
Statistical Papers 43, 237-255 (2002) 
Statistical Papers 
�9 Springer-Verlag 2002 

Parameter estimation with grouped data 
according to the linearization method - 
a comparison with alternative approaches 
Max D. J~hnk and Stefan Niermann 

Institute for Quantitative Economics, University of Hannover, 
Koenigsworther Platz 1, 30167 Hannover, Germany 

Received: January 11, 2000; revised version: August 23, 2000 

Key Words: estimation; grouped data; linearization. 

This paper considers the problem of parameter estimation when data of a 
random sample are given in the form of a frequency table. We give spe- 
cial consideration to a method that linearizes the cumulative distribution 
function (CDF). In that case parameters can be derived from the weighted 
estimation of a linear regression equation. The favourable properties of this 
estimation technique are demonstrated in a simulation experiment, where 
the parameters of a two-parameter-Weibull distribution are estimated. 

1. I N T R O D U C T I O N  

In the process of working with data one often faces the problem that  the 
observations are only available in a grouped form. If one is interested in 
estimating the unknown paramaters of a distribution it is possible to apply 
the Maximum-Likelihood-Estimator for grouped data or the Minimum-Chi- 
Square-Estimator. These two methods are described by MCDONALD and 
RANSOM (1979). Another possible method is the quantile estimator that  
can be extended to the Minimum-Quantile-Distance~Estimator (JOHNSON, 
KOTZ and BALAKRISHNAN (1994)). An excellent additional reference to 
these estimation procedures is given by COX and HINKLEY (1974, p. 306). 

We present a new estimation method which can be applied to the most often 
assumed two-parameter distribution models. This method is numerically 
easy to perform, yields a closed form solution and has good properties. In 
section 2 the several estimation methods are described. In the third section 
these methods are compared with regard to their asymptotic properties. In 
order to be able to derive properties when the sample size is finite, simulations 
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are performed in section 4. 

2. E S T I M A T I O N  M E T H O D S  

With  given classes xi-1 < X _< 2~ for i = 1 , . . .  k the counts ni in a frequency 
table are random variables. The relative frequencies are denoted with 15i ---- 

k ni / (~ i=l  n~) = n J n  and the cumulated relative frequencies are denoted with 
for i = 1 , . . . , k  with i~k -- 1. 

The distribution of X depends upon an unknown parameter  vector, which is 
denoted with 0 .  The probabilities Pi := P(xi-1 < X < :ri) and Fi = P ( X  < 
xi) are functions of 8 as well. The supplement ( 0 )  is omitted unless this 
fact is to be stressed. Vectors and matrices are set in bold letters. 

The xi can be interpreted as empirical quantiles. However, note that  in a sit- 
uation with given class breaks not the quantiles Q(w), but the corresponding 
w depend upon the random sample. 

The alternative estimation methods are analyzed and compared: 

a) Maximum-Likelihood-Method 
Approach: 

b) 

Choose the parameter vector 0 such that  

(n,) 
L ( O ) =  ~ - 1 ] P i ( 0 ) " '  

is maximized. 

Minimum-Chi-Square-Method 
Approach: 

(i) 

c) 

Choose the parameter vector 0 such that  

X2 = ~_, [ni - npi(O )]2 
npi(O ) 

is minimized. 

Optimal  fit of cumulative distribution function 
Approach: 

(2) 

Choose the parameter vector 0 such that  

s~ = F_, ~ [ ~  - F,(O ) ] [ 6  - Fj(O )]w~j = [~ - F ( 0  ) ] ' W l [ ~  - F ( 0  )] 
i j 

(3) 
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is minimized. The inverse of the variance matrix 
V~. = E [ ( F - F ( 0  ) ) ( F - F ( 0  ))'] is an appropriate choice for W l .  This 
matr ix is given in section 3.2. 

d) Optimal fit of cumulative distribution function after lineaxization 

Method c) corresponds to the adaption of a nonlinear regression func- 
tion to the empirical CDF. Often it is possible to linearize this regres- 
sion function and consequently to adapt calculation methods  for the 
parameter  estimators in the linear regression model. 
The linearization is carried out using appropriate t ransformation func- 
tions g(-) and h(.), which enable us to write the CDF in the form 

h( F(x )  ) = t3o + 131. g(x).  

The idea is to plot g(xi) against h(F(s These points should scatter  
around a straight line if the assumed distribution is an appropriate 
model for the data. The estimates of the regression parameters  can be 
utilized for est imating the unknown model parameters. Additionally to 
parameter  estimation, this approach can be used as a check for model 
validity. 

Hence, the parameters/30 and fll are chosen such that  

$22 : E E [ h ( F i )  --  ]30 - ~1 "g(xi)]'w2j[h(gj) - ~ 0 -  ]31- g(xj)](4) 
i j 

= - - h(F( 0, 

is minimized. Here the function h is applied elementwise to the vectors 
F = F ( 0 )  a n d F = F ( 0 ) .  

The inverse of the variance matrix 

Va = E[h(F)  - h(F(f~0,/~l))][h(F) - h(F(~0, ~1))] t] 

is an appropriate choice for W2, which is given in section 3.3. 

Some examples for the linearization of the CDF follow. 

(i) The normal distribution 
For the normal distribution we have 

and 
1 

( I ) - I ( F ( x ) )  = - ~ -  + - - x  
(7 (7 

In this case h(y) is the inverse function of the CDF of the s tandard 
normal distribution and g(x) = x. Note that  the parameters  # and 
(7 of the normal distribution do not coincide with the regression 
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(ii) 

(iia) 

coefficients. We rather have flo = - # / a  and ~1 = 1/a. It follows 
5---- 1/~1 and f t - -  -~ / /~1 .  

The  normal probability paper  as described by JOHNSON, KOTZ 
and BALAKRISHNAN (1994) is based on this transformation.  

Just  like in the case of the normal  distr ibution there axe many 
other  distributions with g(x) = x. Distributions of this type are 
said to have a linear parametr ic  distribution. Examples are: 

The  two-paxameter exponential distribution: 

F(x) = 1 - e x p { - A ( x  - ~)} 

ln(1 - F(x)  ) = ,~  - ,~x 
It  follows h(y) = ln(1 - y). 

(iib) The  logistic distribution: 

F ( x )  = 
1 + exp( ) 

F(x)  ) _  m 1 
In 1 - F ( x )  - - - - d  +-~x 

It follows h(y )=  In (T~-y)" 

(iic) The  Gumbel  distr ibution (Extreme value distribution): 

1 -  

m 1 
l n ( - I n ( 1  - F(x)))  = - - ~  + -~x 

It follows h(y) = l n ( -  ln(1 - y)) . 

(iid) The  Cauchy distribution: 

F(x) = - a r c  tan + 
7r 

1 
tan(~(F(x)  - )) -- ~ + -dx 

where h(y) = tan(lr(y 1 - ~)). 
(iie) The  Perk distribution (Burr-VIII  distr ibution with k -- 1): 

F(x) = 2-~ �9 arctan (exp ( ~ ) )  

1 ~ ~ 1 n ( t a n ( ~ .  F(x)))  = - , .  + -f . x 

It follows h(y) = In(tan(try~2)). 
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(iii) Many distr ibutions have the property tha t  the logar i thm of the 
considered random variable has a linear parametric distr ibution:  
g ( x )  ---- ln(x). A well-known example for distributions of this type  
is the Gibrat  distribution. 

(iiia) The  Gibrat  distr ibution (Lognormal distribution): 

O_I(F(x)  ) = _ ~ _ +  l l n x  
o o 

(iiib) The  Pareto  distr ibution (Logexponential distribution): 

ln(1 - F ( x ) )  = p .  l n b -  p .  l n x  

This type of linearization is utilized in the Pareto diagram. 

(iiic) The  Fisk distr ibution (Loglogistic distribution): 

X p 
F ( x )  - - -  

cP + xP 

In 1 - F ( x ) ]  = - p ' l n c + p "  lnx  

(iiid) The  two-parameter  Weibull distribution (Loggumbel distr ibution):  

F ( x )  = 1 - e x p ( - a x  b) 

l n ( -  ln(1 - F ( x ) ) )  -- In a + b. In x 

The  functions h(.) of the cases ilia) - iiid) coincide with those of 
the cases i) and iia) - iic). 

(iv) Distr ibutions with three parameters can often be linearized with 
respect to the unknown parameters if one parameter  is known. 
Some examples follow. 

(ira) The  three-parameter  Weibull distribution: 

F ( x )  = 1 - e x p ( - a  . (x  - c) b) 

If e is known, this case obviously coincides with case iiid). How- 
ever, if b is known, the parameters  a and c can be es t imated  from 
the linearization 

( -  ln(1 - F ( x ) ) )  1/b = a 1/b . (x  - c) = - c .  a lib --~ a l /b*  x 

with h ( y )  = ( -  ln(1 - y)) l /b .  
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(ivb) The case of the lognormal distribution with three parameters is 
similar. 

In analogy to case iva) the estimation problem reduces to case 
iiia) if ~ is known. 

If a is known, the parameters ~ and # can be estimated from the 
linearization 

with h(y) = exp(o-. ~-1 (y). 

(ivc) Somewhat different is the case with the scale parametrized Burr- 
XII-distribution. 

1 
F(x)  = 1 

(1 § 

If k is known, c and A can be est imated from the linearization 

In ((1 - F(x))~. 1/k) -- - c .  ln(A) + c .  ln(x) 

with h(y) = ln((1 - y)- l /k  _ 1). 

If c and A are known, it is possible to est imate k from the lin- 
earization 

- l n ( 1 - F ( x ) ) = - k ' l n ( l + ( ~ )  c) 

in a linear regression without intercept. 

(ivd) This also applies to the scale parametrized Burr-III-distribution. 

If k is known, c and A can be est imated from the linearization 

ln (F(x)  -Uk - 1) = c .  ln(A) - c .  ln(x) 

with h(y) = ln(y -1/k - 1). 

If c and A are known, it is possible to est imate k from the lin- 
earization 

- l n ( F ( x ) )  = k . l n  1 + 

in a linear regression without intercept. 
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(v) Further  possibilities of linearization can be derived for distribu- 
tions as introduced by JOHNSON (1949) and for Burr-distr ibutions 
of the types V and VI. 

e) Minimum-Quanti le-Dist  ance- Method 

Choose the parameter  vector 0 such that 

S ] = [ ( ~ - Q ( O  ' ^ )] W3[Q - q ( o  )] (5) 

is minimized. A matr ix of weights was proposed by CARMODY, EU- 
BANK and LARICCIA (1984). 

Further methods  of estimation are not considered because they cannot  be  
classified. Notable are the approaches described by LAWLESS (1982) and 
CHENG and CHEN (1988). These approaches are based on the linearization 
of the survival respectively the hazard function of grouped lifetime data.  
Insofar these approaches are similar to method d). These approaches are 
based on the assumption that the hazard rate remains constant within the 
classes. This (usually violated) assumption is not needed when method  d) is 
applied. 

The unweighted versions of the methods c) to e) can be considered as sim- 
plifications of the weighted versions. 

All the methods  described above are based on the minimization or the max- 
imization of an objective function. It is clear that  two methods using the 
same objective function will render identical parameter  estimates. In case 
the objective function of one method is a monotone function of the object ive 
function of another method,  both methods will render identical parameter  
estimates, too. If two objective function converge to the same function as n 
increases, the parameter  estimates will coincide asymptotically (asymptot ic  
equivalence). 

3. A C O M P A R I S O N  O F  M E T H O D S  O F  E S T I M A T I O N  

3.1 ML - ESTIMATE AND MINIMUM - X 2 - ESTIMATE 

The ML-est imate uses the objective function: 

L = l_ii-(-~i!). �9 I I  pi(O )n~ with Pi = pi(O ) 

with the following equivalent (monotonely transformed) function 

l n L = ~ _ , n i . l n p i - ~ _ , n i . l n ~ i  

Because the second term does not depend upon 0 ,  L has a minimum at the 
same position as L. It follows: 

l n L = ~ - ~ n i l n  pin 
ni 
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For ln(x) we have the approximation ln(x) ~ (x 2 - 1)/2x with very good 
approximation results when x ~ 1. Therefore, 

(p n2 ) n ,  
In L ~ ~ ni \ n~ 1 2npi 

n 1 2 1 - 7  N ~ ' ~ - - - s x  ~ 
Pi 

First, we have that  the objective functions L and X 2 are approximately equiv- 
alent, where the approximation quality improves as ~ approaches pi(O ). 
With a correct model specification one will be able to find parameter val- 
ues 0 such tha t  p l i m ~  = Pi(O ) and accordingly both methods will yield 
asymptotically identical estimators. With an incorrect specification we still 
have pl im-~ = Pi, but it won "t be possible to represent Pi "= pi(O ). 

3.2 MINIMUM - X 2 ESTIMATOR AND 
OPTIMAL FIT OF THE CUMULATIVE DISTRIBUTION FUNCTION 

It can be shown that  both methods use the same objective function and 
therefore yield identical estimates. 

The comparison is complicated by the fact that  the minimum - X 2 estimator 
compares k relative frequencies I5i to k probabilities io/(0 ), whereas only 
k -  1 cumulated pairs/~i, Fi (e  ) are used for the optimal fit of the cumulated 
distribution function. Indeed both the vectors 15 = (15~,..., ~k) and p ( e  ) = 
( p l ( 0 ) , . . .  ,p~(0 )) have one superfluous element that  can be determined 
from the other k - 1 elements. It follows: 

k-1 

1 
k-1 

p~(O ) =  1 -  E pi(o ) 
i=l 

Nevertheless X 2 uses all the elements of the vectors 15 and p(8  ). 

X 2 = ~ (hi-  rtpi)2 n ~  (Pi- Pi) 2 
i=1 np i  i=1 Pi 

Ei=I Pi) (1  k - 1  2 - -  - - -  E i = l  Pi)] = ny~k-1 ( P i - P i )  2 -4- n [ ( 1  k - 1  ^ 

- -  Y]~i=l  Pi i=1  Pi 1 k-~  

(~-"]i=1 Pi k-1 - -  ~ i = l  (~i - pi) ~ + -k--:r-:-~ 
= n / i = l  Pi 1 - -  ~--'~i=1 Pi 

I ~  k-1 ^ 2 I (p, - p,)] 
(~i _p~)2 + ~-wk--r : -_  

= n ~ i=l Pi -- L i= I  Pi 
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For the rest  of  this sec t ion  the  first k - 1 elements of  15 and p ( 0  ) will be  
denoted  by 15 and  p(0 ). 
Hence, in m a t r i x  r ep resen ta t ion  we have: 
Let  1 be a vec tor  of  ones. Consequent ly  11'  is a square m a t r i x  of  ones. Let  
fu r ther  be  ~ a d iagonal  m a t r i x  set up from the elements  of the  vec to r  x.  I t  
follows: 

 -x2n : (15 - ")' [(15)-' + 11']pk j (15 - ") 

Note tha t  the  vectors  p and  15 consist of k - 1 e lements  and  t h a t  Pk = 

1 k-1  - -  ~-~i=1 Pi  = 1 - l ' p .  T h e  ma t r ix  pu t  in brackets [. . .]  is by the  way the  
inverse of the  va r i ance -ma t r ix  of 15: 

V~ -- E(15 - p)(15 - p ) '  = 15 - p p ' .  

This  can easily be seen by 

(15 _ pp,)((15)_ 1 + 11')  
Pk 

= I - p l  I + - -  

I t  follows the  represen ta t ion :  

X 2 

n 

p l '  p(1 - - p k ) l '  _ I q .e .d .  

Pk Pk 

-- (15 - p) 'V~l(15 - p)  

From this r ep resen ta t ion  the  variance ma t r ix  Vp and  its inverse can  be  de- 
rived. 

Because 

K = 

(cumula t ion  ma t r ix )  

and 

1 0 - . -  0 

1 1 "'. : 

: : " ' .  0 

1 1 - . .  1 

( F  - F )  = K(15 - p )  

V p  = E [ ( F  - F ) ( F  - F) ']  = E[K(15 - p)(15 - p ) 'K ' ]  = K V : K '  

i t  follows 
V ~  I = K ' - I V : t K  - 1 , p  
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where 
1 0 . . . . . .  0 / 

- 1  1 ! 

K-1 = 0 - 1  

: 0 ",. 

0 0 - 1  1 

(decumulat ion matrix).  Therefore, 

X 2 
n = (~ - P ) 'V~I (P  - p) = (~ - P ) ' K ' K ' - I V ~ I K - 1 K ( p  - p) 

= (F - F ) ' V ~  1 (F - F) '  

The  es t imat ion methods are identical if the  approriate weighting mat r ix  is 
used. Note, t ha t  V~ 1 is the appropriate weight matr ix  W l  in equat ion 3. 

3.3 O P T I M A L  FIT OF THE CUMULATIVE DISTRIBUTION FUNCTION 
WITH AND W I T H O U T  LINEARIZATION 

An approximat ion of the the linear regression equation vi = h (F i ) -h (x i ;  3o, 31) 
can be obta ined by developping the dis turbance terms of the nonlinear re- 
gression equat ion 

ui = Fi - F(xi ;  fl0, ill) 

in a Taylor expansion: 

h( F(  xi; rio, 31)) = h( Fi - ui). 

This  yields 

h(/~/) = h(F(x i ;  rio, ~1)) + (Fi - F(xi;/30,/~1)) �9 h'(F(xi;  rio,/~1)) + . . .  
= h(F(x i ;  rio, 31)) + ui" h ' (F(xi;  rio, j31)) + . . .  

= h(F(xi; f lo ,31))  + ui" h'(Fi) + . . .  

= a + b.  o ( x , )  + h' (P, )  + . . .  

W i t h  n ~ c~ the  approximation error converges to zero. 

Let V v  denote  the variance matr ix of the disturbance vector u. It coin- 
cides with the variance matr ix V~.. Then  the variance matr ix V v  of the 
dis turbances v is approximately given by 

V v  = diag( h' ( Fi) ) V ~ d i a g (  h' ( Fi ) ) (6) 
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This matrix coincides with the variance matrix Vh and therefore is an ap- 
propriate matr ix of weights W2 in equation 4. 

The objective function S 2 differs only insofar from the objective function S 2 
as the disturbances cannot be transferred exactly in the linearization proce- 
dure. Wi th  a growing number of observations this effect of the linearization 
converges to z e r o .  The methods described in c) and e) are therefore asymp- 
totically equivalent. 

3.4 O P T I M A L  FIT OF THE CUMULATIVE DISTRIBUTION F U N C T I O N  
AND MINIMUM - QUANTILE - DISTANCE - M E T H O D  

In case the quantile function is linear in the coefficients - and that  is al- 
ways the case if the cumulative distribution function can be linearized - 
the minimum-quanti le-distance-method is just  the estimation of the inverse 
regression equation compared to the linearized cumulative distr ibution func- 
tion. This inversion leads to a modification of the regression results. But  
given a correct specification of the model, the observations are located on a 
straight line as n converges to infinity. Therefore, the estimation results have 
to coincide asymtotically. 

In case the quantile function can not be lineaxized, this argumentat ion still 
applies. As above, the minimization of the quantile distances is the inversion 
of the optimal fit of the cumulative distribution function. Therefore, the 
estimation differences have to disappear as n converges to infinity if the 
model is specified correctly. 

4. A N  A P P L I C A T I O N :  
T H E  T W O - P A R A M E T E R  W ' E I B U L L  D I S T R I B U T I O N  

We consider the two-parameter Weibull distribution with the shape param- 
eter b and the scale parameter  a. This distribution can be interpreted as 
a generalization of the exponential distribution, which is a special case as 
b = 1. The hazard rates of an exponential distribution axe constant.  The 
Weibull distr ibution might be used in order to model rising (b > 1) or falling 
(b < 1) hazard rates. 

The density function of the two-parameter Weibull distribution is given by 

= b .  b, �9 > O. 

Consequently, 
F ( x )  = 1 - e x p ( - a  . xb).  

The problem of est imating the parameters of a Weibull distr ibution is de- 
scribed in detail by JOHNSON, KOTZ and BALAKRISHNAN (1994). Our  es- 
t imation problem is est imating the parameters a and b, when the da ta  are 
grouped. With  given breaks (x0, Xl , - - - ,  xk) the cell counts ni  and the derived 
expressions are random variables. For the two-parameter Weibull we have: 
x0 ---- 0 and xk = oc. 

The different estimation methods are presented and compared in a simulation 
s tudy in order to analyze the properties of the estimates for finite sample 
sizes. 
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4.1 MAXIMUM - LIKELIHOOD - ESTIMATION 

The likelihoodfunction for the given case is: 

L ( n l ,  n 2 ,  . . . , nk ;  a ,  b) ---- I I  {P(X in class i)(a,b)}"' 
i 

= I I  - a,  b)}  TM 

i 

i 

(7) 

The function ln(L(nl,  n 2 , . . . ,  nk; a , b ) )  is maximized with regard to the pa- 
rameters  a and b. There is no closed form for the parameter  estimated and 
this function has to be maximize numerically. 

4.2 MINIMUM - QUANTILE - DISTANCE - ESTIMATION 

MQD estimation is a generalization of the ordinary quantile estimation, 
where all known quantiles are utilized for the parameter  estimation. The 
quadratic form in equation 5 is minimized with regard to the unknown pa- 
rameters  a and b. 

In case the weight matrix W is the unit matrix, equation 5 represents the 
sum of the squared distances of the empirical and the theoretical quantiles. 
This kind of estimation is called unweighted MQD estimation. 

For the weighted MQD estimation the matr ix  W3 was used. If this matr ix  
of weights is used, the parameter  estimates can only be determined numeri- 
cally. According to CARMODY, EUBANK and LAPdCCIA these estimates are 
unique, consistent and asymptotically normal. 

Again, it has to be mentioned that  the cell counts have to be interpreted as 
random variables, when the breaks are given. Therefore, in many applica- 
tions, this method is not appropriate from a theoretical point of view. 

4.3 OPTIMAL FIT OF THE CUMULATIVE DISTRIBUTION FUNCTION 
A F T E R  LINEARIZATION 

The expression in equation 3 is minimized, where the inverse of the vari- 
ance matr ix  of the vector with the cumulated relative frequencies, Vp, is an 
appropriate matr ix  of weights. 

For the two-parameter Weibull however, the cumulative distribution function 
can be linearized: 

P ( 2 i )  = 1 - e x p ( - a s  ~ l n ( -  ln(1 - / ? ( 2 , ) ) )  = ln(a) + b-ln(2,)  (8) 

The problem of estimating the unknown parameters of a two-parameter 
Weibull distribution is hence reduced to fitting a weighted least squares equa- 
tion. 
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I n ( -  ln(1 - Fi)) =/3o +/31. ln(~i) + vi for i = 1 , . . . ,  k - 1 (9) 

For the determinat ion of the variance matrix of the vector v we use the 
formula given in equation 6. With h(/~) = l n ( -  ln(1 - F) )  it follows: 

n .  V v  = 

i11 , I F 2 . 1 n ( 1 - F I ) . I n ( 1 - F 2 )  F 2 . 1 n 2 ( 1 - F 2 )  " " " F k _ l . l n ( 1 - F 2 ) . l n ( 1 - F k _ l )  

: - . . .  ; 

l - - F k _ l  l - - F k _ l  l - - F k _ l  

F t c _ l . l n ( 1 - - F 1 ) . l n ( 1 - - F k _ l )  F k _ l . l n ( 1 - F 2 ) . l n ( 1 - - F k _ l  ) �9 . . F k _ l . l n 2 ( l _ F k _ l )  . 

On the basis of Equat ion 9 we can then perform a weighted least squares 
regression, where the inverse of V v  is an appropriate matrix of weights. 

This is an Aitken-estimation of a least squares line. If the parameters  of 
equation 9 are est imated OLS, the estimation procedure is called unweighted 
linearization method.  

For the parameters  of the Weibull-distribution it follows /~ = /~1 und ~ = 

exp(~o ). 

Additionally, the well-known results of Aitken-estimates may be carried over 
to the problem of estimating the shape parameter of a Weibull distribution. 

4.4 DESCRIPTION OF THE SIMULATIONS 

In order to analyze the properties of the alternative estimation methods  sim- 
ulations are performed. First, a random sample was drawn from a Weibull 
distribution with a ---- 1 and b -- 0.5, 1, 2, respectively. Five classes were set 
up. The breaks were chosen to match the 0.2, 0.4, 0.6 and 0.8 quantile of 
the underlying theoretical distribution. Parameter estimation was then per- 
formed on the basis of the resulting frequency distributions. The statist ical  
package S-PLUS was used to perform the simulations with 1000 replications. 
The S -PLus  function nlmin() was used to determine those est imators tha t  
do not have a closed form. In these cases the true parameter  values were 
taken as s tar t ing values of the optimization algorithm. Therefore, no conver- 
gence problems were encountered. Additionally, it has to be mentioned that  
parameter  b goes into the weight matrix proposed by CARMODY, EUBANK 
and LARICCIA (1984). Therefore, method M Q D E  performs slightly be t te r  
than it would do in a real-world situation. 
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Method 
Maximum-Likelihood-Method 
Optimal fit of the cumulative distribution 
function after linearization 
Optimal fit of the cumulative 
distribution function 

(unweighted) 
(weighted) 
(unweighted) 
(weighted with F) 
(weighted with/~) 

Name 
ML 

LCDU 
LCD 
OFU 
OFF 

OFFhat 
Minimum Quantile Distance Estimation (unweighted) MQDEU 

(weighted) MQDE 

Table  1: Estimation methods under consideration 

The simulation results - mean, variance and mean square error (MSE) - are 
given in the appendix. 

It is striking that almost all the methods lead to biased estimators. The bias 
disappears however, as the sample size increases. Biased, but asymptotically 
unbiased estimators will often yield the following typical pattern in simula- 
tion studies: The empirical biases have the same sign for different sample 
sizes, but the bias decreases as the sample size increases. For example we get 
for the maximum-likelihood-estimate of the parameter a: 

true values of mean estimate of a 
the parameters n=50 

a---l, b--0.5 1.0217 
a--l, b = l  1.0158 
a=l ,  b=2 1.0200 

Table  2: Bias of ~. 

n=lO0 n=200 
1.0040 1.0033 
1.0052 1.0032 
1.0064 1.0035 

This pattern is a clear sign for the fact that the ML-estimator for the param- 
eter a is - just like the ML-estimator for the parameter b - upward biased. 
The estimates resulting from weighted estimation of a straight line are up- 
ward biased with regard to parameter a and downward biased with regard 
to paramter b. The sizes of the biased are of similar magnitudes. 

Another observation is the inferior influence of the bias on the MSE. The 
MSE has approximately the same value as the variance. 

In order to compare the properties of the methods - analogous to the concept 
of relative efficiency - the MSEs of the different methods are compared to 
the MSE of the best method. Additionally, the ranks are given with the best 
method having rank 1. 
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LCDU 
LCD 
ML 
MQDU 
MQD 
OFU 
OFF 
OFFhat 

n=50 
1.052 (4) 
1 (I) 
1.o3o (3) 
1.182 (8) 
1.023 (2) 
1.057 (5) 
1.171 (7) 
1.137 (6) 

a = l ,  b=0.5 
parameter  a [ parameter b 

n--100 n--200 n=50 
1.033 (5) 
1.011 (2) 
1.019 (3) 
1.123 (8) 
1.010 (4) 
1.080 (7) 
1 (i) 
1.043 (6) 

1.241 (6) 
1.154 (4) 
1.067 (2) 
2.243 (8) 
1.221 (5) 
i (1) 
1.088 (3) 
1.289 (7) 

n=100 
1.139 (6) 
1.o3o (2) 
I (1) 
2.321 (8) 
1.116 (4) 
1.123 (5) 
1.107 (3) 
1.174 (7) 

1.033 (4) 
1 (1) 
1.013 (3) 
1.141 (5) 
1.011 (2) 
1.302 (7) 
1.178 (6) 
1.211 (8) 

n=200 
1.251 (7) 
1.155 (6) 
1.098 (3) 
2.390 (8) 
1.129 (4) 
1.143 (5) 
1.058 (2) 
I (1) 

Table  3: Simulation results (a = 1, b -- 0.5) 

a=1, b = l  
parameter  a [ parameter b 

n=100 n--200 n=50 
LCDU 
LCD 
ML 
MQDU 
MQD 
OFU 
OFF 
OFFhat  

n----50 
1.043 (4) 
1 (1) 
1.030 (3) 
1.053 (5) 
1.009 (2) 
1.119 (6) 
1.148 (7) 
1.204 (8) 

1.066 (6) 
1.032 (2) 
1.046 (4) 
1.067 (7) 
1.040 (3) 
1.057 (5) 
I (1) 
1.166 (8) 

1.114 (4) 
1.108 (3) 
1.117 (7) 
1.115 (6) 
1.114 (5) 
1.105 (2) 
I (1) 
1.155 (8) 

1.169 (6) 
1.136 (4) 
1 (1) 
1.301 (8) 
1.066 (2) 
1.147 (5) 
1.097 (3) 
1.260 (7) 

n=100 
J 1.080 (5) 

1.048 (3) 
1 (1) 
1.322 (8) 
1.008 (2) 
1.073 (4) 
1.117 (6) 
1.142 (7) 

n----200 
1.109 (7) 
1.033 (3) 
1 (I) 
1.286 (8) 
1.019 (2) 
1.056 (4) 
1.085 (6) 
1.064 (5) 

Tab le  4: Simulation results (a -- 1, b = 1) 

a-- l ,  b--2 
parameter  a parameter b 

LCDU 
LCD 
ML 
MQDU 
MQD 
OFU 
OFF 
OFFhat  

n=50 
1.072 (6) 
1.023 (2) 
1.055 (5) 
1.073 (7) 
1.026 (3) 
I (I) 
1.257 (8) 
1.028 (4) 

n=lO0 
1.031 (6) 
i (1) 
1.014 (3) 
1.021 (5) 
1.003 (2) 
1.042 (8) 
1.017 (4) 
1.o36 (7) 

n----200 
1.028 (6) 
1.006 (2) 
1.012 (4) 
1.019 (5) 
1.oo6 (3) 
1.050 (7) 
1 (i) 
1.108 (8) 

n=50 
1.185 (8) 
1.072 (3) 
i (1) 
1.088 (6) 
1.o22 (2) 
1.073 (4) 
1.076 (5) 
1.173 (7) 

n=100 
1.163 (8) 
1.o29 (5) 
1.006 (3) 
1.060 (6) 
1.012 (4) 
1.oo6 (2) 
1 (1) 
1.079 (7) 

n----200 
1.145 (8) 
1.082 (6) 
1.054 (4) 
1.086 (7) 
1.066 (5) 
1.o19 (3) 
1.016 (2) 
1 (1) 

Table  5: Simulation results (a = 1, b = 2) 

The interpretation of these simulation results is based on stable patterns 
within the simulation results as described above (table 2). However, in order 
to gain a feeling of how many digits can be believed in, we performed repli- 
cated simulations for the case a -- b -- 1 and n = 200. The results of these 
simulations are given in table A4. 

With regard to parameter  a method LCD dominates the ML-method in all 
the cases. Wi th  regard to parameter b the ML-method is superiour to the 
LCD method. In view of the fact that  only the methods bases on the lin- 
earization of the cumulative distribution function (LCD and LCDU) lead to 
parameter estimates with a closed form and all other estimates have to be 
determined numerically, it can be concluded that  method LCD represents a 
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s u i t a b l e  e s t i m a t i o n  m e t h o d .  T h e  p r o p e r t i e s  o f  t h o s e  e s t i m a t e s  a r e  c o m p a r a -  
b l e  t o  t h e  p r o p e r t i e s  o f  t h e  M L - e s t i m a t e s .  O n  t h e  o t h e r  h a n d  t h e y  r e q u i r e  
less  c a l c u l a t i o n  effor t .  

T h e r e f o r e ,  t h e  e s t i m a t i o n  m e t h o d  L C D  c a n  b e  r e c o m m e n d e d  for  r e a l - w o r l d  
a p p l i c a t i o n s .  

A P P E N D I X  A I :  S I M U L A T I O N  R E S U L T S  

a - - l ,  b=0.5 
estimates for a estimates for b 

n--50 n=100 n--200 n--50 n--100 n=200 
Mean 1.0219 1.0049 1.0034 0.5162 0.5072 0.4995 

LCDU Variance 3.128 1.173 0.6425 0.8343 0.3452 0.1808 
MSE 3.172 1.174 0.643 0.8598 0.3464 0.1807 
Mean 1.0268 1.0066 1.0047 0.4868 0.4927 0.4927 

LCD Variance 2.947 1.134 0.6276 0.7827 0.3082 0.1618 
MSE 3.016 1.137 0.6292 0.7992 0.3132 0.1669 
Mean 1.0217 1.004 1.0033 0.5131 0.505 0.4988 

ML Variance 3.062 1.151 0.6339 0.7227 0.302 0.1586 
MSE 3.106 1.152 0.6343 0.7391 0.3042 0.1586 
Mean 1.0357 1.0111 1.0062 0.4996 0.4965 0.4959 

MQDU Variance 3.442 1.286 0.6959 1.556 0.7055 0.344 
MSE 3.566 1.297 0.699 1.554 0.706 0.3454 
Mean 1.0152 1.0026 1.0021 0.5196 0.5073 0.5 

MQD Variance 3.064 1.15 0.6366 0.847 0.3345 0.1631 
MSE 3.084 1.149 0.6346 0.8461 0.3394 0.1631 
Mean 1.0262 1.0123 0.9989 0.511 0.5054 0.50384 

OFU Variance 3.1225 1.4664 0.6728 0.6814 0.3391 0.1639 
MSE 3.188 1.48 0.6722 0.6927 0.3417 0.1652 
Mean 1.0243 1.0101 1.0074 0.5179 0.5037 0.5031 

O F F  Variance 3.475 1.3303 0.6175 0.7426 0.3357 0.1521 
MSE 3.5305 1.339 0.6226 0.7535 0.3368 0.1529 
Mean 1.0030 0.9995 0.9999 0.5118 0.4993 0.4984 

OFFha t  Variance 3.4319 1.379 0.6499 0.8936 0.3575 0.1444 
MSE 3.4294 1.3774 0.6492 0.8928 0.3572 0.1445 

T a b l e  A I :  Simulation results (a = 1, b -- 0.5) 
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a = l ,  b = l  
estimates for a estimates for b 

n=50 n=100 n--200 n=50 n=100 n=200 
Mean 1.0164 1.0052 1.0034 1.0315 1.0127 1.0048 

LCDU Variance 2.687 1.387 0.6726 2.929 1.381 0.6883 
MSE 2.711 1.388 0.6731 3.026 1.396 0.6899 
Mean 1.0214 1.008 1.0045 0.9692 0.9852 0.9909 

LCD Variance 2.557 1.339 0.6678 2.848 1.333 0.6351 
MSE 2.6 1.344 0.6692 2.94 1.354 0.6427 
Mean 1.0158 1.0052 1.0032 1.2039 1.0108 1.0028 

ML Variance 2.655 1.361 0.6746 2.533 1.282 0.6219 
MSE 2.677 1.362 0.6749 2.588 1.292 0.622 
Mean 1.0222 1.0081 1.0048 1.0179 1.009 1.0008 

MQDU Variance 2.692 1.385 0.6719 3.337 1.702 0.8009 
MSE 2.739 1.39 0.6735 3.366 1.708 0.8002 
Mean 1.0147 1.0051 1.0032 1.0055 1.0016 0.9984 

MQD Variance 2.603 1.354 0.6726 2.758 1.303 0.6341 
MSE 2.623 1.355 0.673 2.758 1.302 0.6337 
Mean 1.0211 1.0072 1.0037 1.0260 1.01566 1.00301 

OFU Variance 2.867 1.3726 0.6667 2.904 1.3633 0.6565 
MSE 2.909 1.3765 0.66745 2.969 1.3865 0.6568 

OFF 
Mean 
Variance 
MSE 
Mean 

OFFhat  Variance 
MSE 

1.016 1.0067 0.9984 
2.962 1.299 0.6044 
2.984 1.3024 0.6041 
0.9951 0.9999 1.0022 
3.1304 1.5196 0.69815 
3.1296 1.5181 0.69796 

1.0279 1.01521 1.0104 
2.7647 1.4213 0.665 
2.8398 1.443 0.6751 
0.9992 1.0063 0.9974 
3.265 1.4731 0.6618 
3.262 1.4756 0.6618 

Tab le  A2: Simulation results (a = 1, b = 1) 
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a = l ,  b=2 
estimates for a estimates for b 

n=50 n=100 n=200 n=50 n=100 n=200 
Mean 1.0201 1.0063 1.003 2.2569 2.0262 2.0123 

LCDU Variance 2.996 1.31 0.6401 12,53 5.829 2.871 
MSE 3.034 1.313 0,6403 12.84 5.892 2.883 
Mean 1.0252 1.009 1.005 1.9412 1.9727 1.9859 

LCD Variance 2.834 1.267 0,6246 11.27 5.145 2.705 
MSE 2.895 1.274 0,6264 11.61 5.214 2.722 
Mean 1.02 1.0064 1.0035 2.0439 2.0208 2.0124 

ML Variance 2.95 1.29 0.6298 10,65 5.056 2.639 
MSE 2.987 1.292 0.6304 10.83 5.094 2.652 
Mean 1.0242 1.0082 1.0045 2.075 2.0345 2.0206 

MQDU Variance 2.98 1.295 0.6334 11.24 5.245 2.694 
MSE 3.036 1.301 0,6348 11.79 5.37 2.734 
Mean 1.0222 1.0077 1.0043 1.9746 1.988 1.9939 

MQD Variance 2.857 1.273 0.626 11.01 5.116 2.681 
MSE 2.903 1.278 0.6267 11.07 5.125 2.682 
Mean 1.01088 1.0085 1.0039 2.0461 2.0312 2.0106 

OFU Variance 2.8211 1.322 0.6531 11.42 5.006 2.556 
MSE 2.8301 1.328 0.654 11.62 5.098 2.565 
Mean 1.0136 1.0071 1.0064 2.0493 2.0179 2.0126 

OFF  Variance 3.543 1.292 0.6194 11.42 5.038 2.543 
MSE 3.558 1.296 0.6229 11.65 5.065 2.556 
Mean 0.9995 0.9964 0.9974 2.0021 1.999 2.002 

OFFha t  Variance 2.914 1.3197 0.6904 12.73 5.471 2.519 
MSE 2.911 1.3196 0.6904 12.71 5.466 2.516 

T a b l e  A3:  Simulation results (a = 1, b : 2) 

I, n ---- 200 a = l , b =  

I a l  b a b 
1.0045 0.9909 1.0032 1.0028 

mean 1.0100 0.9925 mean 1.0088 1.0041 
1.0056 0.9935 1.0043 1.0054 

LCD 0.6678 0.6351 ML 0.6746 0.6219 
var 0.6588 0.6229 var 0.6648 0.6163 

0.6564 0.6152 0.6609 0.6077 

T a b l e  A4:  Validity of simulation results 
A P P E N D I X  A2:  S - P L u s - C O D E  

The following function migth be used to estimate the parameters of a Weibull distribtion 
with density 

f (x)  = a . b . x  b-l . e x p ( - a . x  b) a,b,x > O, 

where weibull.lcd[1] is the estimator for a and weibull.lcd[2] is the estimator of b. The 
inputs x and y are vectors of equal length with x =  (xl . . . .  ,xk) and y =  F ( x l , . . . , / 7 ( x k )  = 
1. 

weibull, icd<- function (x, y) 
{ 

# This function finds the estimates a and b of a 

# two-parameter weibull distribution. 
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# Inputs are: 
# x: vector of quantiles (breaks) 
# y: vector of corresponing proportions h(X<=x) 

# initialization of sigma 
sigma <- matrix(rep(O, length(x)^2), nro,= length(x)) 

# data matrix 
X.stern <- matrix(c(rep(1, length(x)), log(x)), nrow = length(x), byrow = F) 

# data matrix 
y.stern <- log( - log(i - y)) 

# filling sigma: 
for(i in l:length(x)) { 

for(j in l:length(x)) 
{sigma[i ,  j]  <- (y[min(i ,  j ) ] ) / ( ( 1 -  

y[min( i ,  j ) ] )  * log(1 - y [ i ] )  * log(1 - y [ j ] ) )  
} 

} 
# estimation of beta 

beta <- solve(t(X.stern) Y,*Y, solve(sisma) Y,*~, X.stern) Y,*Y, 
t(X.stern) Y,*~, solve(sigma) Y,*Y, y.stern 

return (c (exp (beta [i] ), beta [2] ) ) 
} 
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