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of obesity is multifactorial and results from complex inter-
actions between genetic and environmental factors. Among 
the environmental factors involved, the consumption of an 
unbalanced diet and a lack of physical exercise can play 
significant roles (Le Lay et al. 2014; Li et al. 2019). Conse-
quently, a positive energy imbalance occurs in which caloric 
intake exceeds energy expenditure, directly contributing to 
the development of obesity (Montalbano et al. 2021).

Obesity is associated with severe cellular damage that 
is mainly attributed to an exacerbated inflammatory state 
and high production of free radicals, such as hydroxyl and 
superoxide radicals (França et al. 2013). Under normal 
homeostatic conditions, these free radicals are effectively 
neutralized by antioxidant enzymes, including superoxide 
dismutase (SOD), catalase (CAT) and glutathione S-trans-
ferase (GST) (Hayes et al. 2005; Barbosa et al. 2010; 
Brieger et al. 2012; Mazari et al. 2023; Jena et al. 2023). 
However, in obese organisms, the capacity of antioxidant 
enzymes to counteract the high percentage of free radicals 
is insufficient, resulting in a redox imbalance that promotes 

Introduction

Obesity is a condition characterized by the excessive accu-
mulation of both visceral and subcutaneous adipose tissue 
(Montalbano et al. 2021). This condition has serious health 
implications, such as the development of diseases such as 
atherosclerosis, type 2 diabetes mellitus, and cardiovascular 
diseases (Nakayama et al. 2020; WHO 2021). The etiology 
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Abstract
The present study aimed to establish zebrafish as an experimental model for investigations into obesity and physical exer-
cise, as well as to assess the effects of these factors on metabolism. The experiment spanned twelve weeks, comprising a 
feeding trial during which the last four weeks incorporated a physical exercise protocol. This protocol involved placing 
fifteen animals in a five-liter aquarium, where they were subjected to swimming at an approximate speed of 0.08  m/s 
for 30 min daily. Throughout the experiment, histological analyses of visceral, subcutaneous, and hepatic adipose tissues 
were conducted, along with biochemical analyses of total cholesterol and its fractions, triglycerides, glucose, lactate, and 
alanine aminotransferase (ALT) levels. Additionally, oxidative stress markers, such as reactive oxygen species (ROS) 
levels, superoxide dismutase (SOD) activity, and catalase activity and the formation of thiobarbituric acid-reactive sub-
stances, were investigated. The results revealed that the group fed a high-fat diet exhibited an increase in ROS production 
and SOD activity. In contrast, the group administered the high-fat diet and subjected to physical exercise demonstrated a 
notable reduction in visceral adipocyte area, hepatic steatosis levels, ALT levels, and SOD activity. These findings indicate 
that physical exercise has a positive effect on obesity and oxidative stress in zebrafish, providing promising evidence for 
future investigations in this field.
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lipid peroxidation, also known as oxidations (DNA, protein) 
(França et al. 2013).

Mitigating the damage caused by obesity can be achieved 
through two main strategies: dietary modifications and 
adopting a lifestyle that includes regular physical exercise 
(Ming Fock and Khoo 2013). However, sporadic physical 
exercise to exhaustion can lead to muscle cell damage, as 
evidenced by an increase in the plasma levels of cytosolic 
enzymes (Armstrong et al. 1983; Inglés et al. 2016). This 
phenomenon is a result of high free radical production, cul-
minating in oxidative stress (Gomez-Cabrera et al. 2008). 
Conversely, when physical exercise is regularly practiced 
at moderate intensity, the generation of free radicals, such 
as reactive oxygen species (ROS), is counterbalanced by 
the simultaneous increase in antioxidant enzymes, such as 
SOD, CAT, and GPX (Viña et al. 2000; Simioni et al. 2018; 
Powers et al. 2023). Importantly, the production of ROS 
during moderate physical exercise is beneficial because 
these reactive species are essential for inducing the adaptive 
effects of physical exercise (Powers et al. 2020).

Zebrafish (Danio rerio) have emerged as a model organ-
ism in research addressing various metabolic alterations, 
including diabetes, obesity, and their resulting oxidative 
stress effects (Dandin et al. 2022; Chen and Liu 2022). Their 
advantages, such as low maintenance costs; high reproduc-
tive rate; short generation time (approximately 3 months); 
large number of eggs per spawn; and, most importantly, 
high genetic, anatomical, and physiological homology with 
mammals, make them a highly attractive model (Goldsmith 
and Jobin 2012; Ribas and Piferrer 2014). These charac-
teristics have established zebrafish as a potential model for 
exercise-related studies, as demonstrated in previous studies 
(Heinkele et al. 2021; Wang et al. 2022; Martins et al. 2023). 
However, despite the growing interest in using zebrafish in 
exercise-related research, the effects of exercise-induced 
oxidative stress in zebrafish fed a high-fat diet have not 
been adequately elucidated. Therefore, this study aimed to 
establish zebrafish as an experimental model for investigat-
ing obesity and physical exercise, as well as to assess the 
effects of these factors on metabolism.

Materials and methods

Ethical aspects

All the experimental procedures were conducted at the 
Central Animal Facility of the Federal University of Lavras 
(Lavras, Minas Gerais, Brazil) and were approved by the 
Institutional Animal Ethics Committee of the Federal Uni-
versity of Lavras (protocol 042/2019).

Fish

Zebrafish (D. rerio) males at five months postfertilization 
were obtained from a local supplier and acclimated for a 
period of 10 days in a 500 L tank before obesity induction. 
Throughout the acclimation period, the animals were fed 
commercial flaked feed containing 43% crude protein and 
6.5% crude fat (Ovo•Vit®, Chorzów, Poland). The photope-
riod was maintained at 14:10 h, and water quality parameters 
such as temperature and pH were monitored and maintained 
within the ideal range for the species (Lawrence 2007).

Diet

Two semipurified diets with different levels of fat were 
formulated (Table 1) using SuperCrac 6.1 diet formulation 
software (TD Software, Viçosa, MG, Brazil). The ingre-
dients were carefully mixed and moistened with approxi-
mately 40% water. The mixture was then forced through a 
meat grinder to produce pellets, which were subsequently 

Table 1  Ingredients and approximate composition of the control and 
HFD diets
Ingredients (%) Diets

Control a HFD b

Egg yolk 10.40 28.57
Albumin 31.12 23.61
Corn starch 29.95 21.28
Fish meal 10.00 10.00
Gelatin 6.00 6.00
Soybean oil 2.00 5.00
Bicalcium phosphate 3.00 3.00
Cellulose 6.00 1.00
Vitamin premix1 1.00 1.00
Salt 0.50 0.50
BHT2 0.02 0.02
Centesimal composition3

Gross energy (kcal/kg) 4.630 4.889
Ether extract (%) 8.32 19.77
Protein (%) 40.02 39.31
Ash (%) 6.65 6.20
Moisture (%) 5.44 6.03
Dry matter (%) 94.56 93.97
Control diet a. High-fat diet b. Guaranteed levels of vitamin 
and mineral supplementation per kilogram of product: vit. 
A = 1200,000 IU; vit. D3 = 200,000 IU; vit. E = 12,000  mg; 
vit. K3 = 2400  mg; vit. B1 = 4800  mg; vit. B2 = 4800  mg; vit. 
B6 = 4000  mg; vit. B12 = 4800  mg; folic acid = 1200  mg; calcium 
pantothenate = 12,000 mg; vit. C = 48,000 mg; biotin = 48 mg; cho-
line = 65,000 mg; niacin = 24,000 mg; Fe = 10,000 mg; Cu = 6000 mg; 
Mn = 4000 mg; Zn = 6000 mg; I = 20 mg; Co = 2 mg; Se = 20 mg. 2 
BHT: butyl hydroxy toluene. 3 The diets were analyzed by the Animal 
Research Laboratory (ARL) (Faculty of Animal Science and Vet-
erinary Medicine, Universidade Federal de Lavras, Lavras, Minas 
Gerais, Brazil)
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dried in a forced-air oven at 55 °C for 24 h. Following dry-
ing, the pellets were crushed and standardized to an average 
particle size of approximately 0.5 mm.

The approximate composition of the diets (Table  1) 
was analyzed according to AOAC methodologies (2005) 
for crude protein (Method 984.13), ether extract (Method 
No. 920.39), moisture (Method 930.15), and ash (Method 
942.05). Gross energy was determined using a calorimeter 
(Model-IKA C5000).

Experimental design

Throughout the experimental period, the animals were 
housed in polycarbonate aquaria (11.5  cm × 34.5  cm × 
15.5  cm) connected to a water recirculation rack (Hydrus 
ZEB-40, Alesco, SP, BRA) with automated control of tem-
perature, pH, and conductivity. A photoperiod of 14:10  h 
was established throughout the experimental period. Water 
quality parameters, including temperature, pH, and con-
ductivity, were measured daily, with average values of 
28.07 ± 0.94 °C, 8.03 ± 0.11, and 0.522 ± 1.120 mS, respec-
tively. Total ammonia (0.03 ± 0.02  mg/L) was measured 
weekly using a digital photometer (AT 100 PB, Alfakit, SC, 
Brazil).

The experiment was conducted in two distinct phases. 
In the first phase, the obesity induction protocol was per-
formed, during which the animals (weight 0.381 ± 0.01 g) 
were transferred to individual 3.0 L aquaria (i.e., the experi-
mental unit). The animals were randomly divided into two 
groups (n = 15 animals per aquarium, for a total of 90 ani-
mals per treatment): the control group and the high-fat diet 
(HFD) group, each with six replicate tanks (n = 12 experi-
mental units). The animals were fed their respective diets 
at a rate of 4% of their body weight for 8 weeks, which 
were divided into four daily meals (7 a.m., 10 a.m., 1 p.m., 
and 4 p.m.). The animals were weighed weekly to adjust the 
amount of feed provided based on their weight.

In the second phase of the experiment, animals from 
each group were captured with the aid of a net, dried on 
paper towels, weighed (Shimadzu analytical balance, 220 g, 
0.0001  g), and redistributed, creating four experimental 
groups: the control, control + exercise (Control-EX), HFD, 
and HFD + exercise (HFD-EX) groups. Each group was 
replicated across three aquaria, with 15 animals in each. The 
same diet from the first phase was maintained, and a four-
week exercise protocol was introduced for the Control-EX 
and HFD-EX groups (Fig. 1).

Physical exercise protocol

The exercise protocol was adapted from Boskovic et al. 
(2018) and Blazina et al. (2013). In this protocol, 15 fish per 

aquarium were placed in a 5 L glass beaker (with an exter-
nal diameter of 170 mm) containing a 60 × 10 mm magnetic 
stirring bar. The beaker was filled with 4 L of water from 
the recirculating system and placed on a magnetic stir-
rer (Fisatom, model 754 A, BR). The fish were exposed to 
30 min of exercise per day for 30 days. The magnetic stirrer 
was programmed to create a flow of ~ 0.08 m/s. If any fish 
were unable to sustain swimming and were drawn into the 
vortex, they were removed from the experiment.

To quantify the hydrodynamic velocity experienced by 
the zebrafish, a plastic fragment was anchored to allow free 
rotation on the water surface in the beaker. The rotation fre-
quency (rpm) of this fragment was then recorded, serving as 
a direct indicator of water velocity. This value was subse-
quently converted to meters per second (m/s), thus enabling 
a more precise quantification of the swimming conditions 
faced by the fish.

The sedentary group of zebrafish underwent the same 
procedure as the exercise group, except that the magnetic 
stirrer was kept off, generating no flow in the beaker.

Biometric parameters

At the eighth week and at the end of the experiment, the fish 
were captured using a net, gently dried with paper towels, 
weighed using a Shimadzu analytical balance, and immedi-
ately returned to the water. The standard length was mea-
sured using a caliper from the tip of the snout to the end 
of the caudal peduncle. The body mass index (BMI) was 
determined for each fish using the following formula:

BMI = weight (mg) /length (cm)2

Histological analyses

For histological analysis, three whole zebrafish per aquar-
ium (n = 9/group) were fixed in 10% buffered formalin, 
embedded in paraffin, and sectioned using a microtome. 
Subcutaneous and visceral region sections were stained 
with hematoxylin-eosin. Microscopy images (Motic, USA; 
Moticam 3+, USA) were obtained, and the cell area of adi-
pocytes from each animal was manually measured using 
ImageJ software (National Institutes of Health) (Landgraf 
et al. 2017).

For cryostat sectioning, three animals per aquarium were 
dissected (for a total of 9 animals per treatment), and the 
livers were collected. Subsequently, the tissues were imme-
diately fixed in 10% buffered formalin at -4  °C for 24  h. 
Subsequently, the livers were cryoprotected in solutions 
with increasing concentrations of sucrose (10, 20, and 30%) 
at -4  °C. The tissues were then embedded in Tissue-Plus 
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The ROS content was measured using the fluorescence 
probe 2,7-dichlorofluorescein diacetate (DCFH-DA; Sigma 
Aldrich, St. Louis, USA). A DCFH-DA solution (10 µM) 
was prepared by diluting DCFH-DA in 50 mM phosphate 
buffer (pH 7.2). The quantification of ROS was determined 
by the conversion of DCFH-DA to dichlorofluorescein 
(DCF) at a fluorescence wavelength of 485/530 nm (excita-
tion/emission) using a microplate reader spectrophotometer 
(Infinite 200 PRO, Tecan, Männedorf, Switzerland) (Driver 
et al. 2000).

SOD activity was measured based on the auto-oxidation 
of pyrogallol, with an absorbance of 560 nm (Madesh and 
Balasubramanian 1997). The CAT activity was measured 
at 240  nm (AEBI, 1984), as a decrease in absorbance at 
240 nm indicates the degradation of hydrogen peroxide into 
oxygen and water. The absorbance was measured every 15 s 
for 3 min. Lipid peroxidation was determined by measur-
ing the formation of total bilirubin substances (TBARS) 
as described by Buege and Aust (1978). Malondialdehyde 
(MDA), formed from the degradation of polyunsaturated 
fatty acids, was used as an index to determine the extent of 
lipid peroxidation, considering its reaction with thiobarbitu-
ric acid, which results in the formation of a reddish solution 
with an absorbance of 535 nm.

All analyses were performed in triplicate, and the results 
were normalized to total protein values determined using the 
Bradford method (Bradford 1976). SOD, CAT, and TBARS 
levels were measured using a microplate reader spectropho-
tometer (Multiskan Go, Thermo Scientific, Waltham, Mas-
sachusetts, USA).

Statistical analysis

The data are presented as descriptive statistics (mean ± stan-
dard deviation). Normality and homogeneity of variance 
were assessed using the Shapiro‒Wilk and Levene tests, 
respectively. Statistical analyses were performed using Stu-
dent’s t-test and one-way ANOVA (with post hoc Tukey 
analysis). A p-value < 0.05 was considered to indicate sta-
tistical significance (Prism 9.02, GraphPad Software, La 
Jolla, CA, USA).

Results

Biometric parameters

At the end of the eighth week of the feeding period, a sig-
nificant increase in body weight was observed in the HFD 
group compared to the control group (Fig. 1A). After the 
exercise protocol was implemented, the weights of the fish 
in the HFD-EX group significantly increased compared to 

O.C.T. (Tissue-Plus™, Thermo Fisher, Houston, TX-USA), 
frozen by immersion in P.A. N-hexane, and immersed in 
liquid nitrogen. Section (6 μm thick) were obtained using a 
cryostat (CM 1850-3-1; Leica Microsystems). The sections 
were then submerged in P.A. propylene glycol for 2 min and 
stained with Oil red O. The qualitative analyses of hepatic 
steatosis were evaluated by a veterinary pathologist.

Biochemical parameters

At the end of the experiment, the animals were anesthetized 
via benzocaine immersion (250 mg/L) and euthanized (Ross 
et al. 2009). Blood from three animals per aquarium was 
collected following a previously used protocol (Flávia et al. 
2018), and glucose levels were immediately measured using 
a portable glucometer (Accu-Check, Roche Diagnostics, 
Rotkreuz, Switzerland).

For the remaining biochemical analyses, homogenates 
were prepared with a pool of 3 animals per repetition 
according to the protocol described by Sancho et al. (2009). 
Five volumes of 0.1 M phosphate buffer (pH 7.2 at 0 °C) 
were added to each sample. Subsequently, the homogenates 
were centrifuged at 5500  rpm (4  °C) for 30 min, and the 
resulting supernatants were diluted five times in buffer and 
frozen at -80 °C for subsequent analyses.

Biochemical determinations of total cholesterol (TCHO) 
(Bioclin, Ref. K083), low-density lipoprotein (LDL) 
(Bioclin, Ref. K015-1), high-density lipoprotein (HDL) 
(Bioclin, Ref. K015-1), triglycerides (TG) (Bioclin, Ref. 
K117-2), lactate (BioTécnica, Ref. 10.018.00), and alanine 
aminotransferase (ALT) (Kovalent, Ref. MS 80115310051) 
were performed following the manufacturer’s instructions.

Oxidative stress evaluation

A pool of three animals per repetition was homogenized in 
phosphate buffer (0.1  M, pH 7) at a ratio of 1:5 (weight: 
volume) and centrifuged at 5500 rpm for 30 min at 4 °C. 
The supernatant was used to assess the formation of reactive 
oxygen species (ROS), the activity of the enzymes superox-
ide dismutase (SOD) and catalase (CAT), and the formation 
of thiobarbituric acid reactive substances (TBARS).

Fig. 1  Biometric parameters after HFD-induced obesity and the 
effects of exercise in zebrafish were evaluated as follows: (A) Animal 
weights after 8 weeks of feeding, (B) Effects of 12 weeks of feeding 
and physical exercise on body weights, (C) Weight gain after 4 weeks 
of exercise, (D) Body mass indexes (BMI) after 12 weeks of feeding 
and physical exercise, and (E) Standard lengths after 12 weeks of feed-
ing and physical exercise. The data are presented as the mean ± SD. 
Significant differences between groups are denoted as * p < 0.05, ** 
p < 0.01, and ***p < 0.001 (t-test and one-way ANOVA followed by 
Tukey’s post hoc test)
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Discussion

Obesity is characterized by a positive energy balance, leading 
to excessive accumulation of body fat in the subcutaneous and 
visceral regions, consequently causing weight gain (Montal-
bano et al. 2021). The results of the present study demonstrated 
a significant increase in body weight after 8 weeks of high-
fat diet consumption. These findings align with the results of 
Landgraf et al. (2017) and Picolo et al. (2021), both of which 
revealed that a high-fat diet leads to weight gain in zebrafish, 
inducing an obese phenotype.

Physical exercise represents a nonpharmacological approach 
in the treatment of obesity, as it increases energy expenditure, 
generating a caloric deficit and thus contributing to a reduction 
in body weight (Swift et al. 2018). Although physical exercise 
at a flow rate of ~ 0.08 m/s for 30 min daily has been shown to 
increase the metabolic rate of zebrafish by three to four times 
(Seebacher and James 2019), the implementation of this exer-
cise program for four weeks did not result in a decrease in body 
weight, weight gain, or body mass index (BMI) in the HFD-
EX group compared to the HFD group. These results suggest 
that while physical exercise plays a relevant role in reducing 
body weight, its effectiveness may be limited in the absence of 
a balanced diet (Strasser and Fuchs 2016).

However, physical exercise had an effect on the Control-
EX group, in which there was a significant decrease in body 
weight, weight gain, and BMI. The HFD-EX group, con-
versely, exhibited an increase in standard length compared to 
that of the Control group, supporting the finding that teleosts 
subjected to physical exercise tend to develop greater muscle 
mass and, consequently, greater growth (Palstra and Planas 
2011). This factor, combined with the high energy availabil-
ity from the 20% fat diet administered to the HFD-EX group, 
resulted in a greater standard length in this group.

Several studies addressing HFD-induced obesity in 
zebrafish have provided evidence that the alterations in met-
abolic and histological variables with obesity are compa-
rable to those of mammals (Oka et al. 2010; Landgraf et al. 
2017). Adipocyte hypertrophy and the presence of hepatic 
steatosis are conditions present in both obese mammals and 
zebrafish (Landgraf et al. 2017; Lee et al. 2020). We dem-
onstrated that the physical exercise protocol used in obese 
zebrafish was sufficient to decrease the visceral adipocyte 

those of the Control and Control-EX groups. Furthermore, 
the HFD group also exhibited significantly greater weight 
than the Control-EX group (Fig. 1B).

When comparing weight gain between the eighth and 
twelfth weeks, a reduction was observed in the Control-EX 
group compared to the Control, HFD, and HFD-EX groups 
(Fig.  1C). Concerning BMI, the HFD group had signifi-
cantly greater BMI values than did the Control-EX group 
(Fig.  1D). Additionally, the standard length was signifi-
cantly greater in the HFD-EX group than in the Control and 
Control-EX groups (Fig. 1E).

Body fat and hepatic lipid accumulation

The areas of adipocytes located in the visceral compart-
ment were significantly greater in the HFD group than in 
the HFD-EX, Control, and Control-EX groups (Fig.  2A 
and C). A significant difference in the areas of adipocytes 
located in the subcutaneous compartment was observed 
between the HFD group and the Control and Control-EX 
groups (Fig. 2B and C). Figure 2D qualitatively illustrates 
the markedly increased hepatic fat accumulation in the HFD 
group compared to that of the other groups.

Biochemical parameters

ALT activity was significantly greater in the HFD group than 
in the HFD-EX, Control, and Control-EX groups (Table 2). 
No significant differences were observed in the TCHO, 
HDL, LDL, TG, lactate, or glucose parameters between any 
of the groups (Table 2).

Oxidative stress

A significantly greater production of ROS was observed in 
the HFD group than in the other groups (Fig. 3A). Addition-
ally, the production of ROS in the HFD-EX group was sig-
nificantly lower than that in the Control-EX group (Fig. 3A). 
However, the HFD-EX group exhibited significantly greater 
ROS production than the Control group (Fig.  3A). There 
was a significant reduction in ROS production in the Control 
group compared to that in the Control-EX group (Fig. 3A).

An increase in SOD activity was found in the HFD group 
compared to the other groups (Fig. 3B). A significant reduc-
tion in SOD activity was observed in the HFD-EX group 
compared to the other groups (Fig. 3B). The CAT activity 
and TBARS levels did not significantly differ among the 
experimental groups (Fig. 3C and D).

Fig. 2  Effects of physical exercise on HFD-induced body fat accumu-
lation in zebrafish. (A) Effects of diet and physical exercise on the 
visceral adipocyte area. (B) Effects of diet and physical exercise on the 
subcutaneous adipocyte area. (C) Representative images of visceral 
and subcutaneous fat distribution. (D) Liver fat distribution. Distri-
bution of liver fat. The arrows indicate the fat staining by Oil Red 
O, while the triangles indicate the nuclei of the hepatocytes. Data are 
presented as mean ± SD. Significant differences between groups are 
indicated as * p < 0.05, ** p < 0.01, and ***p < 0.001 (ANOVA fol-
lowed by Tukey’s post hoc test)
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exercise (Delemasure et al. 2012). A similar result was found 
in a study by Thompson et al. (2010), in which they reported 
that 6 months of aerobic exercise significantly reduced serum 
ALT level in men.

High-fat deposition in obesity pathology is closely related 
to redox imbalance, which leads to oxidative stress (OS) 
(Savini et al. 2013). In other words, obese individuals pres-
ent with elevated levels of reactive oxygen species (ROS) 
and decreased levels of antioxidant defenses, such as those 
related to the enzymes SOD and CAT (Olusi 2002; Keaney 
et al. 2003; Huang et al. 2015). This OS is attributed to 
excess adipose tissue, where adipocytes and preadipocytes 
act as sources of inflammatory cytokines such as TNF-α, 
IL-1, and IL-6, which stimulate the production of ROS and 
RNS by macrophages and monocytes (Fernández-Sánchez 
et al. 2011). Physical exercise is beneficial for health inde-
pendent of changes related to body weight (Strasser 2013). 
In mammals, exercise reduces ROS production and inflam-
mation (Feairheller et al. 2009) by increasing the levels of 
anti-inflammatory cytokines such as IL-1 and IL-10 while 
reducing the generation of the proinflammatory cytokine 
TNF-α (Hopps et al. 2011; Teixeira De Lemos et al. 2012). 
Therefore, physical exercise appears to be a promising anti-
oxidant and anti-inflammatory strategy to prevent complica-
tions arising from obesity (Savini et al. 2013).

In the present study, we observed that regular physical 
exercise reduced ROS levels in animals fed a HFD. Con-
versely, compared with those in the control group, the ani-
mals in the Control-EX group had increased ROS levels. 
Physical exercise is an important factor in reducing ROS 
production in obese individuals (Gómez-Barroso et al. 
2020). However, in nonobese individuals, strenuous physi-
cal exercise may lead to an increase in ROS production, 
especially in the muscle. Nevertheless, this exercise-induced 
increase in ROS is considered beneficial and can contribute 
to the adaptive effects of exercise (Powers et al. 2020).

The antioxidant enzymes SOD and CAT play crucial roles 
in cellular defenses by removing superoxide anions (O2•−) and 

area and the degree of hepatic steatosis, which can be attrib-
uted to increased lipolysis during exercise due to increased 
energy demand (Prescott et al. 2023).

Factors that could contribute to the reduction in hepatic 
steatosis include the upregulation of lipogenesis genes (acaca, 
fasn, srebf1, and pparg) and the expression of β-oxidation 
genes (pgc1α, pparab, acox1, and cpt1a), as demonstrated in a 
previous study by Zou et al. (2021). Conversely, exercise was 
not sufficient to generate a decrease in subcutaneous adipose 
tissue, which may have been due to the intensity of the exercise 
not being sufficient to lead to a reduction in subcutaneous tis-
sue. Similar results were reported by dos Santos et al. (2017), 
who reported that low-intensity swimming activity (approxi-
mately 1.35 body length/second) during physical exercise in 
pacu (Piaractus mesopotamicus) increased the density of ven-
tral subcutaneous adipocytes by 20%.

An increase in TCHO, HDL, LDL, TG, and glucose is 
frequently associated with obesity (Sikaris 2004), as obesity 
and hyperlipidemia are major risk factors for cardiovascular 
diseases (Emami et al. 2016) and the development of type II 
diabetes mellitus (Sikaris 2004). However, no significant dif-
ferences were observed in the aforementioned biochemical 
variables, which could be explained by the possibility that 
zebrafish present a metabolically healthy obesity phenotype, as 
observed in the study by Landgraf et al. (2017). The evaluation 
of ALT levels is recommended as an initial screening tool for 
hepatic steatosis in obese individuals (Chalasani et al. 2018), 
while LDH levels are used to indicate liver damage (Jafari et 
al. 2012). The increase in plasma ALT levels is mainly due to 
insulin resistance in adipose tissue and hepatic triglyceride 
content (Maximos et al. 2015), as well as the fact that approxi-
mately 50–70% of ingested glucose is converted to lactate in 
adipose tissue (Lin et al. 2022). We assessed the levels of ALT 
and lactate in the animals and found no differences in the lac-
tate levels. However, we detected a significant decrease in ALT 
levels in the HFD-EX group. This decrease could be attributed 
to the reduction in lipid content in the liver and the prevention 
of hepatic damage due to the antioxidant potential of physical 

Metabolites1 Treatment
Control Control-EX HFD HFD-EX P value

TCHO a 68.04 ± 5.24 65.71 ± 4.69 69.66 ± 1.90 70.32 ± 2.54 0.505
HDL b 36.87 ± 0.63 35.21 ± 0.11 35.62 ± 2.28 36.04 ± 0.52 0.433
LDL c 12.53 ± 5.80 15.24 ± 2.54 15.06 ± 5.25 20.14 ± 7.54 0.451
TG d 144.7 ± 16.40 160.2 ± 17.27 157.4 ± 5.13 176.5 ± 20.12 0.185
Lactate e 14.61 ± 4.27 12.16 ± 1.87 12.10 ± 1.45 13.15 ± 1.60 0.617
Glucose f 33.11 ± 5.27 39.56 ± 10.87 40.22 ± 2.58 43.11 ± 9.76 0.499
ALT g 20.56 ± 1.16 21.35 ± 1.33 40.08 ± 0.52

****
19.76 ± 0.74 < 0.001

1The data are presented as the mean ± SD. a Total cholesterol (mg/dl). b High-density lipoprotein (mg/dl). 
c Low-density lipoprotein (mg/dl). d Triglycerides (mg/dl). e Lactate (mg/dl). f Glucose (mg/dl). g Alanine 
aminotransferase (U/L). ** indicates statistical significance at p < 0.001 (ANOVA followed by Tukey’s 
post hoc test)

Table 2  Effects of diet and physi-
cal exercise on biochemical and 
enzymatic parameters related to 
metabolism
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Fig. 3  Effects of physical exercise and diet on the production of (A) 
reactive oxygen species (ROS), (B) superoxide dismutase (SOD) 
activity, (C) catalase (CAT) activity, and (D) thiobarbituric acid reac-
tive substances (TBARS). The data are presented as the mean ± SD. 

Significant differences between groups are denoted as * p < 0.05, ** 
p < 0.01, ***p < 0.001, and ****p < 0.0001 (ANOVA followed by 
Tukey’s post hoc test)
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