreases for all x > 0.

For β > 1, the hazard rate increases and reaches a maximum at x = (α(β − 1))
1
β

and then decreases for all x > (α(β − 1))
1
β . The hazard rate in Fig. 5 is appli-

cable in a variety of contexts. Note that unlike the hazard rate in Fig. 2, the
hazard rate of Marshall–Olkin Burr distribution has no repeated troughs and
peaks. The Marshall–Olkin Burr distribution is new worse than used for β < 1.
For β > 1 the Marshall–Olkin Burr distribution is new better than used up to

x = (α(β − 1))
1
β and then new worse than used for x > (α(β − 1))

1
β .

The mean residual life function is

MRL(t) = 1

F̄(t)

∞∫
t

F̄(x)dx

=
(

eλt − ᾱ

α

)γ ∞∫
t

(
α

eλx − ᾱ

)γ
dx.
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Fig. 4 Density plots of Marshall–Olkin Burr distribution for various values of α, β and γ

The integral is convergent but very tedious to workout. Numerical evaluation
of the integral is possible using computers. Figure 6 gives an idea of the mean
residual life time of the distribution for various values of α and γ with β = 2.
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Fig. 5 Hazard rate of Marshall–Olkin Burr distribution for various values of α, β and γ

The Shannon’s measure of entropy is given by the equation

H = −
∞∫

0

f (x) ln (f (x))

= −
∞∫

0

(
α

α + xβ

)γ
βγ xβ−1

α + xβ
ln

((
α

α + xβ

)γ
βγ xβ−1

α + xβ

)
dx.

Ebrahimi (1996) introduced a modification to the Shannon’s entropy mea-
sure. Given that a component has survived up to time t, the measure of entropy
after time t given by Ebrahimi (1996) is
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Fig. 6 Mean residual life for various values of α and γ with β = 2

H(t) = 1 − 1
F̄(t)

∞∫
t

ln
(

f (x)
F̄(x)

)
f (x)dx

= 1 −
(
α + tβ

α

)γ ∞∫
t

ln

(
βγ xβ−1

α + xβ

) (
α

α + xβ

)γ
βγ xβ−1

α + xβ
dx.

Estimation of parameters of two-parameter Burr type XII distribution is
done in Hossain and Nath (1997). The maximum likelihood estimators of the
parameters of Marshall–Olkin Burr distribution can be obtained by solving the
following three equations by iterative method.

nγ
α(γ + 1)

=
n∑

i=1

1

α + xβi
,

n
β

= (γ + 1)
n∑

i=1

βxβ−1
i

α + xβi
−

n∑
i=1

ln(xi)

and
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n ln(α)+ n
γ

=
n∑

i=1

ln
(
α + xβi

)
.

Here we propose a method that is useful in estimating parameters when
the sample size is large. First find the smallest and largest of the observations.
Construct a suitable histogram taking equal class intervals so that all the obser-
vations are included in the interval. Divide each class frequency by the total
frequency. Using computers plot the histogram with the normed frequency.

For some values of α, β and γ simulate 10,000 random variables of the dis-
tribution to be estimated. Construct frequency polygon of the simulated data
using the same class interval used in the data plot. Embed it on the data’s his-
togram. Adjust the values of α, β and γ so that both the figures coincide at
least approximately. The best estimates of α, β and γ are those values of α,
β and γ for which the figures coincide. If we consider the QQ plot, PP plot
and empirical cumulative distribution function plots (can be found similar to
less than cumulative frequency) simultaneously with the histogram plot we may
get more accurate estimates for α, β and γ . This method can only be applied
using modern computers and mathematical packages like MatLab, Mathcad,
Mathematica, Minitab, etc.

Advantage of this method is that we can have a visual confidence for the
estimate of α, β and γ . Using different random seeds for generating random
variables we can check consistency of the estimates. The authors had considered
this problem for 100 different random seeds and is found that in every case,
for the same values of α, β and γ the figures are optimum. Therefore, we claim
that these estimators are asymptotically consistent. Since the estimates does
produce more or less the same frequency table as that of the data we claim that
these estimates are efficient. In other words, since the variation in reproducing
the historical data considered is practically negligible we claim that this method
of estimation is efficient. Note that these estimates contain all the information’s
to reproduce the historical data patterns. If we are not able to find suitable
values of the parameters so that all the figures give an optimum result then we
can conclude that the distribution considered is not suitable for modeling the
data considered.

The main problem that we face in this method of estimation is that suffi-
cient knowledge in using computers is needed. Another problem is that what
values should be given to initialize the parameters. In our experience we feel
that by experience we can manage this problem. This method may fail for small
samples.

3 Applications of Marshall–Olkin Burr distribution in time series modeling

The analysis of time series in the classical set up is based on the assumption
that an observed series is a realization from a Gaussian sequence. However
there are many situations where the naturally occurring data show a tendency
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to follow asymmetric and heavy-tailed distributions, which cannot be modeled
by Gaussian distributions. The usual techniques of transferring data to use a
Gaussian model also fail in certain situations (see Lawrance 1991). Hence a
number of non-Gaussian time series models have been introduced by differ-
ent researchers during the past two decades (see for example, Balakrishna and
Jayakumar 1997; Jayakumar 1995, 1997; Jayakumar and Pillai 1993; Jayakumar
and Thomas 2002).

Study on autoregressive minification process began with the pioneering work
of Tavares (1980). In his work, the observations are generated by the equation

Xn = k min(Xn−1, εn), n ≥ 0, (3.1)

where k > 1 is a constant and {εn} is an innovation process of independent and
identically distributed (i.i.d.) random variables chosen to ensure that {Xn} is a
stationary Markov process with marginal distribution function FX0(x). Because
of the structure of (3.1), the process {Xn} is called minification process.

Even though the Burr type XII distribution can be used to fit almost any given
set of unimodal data, not enough study has been done on time series models with
Burr type XII marginal distributions. Jayakumar and Thomas (2002) introduced
and studied a first-order autoregressive minification process with Burr type XII
distribution as marginal. This model can be extended to define a first-order
autoregressive minification process with Marshall–Olkin Burr distribution as
marginal.

Consider the Marshall–Olkin Burr distribution (MOB(α,β, γ )) with survival
function

F̄(x) =
(

1

1 + 1
α

xβ

)γ+1

, 0 < α < ∞, 0 < β < ∞, 0 < γ < ∞, 0 < x < ∞

and the Marshall–Olkin Pareto (MOP(α,β)) distribution (see Alice and Jose
(2003)) with survival function

F̄(x) = 1

1 + 1
α

xβ
, 0 < α < ∞, 0 < β < ∞, 0 < x < ∞.

Theorem 3.1 Let the process {Xn} be defined as

Xn = min
(

V−1
n Xn−1, εn

)
, n = 1, 2, . . . , (3.2)

where {Vn} and {εn} are two independent sequences of i.i.d. random variables
such that {Vn} has distribution function FVn(v) = vβγ , β, γ > 0 and 0 < v < 1.
Suppose the process {Xn} is stationary. Then Xn d MOB(α,β, γ ) if and only if
εn d MOP(α,β).
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Proof Denoting the survival function of Xn and εn by F̄Xn(x) and F̄εn(x) respec-
tively, (3.2) in terms of survival functions is

F̄Xn(x) = F̄εn(x)

1∫
0

F̄Xn−1(xv) fVn(v)dv,

where fVn(v) = βγ vβγ−1 is the probability density function of Vn. That is,

F̄Xn(x) = F̄εn(x)

1∫
0

F̄Xn−1(xv)β γ vβγ−1.

Proceeding like in Jayakumar and Thomas (2002), we get

F̄X(x) =
(

1

1 + 1
α

xβ

)γ+1

.

Conversely, if {Xn} is stationary with MOB(α,β, γ ) distribution as the marginal,
then {εn} is MOP(α,β).

1

F̄εn(x)
=

1∫
0

F̄X(xv)β γ vβγ−1

F̄X(x)
dv

=
1∫

0

(
1 + 1

α
xα

1 + 1
α

vαxα

)γ+1

β γ vβγ−1dv

= 1 + 1
α

xβ .

Therefore, F̄εn(x) = 1

1 + 1
α

xβ
.

Hence εn d MOP(α,β). This completes the proof.

Based on this result we define the first-order autoregressive Burr process as
follows:

Let
X0 = MOB(α,β, γ ) and
Xn = min(V−1

n Xn−1, εn) for n = 1, 2, . . . ,

where {Vn} is a sequence of i.i.d. power function random variables with distri-
bution function FVn(v) = vβγ , β, γ > 0, and 0 < v < 1 and {εn} is a sequence
of i.i.d. MOP(α,β) random variables independent of {Vn}. The process {Xn} is
stationary with MOB(α,β, γ ) marginal.
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Fig. 7 Sample path behavior of the MOB(α,β, γ ) process

Table 1 Autocorrelation of order up to 13 for β = 2 and α = 2

γ \r 1 2 3 4 5 6 7 8 9 10 11 12 13

0.1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00
0.9 0.36 0.17 0.08 0.03 0.02 0.00 0.01 0.03 0.02 0.01 0.00 0.00 0.00
1.7 0.55 0.34 0.21 0.12 0.08 0.04 0.04 0.03 0.03 0.03 0.02 0.00 0.00
2.5 0.67 0.48 0.33 0.23 0.17 0.12 0.09 0.07 0.06 0.05 0.03 0.01 0.01
3.9 0.79 0.63 0.50 0.40 0.32 0.26 0.21 0.17 0.14 0.12 0.09 0.07 0.05
4.7 0.82 0.68 0.56 0.47 0.39 0.32 0.27 0.23 0.19 0.16 0.13 0.11 0.09
5.5 0.85 0.73 0.61 0.52 0.44 0.38 0.32 0.28 0.24 0.20 0.17 0.14 0.12
6.5 0.87 0.76 0.66 0.58 0.50 0.44 0.38 0.34 0.29 0.26 0.22 0.19 0.16
8.1 0.90 0.81 0.72 0.65 0.58 0.52 0.47 0.42 0.38 0.34 0.30 0.27 0.24
10 0.92 0.84 0.77 0.71 0.65 0.60 0.55 0.50 0.46 0.42 0.39 0.36 0.33
14 0.94 0.89 0.83 0.78 0.74 0.69 0.65 0.62 0.58 0.55 0.51 0.48 0.46
20 0.96 0.92 0.88 0.85 0.81 0.78 0.75 0.72 0.69 0.67 0.64 0.62 0.59
24 0.97 0.94 0.90 0.87 0.85 0.82 0.79 0.76 0.74 0.72 0.69 0.67 0.65
30 0.97 0.95 0.92 0.90 0.87 0.85 0.83 0.80 0.78 0.76 0.74 0.72 0.70
35 0.98 0.95 0.93 0.91 0.89 0.87 0.85 0.83 0.81 0.79 0.77 0.75 0.74
40 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.83 0.81 0.79 0.78 0.76
50 0.98 0.97 0.95 0.93 0.92 0.90 0.89 0.87 0.86 0.84 0.83 0.81 0.80
80 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.89 0.88
100 0.99 0.98 0.98 0.97 0.96 0.95 0.94 0.94 0.93 0.92 0.91 0.91 0.90
150 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.95 0.94 0.94 0.93 0.93
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The joint survival function of (Xn, Xn+1) is of the form

F̄XnXn+1(x, y) = 1

(1 + 1
α

yβ)

1∫
0

1

(1 + 1
α

max(xβ , vβyβ))γ+1
β γ vβγ−1dv.

Elementary computations show that

P(Xn+ 1 > Xn) = γ + 1
γ + 2

.

The sample path behavior of the Marshall–Olkin Burr process is given in Fig. 7.
Table 1 gives autocorrelation of order up to 13 for various values of γ with

β = 2 and α = 1. The first column gives the values of γ and first row gives the
order of correlation.

4 Application of Marshall–Olkin semi-Burr distribution in modeling
exchange rate

Daily observations of China–U.S. foreign exchange rate are considered. The
data consist of 1024 observations starting from 2nd January 1981 to 11th Janu-
ary 1985. The data are collected from the website of Board of government of
Federal Reserve System U.S.A. The first-order autocorrelation of the series {Xn}
is found to be 0.9993. To make the series stationary first-order autocorrelated
differencing is taken. The resulting series is obtained by the difference equation
Yn = Xn −r0Xn−1, where r0 is the first-order autocorrelation. Subtracting mean
and dividing by standard deviation obtain the standardized series. The resulting
series is made positive by taking modulus. The autocorrelation of the resulting
series is found to be insignificant. Each observation in the series is multiplied
by 10. The maximum value of the series is found to be 66.274. The observations
are classified in to 49 classes of equal (1.333) width. Histogram is constructed
with midvalue of the classes along X-axis and frequency along Y-axis. A plot of
the histogram and cumulative frequency curve is presented in Fig. 8a, b.

0 10 20 30 40 50

.

0 10 20 30 40 50

.
a b

Fig. 8 a, b Histogram and cumulative frequency curve of the observed series
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Fig. 9 a, b Functional plot and frequency polygon plot of the Marshall–Olkin semi-Burr
distribution
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Fig. 10 a, b, c, d The embeded histogram, QQ plot, PP plot and distribution function plot of the
Marshall-Olkin semi Burr distribution

The histogram resembles the shape of semi-Burr distribution presented in
Fig. 1. Therefore, we may assume that a semi-Burr distribution may be a good
fit to the data set considered. For estimation of parameters of the semi-Burr
distribution we adopt the proposed method in Sect. 2. By giving various val-
ues of the parameters to Marshall–Olkin semi-Burr distribution in trial and
error method we found a shape of the curve similar to the histogram and is pre-
sented in Fig. 9a. 10,000 independent and identically distributed Marshall–Olkin
semi-Burr random variables are generated for the same values of the param-
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eters and frequency polygon is constructed using the same method explained
earlier and is presented in Fig. 9b.

The frequency polygon of the simulated series is embedded on the histogram
of the observed series. The QQ plot, PP plot and distribution function plots are
constructed. Values of α, β, γ and θ are adjusted so that all the four figures
give a satisfactory fit. Figures 10a, b, c, d presents the histogram, QQ plot, PP
plot and distribution function plots. From the Figures we can observe that the
data are a good fit to Marshall–Olkin semi-Burr distribution with parameters
α = 5.5, β = 1.4, γ = 1.35 and θ = 1.
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