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1 Introduction and Formulation of Results

We study the classical autoregressive model:

	X i = bXi _ l + Ei,	 i = 1, 2, ..., n ,	 (1)

where Xl , ..., X,, are observed variables, b is the unknown parameter to be
estimated, and (Ei)i>l is the innovation process. We assume the initial value
Xo to be known. The asymptotic properties (such as consistency, rate of
convergence and limiting distribution) of the ordinary least squares (OLS)
estimator of b, given by

n

E XiXi-1

	b = x-1 	(2)

X 1
i-1

will depend on the probabilistic structure of the innovation process. From
now on, we assume that the innovations ei are i.i.d. random variables (in-
dependence is an essential assumption, while the hypothesis that all ei are
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identically distributed, can be relaxed). Next, it is usually assumed that
e l has a completely specified distribution, for example N(O,a 2 ), (that is,
normal with mean zero and variance a 2 ), or a stable law with known pa-
rameters, or just a distribution belonging to the domain of attraction of a
given stable law. From this, there exists an appropriate normalization factor
an and a limiting law for a,,(bn — b), where b is the true value of the param-
eter in (1). Generally speaking, this limiting law depends on the asymptotic
behavior of the appropriately normalized sums E 1 ei, and is different in
the cases bI < 1, IbI > 1, and Ibi = 1. There exists vast literature devoted
to OLS estimators in this classical model: we mention here only the seminal
papers by Mann and Wald (1943), White (1958) and Anderson (1959). For
more recent results encompassing more general settings, we refer to Phillips
(1987), Rachev, Kim and Mittnik (1997) and Mijnheer (1997).

The assumption that the distribution of the innovations (e>1 is known
is rather difficult to justify. It is by far a more realistic situation when only
information on the form of the distribution of el is available. Suppose that
e l is distributed as N(0, a2), where Q2 is unknown. Since

6i = Xi — bXi_1,	 i = 1, 2, ..., n,

we can write the likelihood function (LF) explicitly and obtain the maximum
likelihood (ML) estimators of both unknown parameters b and v as follows:

XiXi- 1 	n.	 _

bn = Z — n	 ,	 Qn = 1 	(Xi — bnXi_ 1 ) Z. 	(3)
z	 n i= 1

Xi-1
i=1

It is then not difficult to find limiting distributions for properly normalized
errors of the estimators, i.e. for

	— b)	 and	 — c2 )

For the first quantity, we need to consider separately the cases Ibi < 1
("stationary" case), and Jbj = 1 ("unit root" case).

If the assumptions of our model are compatible with the true underlying
generating process, then the sample residuals

ei = Xi — bnXi_1	 i = 1, 2, ..., n	 (4)

should comply with the hypothesis that the ei's are normally distributed.
However, if they exhibit "heavy tails" or skewness, (such features are fre-
quently observed in financial data, for instance), we can infer that our as-
sumption on the probabilistic structure of the innovations is incorrect. The
natural candidate for the distribution of ei, which allows heavy tails and
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skewness, is the family of stable laws. We recall that stable (non-gaussian)
distributions are usually defined by means of their characteristic function

exp — a jtIa [1 — ii3(sign t)tg 	 } for a 0 1
çoa (t; a, Q) =	

exp -	 I [	 l (g )	 i^ex	 Q t 1+ i	 si n t In t	 for a = 1 ,

where 0 < a < 2, a > 0, and —1 < /3 < 1. The parameter a is called the
stable (or tail) exponent; a is the scale parameter; and /3 is the skewness
parameter, (if 0 = 0, then the corresponding stable distribution is called
strictly stable). Note that in this representation it is assumed that the shift
(or location) parameter is 0.

Denote by Ga (x; a, ,3) and ga (x; a, ,Q) the distribution and the density
functions, respectively, of a stable distribution with characteristic function
cp a (t; a, ,Q). Now suppose that the distribution of el is Ga (x; a, /3) with
known a, but unknown parameters or and 0. This assumption is analogous
to the Gaussian case mentioned above (known a = 2, but a 2 is unknown).
However, if we proceed as in the Gaussian case to obtain the likelihood
function, we face a serious problem: stable densities, except for a few cases,
do not admit an analytical expression, so we cannot write the likelihood
function explicitly. When dealing with a similar problem of estimating the
parameters of a stable law, one can try to perform a numerical maximization
of the log likelihood function with respect to the unknown parameters (see,
for example, Mittnik, Rachev and Paolella (1998), Nolan (1997), and ref-
erences therein). However, this approach is not attractive. It does not lead
to analytical expressions of the underlying estimators, while the asymptotic
analysis of numerically obtained estimators is just intractable.

Even in the few cases for which an analytic expression of the stable
density is available, the ML estimators cannot be easily analyzed.

For example, suppose that (ez)i>1 follows the Cauchy distribution with
density

a2

	9i (x, a, 0) 	 7r(0,2 + x 2 )

where Q is an unknown parameter. The ML estimators bn and Qn can be
obtained as solutions of the system:

n (Xi — bXi—i)Xi—i _ 0
a + (Xi — bXi-1) 2

n	 1
2

Z_ i a 2 + (Xi — bXi—i) 2 = n.

The equations for the unknown a and b are highly nonlinear hence, it is
hard to find simple explicit expressions for the estimators.

A similar situation arises in the case of the Levy law with exponent
a = 2 and density

1 /2

	91/2 (x, a) _ \ 2ir / x—s/a exp { — 2x },	 x > 0.
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Again, the equations obtained by maximizing the likelihood function do not
lead to explicit expressions for the estimators of the unknown parameters b
and a.

So far these difficulties do not allow us to study the general case of stable
innovations. However, we can propose a solution in the particular case of
symmetric a—stable innovations with unknown scale parameter a. To this
end, we assume that (ei)i>1 are i.i.d. symmetric a—stable (SaS) random
variables with characteristic function

2(t) = exp ( — aa I tl " ),	 (5)

where a is known and a is unknown. The random variable el with charac-
teristic function (5) is called subgaussian (see for example, Feller (1971) or
Samorodnitsky and Taqqu (1994)), and it admits a representation as a prod-
uct of two independent random variables: E 1 = U1 V1 i where Ul — N(0, 2a 2 ),

V1 = Ai 12 and Al is an a/2—stable subordinator, that is, Al is a positive
9fa 2/a

random variable with characteristic function co z (x, (cos 4 )	 , 1).

Taking independent sequences of i.i.d. random variables (Vi)i>1 and
(Ui)i>1 with Ul and Vl as defined above, we can write

Ei = ViUi•	 (6)

From (1) we have

= 
Xi — bXi_i

Ui 
Vi

Now, since the Ui's are normally distributed, we can write the likelihood
function and obtain the following ML estimators:

n

_ ^XiXz-1Vi 2

b = x-1 	(7)n —	 n,	 ^

X 1 V2 2

i=1

a2 = n	 (Xi — bnXi_1)2Vi 2.	 (8)
i=1

The estimators (7) and (8) are similar to those in (3), with the only dif-
ference that the variables Xi and Xi_1 are now replaced by XiV^ 1 and
Xi_1Vi-1 , respectively. There is however, the following problem: while in
(6) Vi and Ui are independent, in the relation Ui = eiVt 1 , we cannot as-
sume ei and Vi to be independent. If ei and Vi were independent, then Ui
would be a heavy-tailed random variable in the domain of normal attraction
of a—stable law, denoted shortly as DNA(a). The problem of generating val-
ues of Vi's seems rather difficult and we shall address this issue later on.
The selection of a is a separate problem. One possible way to estimate a
is to first consider the estimator (2), then to evaluate the sample residuals
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(4). We consider these residuals as a sample from stable distribution and
then we can estimate the exponent a of a stable distribution. There is vast
literature on the estimation of parameters of stable distributions, both in
univariate and in multivariate cases, see for example survey paper McCul-
loch (1996), or a recent paper Davydov, Paulauskas and Rackauskas (2000),
where it is proposed that an asymptotically unbiased and consistent estima-
tor of the exponent of a multivariate stable law, is asymptotically normal
with standard rate.

Next, we study the asymptotic properties of the (appropriately normal-

ized) error terms b — b and Qn — a 2 , where b and a are the true values of
the parameters under consideration. We separately treat the cases Ibi < 1
and b = 1. Our main result is the following theorem whose proof is given in
section 2.
In what follows, "=" stands for convergence in distribution.

Theorem 1 Suppose that in model (1) the innovations (e2)z>1 are i.i.d.
symmetric a—stable random variables with unknown scale parameter o - . Then,
as n —4 00,

ii
(_n)
	 2

/2 / a2 — 1) = N(0, 1).	 (9)

If (b < 1 (the "stationary case"), then

nl/« (b,,, — b) = S2.	 (10)

If b = 1 (the "unit root case"), then

ni a+i «(a (a)) 1 /2 r( _ 1 )	 fo Ya (t) dW (t) .
n 	fo (Y«(t))2dt	

(11)

In (10), Si and S2 are stable random variables defined in (30) and (31),
respectively. In (11), a(a) := EVi Z , Y« (t) is a standard a—stable Levy
motion, (see Lemma 3 below), Y,, (t) = lim Y« (s), and W(t) is a standard

stt

Brownian motion, independent of Y.

The main advantage of the ML estimator bn in the case of unit root is
its better rate of convergence compared with that of the OLS estimator.
Namely, Chan and Tran (1989) showed that the rate of convergence for
the OLS estimator is independent of a and is of order n, while in (11),
we achieve a rate of convergence of order n l / 2+ 1 /«, which is better for
all a < 2. We recall that in (10), the limiting distribution depends on
the unknown parameters b and a, and this is a drawback of our theorem.
However, the limiting distributions in (9) and (11) are independent of b
and a, and therefore they can be used to construct confidence intervals.
Moreover, the limiting distribution in (11) can be obtained by a simulation
method (see Mittnik, Paulauskas and Rachev (1999)).



52

Another drawback of Theorem 1 is the difficulty of generating values
of Vi. Indeed, we can write the joint two—dimensional density function of
the pair (e, V), and then obtain the following expression of the conditional
density of V, given that E = xo

fv(ylE = xo) = 
g—1py(y) exp { — 4,} (12)

fo z1pv (z) exp { — 4 s } dz

where pv (x) = 2xg 2 (x2 ; ( cos 4 )22/a, 1) . Since the density g 2 (x; Q, 1) has
no explicit expression (except for the case a = 1), it seems that the only pos-
sible way to generate values of Vi is to evaluate the density pv numerically.
Furthermore, the question of choosing x0 is also nontrivial. We suggest the
following procedure: evaluate OLS estimate bn, given by (2), then compute
the sample residuals ei = XZ — bnXz_1 for all i = 1, 2, ..., n. To generate the
value VZ, take x0 = ei in (12). The unknown scale parameter a is present
in (12), therefore, from the obtained residuals Ei, we need to estimate a.
At this point, we can propose the following estimator for the scale parame-
ter a of a stable random variable. The estimator is based on the following
formula (see Samorodnitsky and Taqqu (1994)): if el is an SaS random
variable with characteristic function (5), then for any 0 <p < a, it holds

EI E l I = C(a, p)a2 ,

where C(a, p) stands for a constant depending on a and p. Therefore, we
can take

a^ _ ((C(a,p))-1n IXi — bnx _1iv)' . 
(13)

For all values of p in the interval 0 < p < a, the consistency of this es-
timator will follow from the law of large numbers and the consistency of
the estimator bn . Instead of bn , we can take any consistent estimator of b,
but the rate of convergence of a n to a may depend on the choice of the
estimator for b. In fact, the choice of p is a separate problem of considerable
interest and we intend to investigate the properties of the estimator (13)
elsewhere. Since the main goal of the paper is the discussion of theoretical
issues of ML estimation in the case of stable innovations, we intend to dis-
cuss simulation results and related problems in a separate paper, as it was
done in the case of OLS estimators (see Paulauskas and Rachev (1998) and
Mittnik, Paulauskas and Rachev (1999)).

Here we give only a table with preliminary simulation results for several
values of a, a, and b. The last column of the table gives the value of a
parameter A, which has the following meaning. In order to generate values
V^, we need to evaluate the conditional density (12). We approximate the
integral in the denominator with an integral over the interval [0, A] with
step h = 0.01. In most cases we took A = 500 and n = 10000, but it seems
that for the smallest values of a, even A = 500 is too small. Therefore, for
a = 1.1, we tried A = 1000, then to make the computations in a reasonable
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Table 1 Preliminary simulation results

a v b b,.	 (MLE) b	 (OLS) n A

0.5 0.1 0.5 0.499962 0.4999579 10000 500

0.5 0.1 0.8 0.7999551 0.7999551 10000 500

0.5 0.1 0.9 0.8988169 0.8988137 10000 500

0.5 0.1 0.95 0.9422095 0.9420699 10000 500

0.5 0.1 0.99 0.9901045 0.9901055 10000 500

0.5 0.1 1 1.0000384 1.0000562 10000 500
1.1 0.1 0.5 0.5114295 0.5112379 1000 1000

1.1 0.1 0.8 0.7952818 0.7954026 1000 1000

1.1 0.1 0.9 0.9013114 0.9052705 1000 1000
1.1 0.1 1 1.0000114 0.9996152 1000 1000
1.4 0.1 0.5 0.500875 0.502669 10000 500
1.4 0.1 0.8 0.7947087 0.7910217 10000 500
1.4 0.1 0.9 0.90010468 0.90183797 10000 500
1.4 0.1 1 0.99931134 0.99855534 10000 500

time frame, we were forced to lower n. (Evaluating the residuals ei for
a = 0.5, we observed the values of the order 10 7 , and this shows that even
A = 1000 is too small).

For a = 1.1 and a = 1.4 and b = 1, we can see the effect of the better
rate of convergence of ML versus OLS estimators, and the simulation results
fit well to theoretical comparison given after formulation of Theorem 1. For
example, the ratio of errors for OSL and ML estimators in the case of a = 1.1
is 33.75, and it is of the same order as predicted by theory n 22. = 101.227.

Only the case a = 0.5, b = 1 does not fit well into the picture and at present,
the only explanation for this is that the value of A is too small for this case.

We now consider the multivariate generalization of the model (1):

Xi = BX i. 1 + Ei, (14)

where Xi = (Xil, ..., Xik), B = Ibi ,j } k is an unknown matrix, and

ei = (eil, ..., eik) . We shall assume that (ei)i>1 are i.i.d. random vectors.
The case e1 - N(0, Z) with known or unknown covariance matrix' is well
investigated: see, for example, Park and Phillips (1988), Johansen (1988),
(1996) and references therein. (Here, as usual, N(0,.) stands for a normal
distribution with mean zero and covariance matrix Z.) Furthermore, the
OLS method can even be extended to the case of innovations ei belonging
to the domain of normal attraction of the known operator-stable law, (see
Paulauskas and Rachev (1998)). However, difficulties arise when we assume
ei to have a multivariate stable law with unknown spectral measure and at
present, we are not able to analyze this general case.
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Next, we recall some facts about multivariate stable distributions. A
random vector X = (X1, ..., Xk) is called multivariate stable with exponent
0 < a < 2 if its characteristic function has the following form

Ee
i(t,X) - exp { - fsk I (t, s))I 	- i sign((t, s))tg 2) T(ds) } ,	 a 0 1

exp{ — f (t, ^)I(l+i Zsign((t, ^))lnI(t, ^)I)F(ds)}, a = 1,

where Sk = {x E Rk : I^xII = 1} is the unit sphere in RT and F is a finite
measure on S". F is called the spectral measure of the stable random vector
X, and the pair (a, F) completely characterizes the stable law. (Again, as in
the one-dimensional case, we have assumed that the shift vector is zero). For
a detailed survey on multivariate stable vectors, we refer to Samorodnitsky
and Taqqu (1994), and to Jurek and Mason (1993) for facts on operator-
stable vectors.

The straightforward generalization of the approach used in Theorem 1 is
obtained assuming that sl = U1Vj, where Ul is a k-dimensional normal law
with mean zero and covariance matrix Z (which we assume to be unknown),

and Vi = A l  with Al one-dimensional a/2-stable subordinator, a being
a known parameter, 0 < a < 2. In other words, el is an SaS random vector
with a subgaussian characteristic function

it,el	 1	 Y/2
Eet=exp {-(2Et,t 	 }.	

( 
15

)

Then, arguing in a similar way as in the one-dimensional case of Theorem
1, we obtain the following ML estimators:

Ti	 1 l
Bn = C

_
n 1 	V2 (Xz-1Xal	 (16)

i=1

and

^'n n E V2 (Xi - BnXi-1) (Xi - BnXi-1) , ,	 (17)
i=1 i

where Xi = (Xi 1 , ..., Xik) is a k x 1 column vector, Xi is a 1 x k row vector,
n

and Cn=^ 1 (Xi-1•Xi_1).^_ 1 V2

We formulate the generalization of Theorem 1 in the stationary case
only; the proof follows the same type of arguments as in Theorem 1, but is
more cumbersome.

Theorem 2 Suppose that in model (14), the innovations (ei)i>1 are i.i.d.
symmetric a-stable random vectors with sub-gaussian characteristic func-
tion (15) and unknown matrix Z. Suppose that the unknown matrix B sat-
isfies JIBI) < 1. Then, as n -3 00,

nl/a (Bn - B) = Z2 1 Zl,	 (18)
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where Z1 is k x k matrix with a—stable entries depending on E and B.
Furthermore, Z2 is a diagonal k x k matrix with a /2—stable positive entries
also depending on L' and B. As for the estimator E n,, the following relation
holds:

^(f,,, — Z)	 Z3.	 (19)

Here, Z3 is a k x k random normal matrix with mean—zero entries Z3' and
covariances

Coy (Z3^, Z3 l ) = E (U1iUlj — o ij) (U1U11 — a n,l)	 2 m, l = 1, ... , k.

Remark. It is easy to see that (19) is the multivariate analog of the "tradi-
tional" difference f (Qn - a 2 ) in the one-dimensional case. Therefore, the
limiting distribution depends on the unknown matrix Z. Most likely, in or-
der to obtain a limiting distribution that does not depend on the unknown
parameters, one needs to consider the difference

(20)

where I is the k x k identity matrix. (However, (20) does not provide a
method for easily constructing the confidence regions for Z.)

In Paulauskas and Rachev (1998), we considered the more general model
with innovations being multivariate with coordinates having different expo-
nents. However, the assumption that the distribution of C 1 is specified. It
seems that such an extension is also possible here. To see the difficulties in
this case, let us introduce the coordinate-wise multiplication and division
of vectors as follows: for x, y E Rk , x O y := (x1 y1, • • •, xk yk) and, if yj , 0
for all i = 1, ..., k, then

x	 xl	 Xk

Y	 Y1'... yk

We can assume then that

61 = U1 O V1 := (U11V11, ..., U1kV1k). 	(21)

In (21) we assume that U1 is N(0, Z), and V1 = (V11, ..., Vlk), V1j = A 1 /2 ,

with Aj being aj /2-stable subordinator, 0 < aj < 2, j = 1, ..., k. Next,
let V1 , j = 1, ..., k, be independent random variables and independent of
the vector U. Now el has a more complex structure: it is no longer SaS
(furthermore, it does not seem possible to get an explicit expression of
the characteristic function of el), but its coordinates elj are SajS random
variables with unknown scale parameter aj, where a = EU123 . Assume
that the multi-index a = (a l , ..., ak) is known. (The problem of estimating
a should be treated separately as in the one-dimensional case).

In model (14), (21) we have

Xi - BXi_1
Ui = 	V 	,	 i = 1, 2, ..., n,

i
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and then we can write the likelihood function as a function of two unknown
matrices B and .. However, the equations for the ML estimators B and L'n
are too complicated and we were not able to obtain explicit expressions of
the estimators. (Of course, one can try to solve these equations numerically,
but we do not consider this approach here.)

One reason for these difficulties is the fact that the usual matrix and
vector multiplication and coordinate-wise division do not commute, that is,
ifB isakxkmatrixandx,yEIRk , (yi$0, i=1,...,k),then

Bx 54 B x	 (22)

y	 y

Even if one assumes that B is diagonal, (then there is equality in (22)), and
thus the model (14) becomes

Xi7=BjXi-1,j+Ui,jVi,j,	 =1,...,k, 2=1,...,n,

the equations for the variates B and J do not separate due to the depen-
dence between Ulj, j = 1, ..., k. As a consequence, one cannot find explicit
expressions for the ML estimators of the unknown parameters.

2 Proofs

Proof of Theorem 1. We consider the model defined by (1) and (6), and
the ML estimators (7) and (8). Assume that bI < 1. In this case it is known
that under an appropriate choice of the value X0, there exists a stationary
solution of (1):

00

Xn = E I1ien_i,	 n=1,2,... 	 (23)
i=0

with exponentially decreasing coefficients !P'. (Here we have assumed that
the sequence of i.i.d. -n is defined both for positive and negative values of

00

n). In fact, it is enough to set Xo = E bz.-_i to obtain (23) with Wi = W.
i=o

From (9) and (10), using (1) we obtain

bn — b= (^X lAi 1) ^^iXi-1Ai 1 ^
	 (24)

i=1	 i=1

and

n

	Qn — Q Z = n-'	 (e2Ai 1 — Q Z ) — 2n -1 (bn — b) E eiXi-1Ai 1

i=1	_	 n
+ (bn — b)2n-1 E Xi ,Ai 1,	 (25)

i=1
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where Ai = Vi2 . Denote ëi = 6 i Ai  = UiVi-1 . From the independence of Ui
and Vi,

Ee1=EUIEVi '=0,

Efi = EU1 EVi 2 = o.2 • a,

where a = a(a) := EVi 2 is finite as the stable subordinator has exponen-
tially decreasing density at zero. The expectations EVE ' and EVi 2 are
finite due to the following lemma. Let pl and P2 denote the densities of the
random variables V' and Vi 2 , respectively.

Lemma 1 The following asymptotic relations hold: for 0 < a < 2,

p 1 (x) , c(a)x° -1 ,	 as x	 0,

pi(x) - c(a)x 22-- exp { - (1 - 2)x-2 }, as x -+ oc,

p2(x) - c(a)x 2 -i 	as x -3 0,
4-3a	 a	 a

p2(x) - c(a)x -2 ( 2- - exp { - 1 - 2 xz-^ , as x -+ oo,

where a(x) - b(x), as x --} a, means lim a(x) = 1, and the generic constant
x--+a b(x)

c(a) can be different in the above relations.

Proof We use the following well-know fact (see Zolotarev (1986)): for 0 <
a < 1, it holds

ga (x,1,1) - cl (a)x2-a/2(a-1) exp { - (1 - a)xa/a-1 },	 as x --> 0

ga(x , 1 , 1 )	 C3(a)x-(a+l^,	 as x	 oo.

The positively skewed random variable Al has density ga1 2 (x, c(a), 1), and

therefore p2 (x) = ga12 (L , c(a),1) , pi (x) = 2xp2 (x 2 ) . These relations
prove the lemma.

Next, we need to find a proper normalization and joint limiting laws for
the sums

n	 n	 n
n -1 ^ (e?A i 1 -O"2), EEiXi-1As 1, > Xa A i ', 	(26)

i-1	 i=1	 i=1

(see (24), (25)). Because ei AZ 1 - a 2 = Ui - v 2 , i = 1, ...,n are i.i.d. with
mean zero and finite variance, the first sum in (26) is easy to analyze: by the
Strong Law of Large Numbers and the Central Limit Theorem, as n -a oo,

Ti

n -1 	(ei Ai 1 - 0-2 )	 0	 a.s.,	 (27)
i=1

2

,v/,v/a22	
(Ei - a2 )	 N(0, 1).	 (28)
Aii=1
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Consider then Wnl = E 1 EiXi_ 1 Ai 1 = E 1 ejXi_1. Using (23) we write
n	 o0	 0o	 n

Wnl = E Ei E T'j'-i-1—j 	 Wj E E i e i -1—j
i=1 j=0	 j=0	 i=1

For a fixed j, consider the random variables q2^ 1 = fiEti_1_j, i = 1, 2, ..., n,

and the sumhFn	 j(j1 . or each > 0	 ei and ei_1_ j are independent	.7 _ 0 ,	 ^	 P
and Ei has finite variance, so the marginal distribution of ii belongs to
the DNA of a SaS random variable. For small values of n (n < j + 1), the

random variables r^^jl , i = 1, 2, ..., n are independent. Nevertheless, to study
the limiting relations as n —^ oc, we need to consider the case j < n. In

the latter case, it is possible to rearrange ^7^^ i = 1, 2, ..., n in such a way
that they will be 1-dependent random variables. (Recall that a two-sided
sequence (Xk, k E Z) of random vectors is said to be m—dependent if, for
every n E N, the a—algebras Q(..., Xn- 1 , Xn) and a(Xn+m,+l, Xn+m+r, ...)

are independent.) To prove the relation

n
n—i/c(i)	

Sj	 (29)
i=1

where (j is an SaS random variable with scale parameter aj depending on
unknown a, we apply a result of Davis (1983). (In our case the verification
of conditions D and D' from that paper is standard, so we omit it.)

Using (29), for any fixed m we obtain the limiting relation

m	 n	 m

n -1 /a ^j E Eiei—1—j T ^j (j	 as n + oc,
j=1	 i=1	 j=1

for any fixed m. Then, applying Theorem 4.2 from Billingsley (1968), we
conclude that

00

lim n -1 /a Wnl =	 TjSj := S1.	 (30)n— Co
j=1

Si is an SaS random variable with scale parameter (>i° W aj) 1/O' which
depends on both unknown parameters b and a. For similar calculations we
refer to Davis and Resnick (1986).

Now we consider the third sum in (26). Let

a
Wn2 :_ > Xi 1 A a 1 = E A i 1 	= Wnzl + W^2 > >

i=1	 i=1	 j=0

where
n	 00	 00	 n

W ̂ 2 1 =	 A'	 I1i1 Ea-1— . = 
	

7	 `4i 'Ei-1— '
i=1	 j=O	 j=0	 i=1
n

Wn2 i = > Ai 1 	T'jPkFi—l—jei-1—k•
i=1	 j#k



59

The analysis of W) goes along the same lines as for the sum Wnl. Let

4) = Ai 1 e?_ 1 _ j . Note that Az 1 has finite moments of all orders and is

independent of ei-1-j, therefore the marginal distribution of 	 (for all

j) is in the DNA of an a/2-stable random variable with 6 = 1, as	 > 0,

for all i and j. The random variables Z^^ ) are independent if j >_ n -
andand (after rearrangement) at most 1-dependent, if j < n -1. Therefore, we
obtain the following limiting relation

Ii
n -2/a	 zU) = icj,

i=1

where ,j is a stable random variable with density ga/2 (x; dj, 1) and dj is a
scale parameter depending on a. Now, arguing in a similar way as in the
derivation of (30), we show that

CO

n -2 W^j	 ^/ll'j := S2.	 (31)

j=0

Random variable S2 has density ga /2 (x; (	 1). It remains to
show that

n-2/aWn2) _ o(1).	 (32)

For a> 1, we use the bound:

P{In -2 /.W(2) > e} < 1 n -2/"EIW(2 ) I

n
	< -j 	 E 6 i-1-j E x -1- k

	E 	 k ^	 Aij#k	 i=1

-2/c+ 1

	

< n 	(EIE1I)2E^AT 1 	Pj!Pk #0, as n -* oo.
j#k

If a < 1, we apply a similar moment inequality with some 8 < a, and (32)
is proved. Formulae (31) and (32) imply

n-2/aWn2 = S2.	 (33)

Although (30) and (33) only provide convergence results of the marginal
distributions, it is not difficult to show that joint convergence holds: for
example, one could use the Cramer-Wold device (see Billingsley (1968)).
This leads to (12).

From (25), using relations (27), (28), (30), (33) and (12), we obtain

n

^(Un — a2) = _	 (Ui — a2 ) Op(n-1/2)

and this relation proves (11).
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Note that the assumption of stationarity of the solution of model (1),
based on the specific choice of X0, is not essential. Namely, instead of (23),
we can use the equality

n-1

X^, = bnX0 + E b len- i.
i=0

Indeed, X0 does not affect the limiting relations implying that we can get
the same limiting result, making non-essential changes in the proof.

Now we consider the "unit root" case b = 1. Here Xn = X0 + >j?_1 ei
is indeed a nonstationary sequence. Formulae (24) and (25) remain valid
setting b = 1 . Again, we need to find the limiting distributions of the
normalized sums (26). Consider the three-dimensional random vectors (i =
(ei, ei, ei ), i >_ 1, where ej and ei were introduced earlier and €i = Vi-2 . We
have

E€1 = 0, Eei = EV1 2 = a = a(ca),

Eei = EU1 EVi 2 = Q2 a,

E(ei — a) 2 = EVi 4 — a2 := bi,

Eel(ei — a) = Eelei = EU1 V1 3 = 0,

Eelei = EU1VV 1 = 0,

Eelel = EU1 = Q2 .

These relations show that despite the fact that all three coordinates of (1 are
dependent, the pairs (E1 i ei) and (E1, ei) are uncorrelated, and only el and E1
are linearly correlated. Furthermore, the third coordinate of <i has positive
mean, therefore, in order to construct the partial sum process, we need to use

centering. Let Z(t) = (Z(1) (t Z(2) (t Z(3) (t)), 0 < t < 1, where Z( (t) _
SW) ([ntj), S(1)	 = a-1n-1/a	

1 ei, Sn2) k = an 1 /2 Q 1 k>ii i e,
Sn,3) (k) = (nbl)-1/2 ^ i 1 (Ei — a). Let D3 - D([O,1],R3 ) be the usual
Skorohod space of cadlag functions on [0,1] with values in V . We recall
that by Ya (t), we denote a standard a—stable Levy motion, i.e., Ya (0) = 0
a.s., Ya has independent increments and Ya (t) — Ya (s) is an SaS random
variable having characteristic function (5) with a = (t — s) 1 /a for s < t.
The following lemma is important for the rest of the proof.

Lemma 2 For the partial sum process Zn , we have

Zn = W	 in D3,	 (34)

where W(t) = (Wl (t), W2 (t), W3 (t)), Wl (t) = Ya (t), W2 and W3 are stan-
dard Brownian motions. All three components of W are independent.

Proof of Lemma 2 is standard (see, for example, Mittnik, Paulauskas,
Rachev (1999)). We shall only show the independence of the coordinates of
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W. Independence of W1 from W2 and W3 follows from Sharpe (1969), and
the independence of W2 and W3 follows from their uncorrelatedness:

EW2 (t)W3 (t) = tE ^b = 0.
1

Again, for simplicity of notation, we consider the marginal distributions
only. We have

n
1	 i_i	

n	 i-1
_ 1 	1_i	 i _ 2

7a n 2 ^Ex`Yx-lA1 -n 2 °a 2 a
i=1	 i=1	 j=1

_ 	 X 	 i- 1

+	 ^j
0

-	 nau nl«Q
i=1	 j=1

n

_	 Snl) (i - 1) (S(2) (i) - S(2) (i - 1)) + Xon-1/aa -1S(2) (n )

i=1
Ti

=	 Z(1) ( i - 1 ) (Zr
) (^) - Z(2) ( i - 1 ) + OP (n

'/2)
n	 n	 n

i=1_ J 1

Z (1) (t)dZ (2) (t) + Op (n'/2),	 (35)
0

and

1 	^•	 2	 1	 (ëi - a + a) ( Xo	 1 ^: 2

n1+2/	
A-1X -

a a2b 1 L i x-1	 ^b1	 \anl/a + ant/a L,^^)
i=1	 i=1	 j=1

n	 2

_	 E (S(3) (i) — S(3) (i — 1)) (
	 + S(1) `b — 1))

i=1
Ti	 2

ii X0
+a> n \^ /M1/a + Snl) (i — 1)/

i=1	 1/^6
/ ' 1

= a J (Z(1) (u)) 2 du + Op (maxn -1 /a , n -1 / 2 ).	 (36)
o

To get the limiting distribution in (35), we use results concerning conver-
gence of stochastic integrals. This topic was discussed in detail in a similar
setting in our previous work Paulauskas, Rachev (1998), so we do not verify

here the so-called UT condition for the sequence Zn2) (t). The relations (34),
(35) and (36) lead to

1 	Ti	 1

a2 annl/«	
^xXx-1Ai 1 	f W1(t)dW2(t)	 (37)

	i=1	 °1 	 Inl+a/«gabAi1X? 	 a  W1 (u)du.	 (38)
1  
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From (25), using (37), (38) and the relation b n — 1 = Op (n, we
obtain

2	 n

	

^C Crz — 1) = 1 2	 (U? — Q2 ) + Op (n -1 / 2 ).	 (39)
	Q 	 7n

i=1

Thus, we have (11) in the case b = 1. Formulae (37)—(39) prove (13) and
the proof of Theorem 1 is completed.

Proof of Theorem 2. Theorem 2 is a straightforward generalization of
the one—dimensional result, and we shall give only a sketch of the proof.

From (16) and (17) we have

_
Bn — B = C,, 1 	V2 (Xi-1 . Ei)^

n=1

n—F'= nE(UiU2—z)+J1 +J2+J3,
i=1

where

n	 ^

Jl — E Ui (XV 1 )) (B — Bn ),
i=1	 i

1 n Xi-1

	

J2 = (B—Bn ) n 	Ui ,
	i=1	 2

1

	

J3 =	 n Xi-1 ( Xi-1 )n (B — Bn)1 UZ l Vi J (B — Bn ) ,
i=1

Cn = E Vz (Xi —1 . Xi-1)
i=1 i

In order to prove (18), we need to consider the joint distribution of (Cn , Wn ),
where Wn = 1 Vi 2 (Xi_1 •ei). Again, for simplicity of notation, we study
the marginal distributions only. Denoting Ei = UV[ ', we have

n
	W n =	 Xi_lei.

i=1

Under the assumption IIBII < 1, without loss of generality, we assume that

00
JXn = 

j=0

Then
	0o 	 n

n-1/a Wn = E Bin-1/a 	. E.
	j=0	 i-1
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Similarly to the one-dimensional case, we show that

n -1/a Wn = Z1,	 (40)

where Zl = (Z) 1k
 is jointly a-stable vector with scale parameters

depending on the unknown B and Z, (here we use results of Jakubowski and
Kobus (1984)), A complete description of this vector is rather complicated
and we do not provide it here (see Theorem 5.3 in Jakubowski and Kobus
(1984)).

Similarly,

Cn =	 12 (Xi-1 'Xi-1) _	 Bi (^ 12^i-1-jEti-1-e)B^$ = Cn l ^Cn2
i=1 Vi	 j,t	 i=1 Vi

where

j( n	 1 	^	 `	 ^.7
Cnl = ^B `^ V2 6i-1-jEi-1-j JB ,

	j=0	 i=1 2

n 1
n2 =	 B3	 V2 Ei-1_j^z_1-^ I B

	

j^1 	i=1 i

Since V[ 2 has all moments and the distributional tail behavior of the en-
tries of the matrix ei—l—jei- 1 — j is different on the diagonal and outside
the diagonal, it is not difficult to check that there exist diagonal random
matrices Tj with positive a/2—stable random variables T^(' l , i = 1, ..., k, on
the diagonal such that

	n -2 ^ a 	V2 (Ei-1-jEi_1-j )	 Tj
i=1 2

and
0"

n-2/o Cnl	 = Z2•
j=0

As in the one-dimensional case, we show that

n-2/a Cn2 = Op( 1 )•

Thus, we obtain
n-2^aCn = Z2 .	 (41)

From (40), (41) we get (18).
To prove (19), note that

1 	(UUU — Z) Z3
n

i=1

and Ji = op (1) for i = 1, 2, 3. Theorem 2 is now proved.
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