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Spider mites and photoperiodic regulation 
of diapause

Among arachnids, the Acari is the only group that feeds on 
plants. Approximately 7000 species of phytophagous mites 
are known, including the Tetranychidae, which is a large 
family with approximately 1300 species and 90 genera 
(Migeon and Dorkeld 2015). Species belonging to this fam-
ily are termed ‘spider mites’ owing to their ability to produce 
silk webs. Spider mites are less than 1 mm in length and their 
life cycles include five developmental stages: egg, larva, 
protonymph, deutonymph, and adult. More than a hundred 
of these organisms are considered pests, and approximately 
ten are classified as major pests (Migeon and Dorkeld 2015). 
The most well-known and widespread of the pests is the two-
spotted spider mite, Tetranychus urticae. This species attacks 
approximately 1100 species of plants (Migeon and Dorkeld 
2015). In T. urticae, one generation is completed in less than 
2 weeks when the temperature is between 21 and 23 °C and 
in only 7 days when the temperature is higher than 30 °C. 
Oviposition can begin within a few days after adult emer-
gence. Each female may lay 100–180 eggs throughout her 
lifespan of a month (Tehri 2014). Because spider mites are 
economically important agricultural pests (Attia et al. 2013; 
Van Leeuwen et al. 2015), and owing to the simplicity and 
ease of rearing them in a laboratory, the biology of spider 
mites has been extensively studied. One of the topics that 
have been focussed on includes understanding the regulatory 
mechanism of diapause (Veerman 2001).

Diapause is the developmental arrest that occurs in 
recurring periods of adverse environmental conditions, and 

Abstract  Photoperiodism is an adaptive, seasonal timing 
system that enables organisms to coordinate their devel-
opment and physiology to annual changes in the environ-
ment using day length (photoperiod) as a cue. This review 
summarizes our knowledge of the physiological mecha-
nisms underlying photoperiodism in spider mites. In par-
ticular, the two-spotted spider mite Tetranychus urticae is 
focussed, which has long been used as a model species for 
studying photoperiodism. Photoperiodism is established by 
several physiological modules, such as the photoreceptor, 
photoperiodic time measurement system, counter system, 
and endocrine effector. It is now clear that retinal photore-
ception through the ocelli is indispensable for the function 
of photoperiodism, at least in T. urticae. Visual pigment, 
which comprised opsin protein and a vitamin A-based pig-
ment, is involved in photoreception. The physiological 
basis of the photoperiodic time measurement system is still 
under debate, and we have controversial evidence for the 
hourglass-based time measurement and the oscillator-based 
time measurement. Less attention has been centred on the 
counter system in insects and mites. Mite reproduction is 
possibly regulated by the ecdysteroid, ponasterone A. Prior 
physiological knowledge has laid the foundation for the 
next steps essential for the elucidation of the molecular 
mechanisms driving photoperiodism.
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is most often observed in arthropods, especially in insects 
and mites. This is an adaptive strategy to synchronize the 
organism’s life cycle with favourable biotic and abiotic 
environmental conditions for development, reproduction, 
and survival (Tauber et  al. 1986; Danks 1987). Diapause 
has been described in a large number of tetranychid spe-
cies, and both the hibernal and aestival types of diapause 
(winter diapause and summer diapause, respectively) have 
been reported (Veerman 1985). In each species of spider 
mite, diapause occurs only at a specific stage, either the 
egg (embryonic diapause) or the adult female (reproduc-
tive diapause or adult diapause). For example, females of 
T. urticae enter diapause as adult and arrest ovarian devel-
opment by terminating the transcription of vitellogenin, a 
precursor of a yolk protein, vitellin (Kawakami et al. 2009). 
The fruit tree red spider mite Panonychus ulmi enters dia-
pause as egg. While summer eggs continually develop and 
do not undergo diapause, the winter eggs enter diapause at 
the blastoderm stage (Lees 1953a).

Diapause invokes a number of behavioural, physiologi-
cal, morphological, and molecular modifications. In gen-
eral, diapause is characterized by suppression of metabo-
lism, changes in behaviour, and increased stress tolerance, 
often caused by the synthesis of cryoprotectants (Veerman 
1985). For example, females of T. urticae in diapause alter 
expression of genes involved in digestion and detoxifica-
tion, cryoprotection, carotenoid synthesis and the organi-
zation of the cytoskeleton (Bryon et  al. 2013), suppress 
metabolism leading to a significant reduction in most 
amino acids and TCA cycle intermediates (Kohdayari et al. 
2013), move to dark hibernacula for overwintering owing 
to loss of attraction to visible light and tendency to avoid 
UV light (Suzuki et  al. 2013), and enhance tolerance to 
multiple stresses, including exposure to cold, heat, desicca-
tion, anoxia, acaricides, and gamma irradiation (den Houter 
1976; Ghazy and Suzuki 2014; Kohdayari et  al. 2012; 
Lester and Petry 1995; Lester et  al. 1997; Suzuki et  al. 
2015). In addition, diapause females change their body col-
our from yellow-green to orange, due to the accumulation 
of ketocarotenoids, especially astaxanthin, in their body, 
which is different from nondiapause females (Veerman 
1974; Kawaguchi and Osakabe 2014). Astaxanthin acts as a 
scavenger of reactive oxygen species (Naguib 2000) and its 
accumulation is believed to confer higher tolerance to UV 
exposure in diapause individuals (Suzuki et al. 2009). Eggs 
of P. ulmi and Schizotetranychus schizopus in diapause also 
appear to accumulate higher amounts of carotenoids (see 
Veerman 1974).

Although diapause occurs as an obligatory phase of indi-
vidual development (obligatory diapause) or in response to 
biotic and/or abiotic cues (facultative diapause), in general, 
facultative diapause is common in short-lived and multi-
voltine species, including mites. In temperate regions, the 

photoperiod is the major cue controlling diapause induction 
and termination, i.e., photoperiodism (Tauber et  al. 1986; 
Danks 1987). For example, T. urticae adult females enter 
diapause when they experience short-day conditions dur-
ing preimaginal development, whereas females in long-day 
conditions avert diapause and start oviposition immediately 
after adult emergence (Kawakami et al. 2009; Fig. 1). Dia-
pause can be terminated only after completion of a physi-
ological process called ‘diapause development’, of which 
the physiological mechanisms are still largely unknown 
(Hodek 1996). Diapause development proceeds at a slow 
rate spontaneously, but it can be accelerated by several 
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Fig. 1   Life cycle of Tetranychus urticae and its photoperiodism. 
A The life cycle of this species is regulated by photoperiod. Adult 
females enter diapause when they experience short-day conditions, 
whereas females in long-day conditions avert diapause and start ovi-
position. Diapause can be terminated spontaneously (horotelic pro-
cess) in spider mites, but long-day conditions accelerate diapause 
development (tachytelic process). Thus, diapause can be termi-
nated in a short period of time when diapause females were reared 
under long-day conditions, whereas it takes much longer time under 
short-day conditions. From Goto and Endo (2015). B Photoperiodic 
response curves of diapause induction (open circles) determined at 
19 °C and diapause termination (closed circles) determined at 19 °C 
after cold storage at 4 °C, in the Leningrad (St. Petersburg) strain of 
T. urticae (Koveos et al. 1993)
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environmental factors including photoperiod. For example, 
in T. urticae diapause development is accelerated under 
long-day conditions, but persists between several weeks to 
2 or 3 months when mites experience short-day conditions 
(Koveos et al. 1993; Fig. 1).

A conceptual cascade involved in photoperiodism is 
shown in Fig. 2 (Saunders 2002). At the very beginning of 
the photoperiodic response, organisms must receive envi-
ronmental light and/or dark signals through photoreceptors. 
The photoreceptors can be either retinal photoreceptors, a 
part of the visual system, or extraretinal photoreceptors, 
involved in the nonvisual system. The photic information 
is then sent to the photoperiodic time measurement sys-
tem, which measures the length of day or night. A circadian 
clock is thought to play a pivotal role in the photoperiodic 
time measurement, which may rely on distinct photorecep-
tors. The counter system determines the number of light–
dark cycles received and the endocrine effector directly 
regulates seasonal events, including diapause and seasonal 
morphs. The physiological mechanisms involved in these 
systems are reviewed in the following sections.

Photoreceptors

In insects, the photoperiodic signals can be received 
through retinal photoreceptors, extraretinal photoreceptors, 
or both, and there are no apparent phylogenetic constraints 
linked to their usage (Goto et  al. 2010). For example, in 
the northern blow fly, Protophormia terraenovae, surgi-
cal removal of compound eyes from adult flies severely 
affected the induction of diapause in adults, underscoring 
the significance of retinal photoreceptors in this process 
(Shiga and Numata 1997). On the other hand, the urban 
bluebottle blow fly, Calliphora vicina, retained photoperi-
odic sensitivity for maternal induction of larval diapause 
even after removal of the optic lobe (a connective region 
between the central brain and compound eyes), indicating 
that their photoreceptors are extraretinal (Saunders and 
Cymborowski 1996). It should be noted that retinal and 
extraretinal photoreception are not mutually exclusive; in 
fact, the stink bug Plautia stali uses both for the photoperi-
odic induction of diapause (Morita and Numata 1999).

In mites, it has been suggested that extraretinal photore-
ception plays an important role in photoperiodism. This 
association has been made, for example, because the preda-
cious eyeless mite Amblyseius potentillae, which does not 
possess eyes or ocelli-like structures, shows a clear photo-
periodic response (McMurtry et al. 1976; van Houten and 
Veenendaal 1990). In contrast to eyeless phytoseiid mites, 
spider mites have distinct eyes on the dorsal side of the pro-
dorsum. External morphology and internal structure of the 
eyes have been predominantly studied in T. urticae (McEn-
roe 1969; Mills 1973). Adult T. urticae possess two pairs of 
eyes (ocelli). The anterior eye faces dorsal-forward and the 
posterior eye faces dorsally. The anterior eye has a bicon-
vex lens, whereas the posterior eye has a simple convex 
lens. Five or ten retinular cells form several rhabdomeres in 
the anterior and posterior eyes, respectively. Naegele et al. 
(1966) reported spectral sensitivity in the orientation and 
locomotor responses of T. urticae. Both these responses 
were demonstrated when mites were exposed to light with 
wavelengths ranging from 350 to 600 nm, but not to light 
>600 nm, with clear peaks observed in the spectral sensitiv-
ity in the UV region at 375 nm and green region at 525 nm. 
McEnroe and Dronka (1966, 1969) suggested that photore-
ception of UV and green light is performed by independent 
photoreceptor systems, and further concluded that the ante-
rior eyes possess photoreceptors sensitive to UV and green 
light, whereas the posterior eyes possess photoreceptor sen-
sitive only to UV light. However, physiological validation 
of these theories is still needed.

Hori et  al. (2014) surgically removed the anterior and 
posterior eyes of T. urticae either bilaterally or unilaterally 
with a laser ablation system, to clarify whether the eyes 
play a role in the photoperiodic termination of diapause. A 
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Fig. 2   Various modules establishing photoperiodism. Light/dark sig-
nals are received by photoreceptors for photoperiodism and the cir-
cadian clock, which may not be identical (Veerman and Veenendaal 
(2003)). The photoperiodic time measurement system measures the 
length of day or night and involves the circadian clock. The counter 
system counts the number of light–dark cycles. When the number 
of cycles exceeds an internal threshold in the counter, the release/
restraint of endocrine effectors is triggered and seasonal events occur 
(Goto and Numata (2014))
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dye laser (coumarin 440) effectively focusses on the screen-
ing pigment of the eye of diapause females, and therefore 
the internal structure of the eyes, beside the external struc-
ture, was destroyed. Females in diapause were exposed to 
low temperatures and transferred to an environment char-
acterized by long-day conditions, short-day conditions, or 
constant darkness (Fig.  3). Intact females terminate dia-
pause in response to long-day conditions, whereas they 
remain in diapause when exposed to short-day conditions 
or constant darkness. Thus, long-day signals are required to 
terminate diapause. Bilateral and unilateral removal of the 
anterior eyes did not affect photoperiodic discrimination 
(i.e. the females terminate diapause under long-day con-
ditions, whereas they maintain diapause under short-day 
conditions). The same holds true for bilateral and unilateral 
removal of the posterior eyes. In contrast, bilateral removal 
of both anterior and posterior eyes significantly affected the 
termination of diapause. Mites without eyes failed to dis-
criminate photoperiods and maintained diapause, irrespec-
tive of the photoperiod (Fig.  3). Thus, in T. urticae, both 
anterior and posterior eyes function as photoreceptors for 

the photoperiodic termination of diapause. However, it is 
still unknown whether this finding is generally applicable to 
other spider mite species, since even closely related insect 
species use distinct photoreceptors (Goto et  al. 2010). It 
is also noteworthy that unilateral removal of both anterior 
and posterior eyes also significantly reduced the incidence 
of diapause termination under long-day conditions (Fig. 3). 
A similar effect of unilateral removal of photoreceptors on 
the photoperiodic response was shown in P. terraenovae, P. 
stali, as well as the crickets Modicogryllus siamensis and 
Dianemobius nigrofasciatus (formerly known as Pterone-
mobius nigrofasciatus) (Shiga and Numata 1996, 1997; 
Morita and Numata 1999; Sakamoto and Tomioka 2007). 
These results suggest that photoperiodic machinery resides 
in both hemispheres in the brain (specifically in the case 
of mites, the synganglion), and photoperiodic information 
from photoreceptors on both sides must be integrated to 
fully discriminate the photoperiod. It is known in P. terrae-
novae that the circadian clock located in each optic lobe is 
causally involved in the photoperiodic response (Shiga and 
Numata 2009). Involvement of the circadian clock in pho-
toperiodism will be discussed later in this review.

Although not statistically significant, the incidence of 
diapause termination under long-day conditions was still 
higher than that under short-day conditions, even when 
both anterior and posterior eyes were removed bilaterally 
(Fig.  3). Although it is possible that the eye-removal was 
not complete in some mites, these results may indicate 
supplemental involvement of extraretinal photoreception 
in photoperiodic termination of diapause in T. urticae, in 
addition to the principal role of retinal photoreception, as 
was found in P. stali (Morita and Numata 1999).

Suzuki et al. (2008a) investigated spectral sensitivity and 
light intensity required for photoperiodic induction of dia-
pause in T. urticae (Fig. 4). When monochromatic light was 
used as a light source in a 8-h light: 16-h dark (LD 8:16 h) 
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Fig. 3   Photoperiodic termination of diapause in Tetranychus urticae 
and the role of the eyes. Mites in diapause were chilled at 5  °C for 
20  days and then transferred to short-day conditions (S), long-day 
conditions (L), or constant darkness (DD) at 17  °C. No significant 
differences were detected between treatments with the same let-
ter (Tukey-type multiple comparisons for proportions, P > 0.05; Zar 
2010) in each panel. A Intact mites. B Mites whose both anterior and 
posterior eyes were removed unilaterally or bilaterally (Hori et  al. 
2014)
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Fig. 4   Diapause induction in Tetranychus urticae in cycles of 8-h of 
monochromatic light and 16-h of darkness at 18  °C. Various wave-
lengths of light (blue, 475  nm; green 572  nm; orange, 612  nm) at 
various intensities (50, 500, and 2500 mW/m2 for open circles, closed 
circles, and open squares, respectively) were used (Suzuki et  al. 
2008a)
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and intensity of the light was changed, the threshold inten-
sity to induce diapause in 50 % of the individuals was the 
lowest for blue light (475 nm), intermediate for green light 
(572  nm), and highest for orange light (612  nm). On the 
other hand, T. urticae had no ability to respond to red light 
(658  nm). Thus, T. urticae can receive a broad range of 
light wavelengths and is highly sensitive to light with short 
wavelengths. Lees (1953a) also reported that P. ulmi is able 
to respond to a broad range of light wavelengths from the 
near UV (365  nm) to blue-green light (540  nm) to avert 
embryonic diapause, with maximal sensitivity of the blue 
(425 nm) region. This species had no ability to respond to 
the orange, red and infrared light (longer than 550 nm).

Veerman (1980) investigated the photoperiodic response 
of four albino mutants isolated from wild T. urticae popula-
tions, in which uptake and oxidative metabolism of carot-
enoids were blocked. The original wild populations entered 
diapause in response to short-day conditions, whereas dia-
pause incidence appeared to be lowered in the mutants. 
When a semisynthetic diet was used, no diapause was 
found in the albino mutant under short-day conditions on 
the standard diet. However, partial restoration of the photo-
periodic response was obtained after addition of β-carotene 
to the diet, and full restoration was observed after the addi-
tion of vitamin A (Bosse and Veerman 1996). The signifi-
cance of carotenoids in photoperiodic induction of diapause 
has also been clarified not only in the mites A. potentillae 
and Amblyseius cucumeris (Van Zon et al. 1981; Veerman 
et al. 1983; Overmeer et al. 1989), but also in several insect 
species (see Saunders 2012). Thus, vitamin A and its deriv-
atives are prerequisites for the photoperiodic induction of 
diapause.

The requirement of vitamin A or its derivatives, and the 
broad range of the effective wavelength of light required 
for the photoperiodic response in T. urticae, is reminiscent 
of visual pigments. Visual pigments have been identified as 
photoreceptor molecules in various organisms, and com-
prised the opsin protein and a vitamin A-based pigment, 
which can be retinal or 3-hydroxyretinal. Each visual pig-
ment generally exhibits a narrow range of spectral sensi-
tivity; however, each species possesses multiple visual pig-
ments with distinct spectral classes. Therefore, animals can 
perceive light across broad wavelengths (Henze and Oakley 
2015). Tamaki et  al. (2013) utilized RNAi to demonstrate 
that UV-, blue-, and long-wave-sensitive opsins are caus-
ally involved in photoperiodic photoreception in the nym-
phal diapause of M. siamensis. These results, together with 
those studies on mites, indicate that multiple types of visual 
pigments or a single type of visual pigment sensitive to a 
broad wavelength of light located in the anterior and poste-
rior eyes function as photoreceptive molecules for the pho-
toperiodic response in T. urticae.

Genome of T. urticae has been available as the first 
complete chelicerate genome (Grbić et  al. 2011). Owing 
to the availability of next-generation sequencing methods, 
an increasing number of mite genomes and transcriptomes 
have been released in public database (Van Leeuwen and 
Dermauw 2016). In T. urticae, three putative opsin genes 
(tetur12g04340, tetur07g05150, tetur24g02280) and one 
peropsin gene (tetur04g04260) have been detected in the 
OrcAE database (Online Resource for Community Anno-
tation of Eukaryotes; http://bioinformatics.psb.ugent.be/
orcae/). Peropsin is a member of the opsin family and has 
characteristics of two functionally distinct opsin-groups, 
i.e. amino acid residues conserved among opsins involved 
in light-sensing and retinal-photoisomerase-like molecular 
properties. In a spider, peropsin is localized in nonvisual 
cells in the retina and acts as a photosensitive pigment 
with a nonvisual function (Nagata et al. 2010). In P. ulmi, 
five transcripts encoding putative opsin (GCAC01000911, 
GCAC01005648, GCAC01005363, GCAC01000911, 
GCAC01006475) and one transcript encoding putative 
peropsin (GCAC01001176) were found in the DDBJ/Gen-
Bank/EMBL database. Although the spectral sensitivity of 
these pigments in relation to the opsins and peropsin is still 
unknown, multiple opsin genes indicate that they are char-
acterized by a broad sensitivity to light.

Photoperiodic time measurement and circadian clock

The relative importance of the light and dark components 
of the daily cycle have been investigated in various organ-
isms by independently varying light and dark in overall 
cycle lengths close to 24 h in duration. It is now generally 
accepted that duration of the night is much more important 
than the duration of light not only in insects but also in mites 
(Saunders 2013). For example, Lees (1953b) combined 
various lengths of light and dark and found that diapause 
of P. ulmi is averted in photoperiods containing a night 
equal to or shorter than 8 h (e.g. LD 16:4 h, LD 24:4 h, LD 
12:8 h, LD 16:8 h, and LD 24:8 h) but is clearly induced 
in photoperiods containing a night longer than 8 h (e.g. LD 
4:12 h, LD 8:12 h, LD 12:12 h, LD 16:12 h), irrespective 
of the duration of the accompanying light component. Also 
in T. urticae, diapause incidence was low in photoperiods 
containing a short night (e.g. LD 12:8  h and 16:8  h) but 
approached 100 % in photoperiods containing a long night 
(e.g. LD 8:12 h and LD 12:12 h), regardless of the duration 
of the accompanying light component (Veerman 1977; Veer-
man and Veenendaal 2003). Nevertheless, terms focussing 
on day but not night, such as long-day conditions, short-day 
conditions and day length, have been commonly used in the 
literatures. These terms are used in this review.

Bünning (1936) first proposed the involvement of 
a circadian clock in photoperiodic time measurement. 

http://bioinformatics.psb.ugent.be/orcae/
http://bioinformatics.psb.ugent.be/orcae/
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Bünning’s hypothesis posited that the 24-h circadian clock 
consisted of two 12-h half-cycles, which were termed the 
photophil and scotophil (light- and dark-loving phases, 
respectively). It also stated that short-day effects are 
observed when light is restricted to the photophil, while 
long-day effects are produced when light penetrates the 
scotophil. Although this idea is too simple to explain the 
range of photoperiodic responses, the basic concept of a 
circadian clock in photoperiodic time measurement is now 
widely accepted, not only in insects (Saunders and Ber-
tossa 2011) but also in other organisms, ranging from fungi 
to mammals (Nelson et al. 2010).

Whether the circadian clock is involved in photoperi-
odic time measurement can be assessed by experiments 
revealing the known effects of environmental light pulses 
on the phase shifting and entrainment of circadian oscil-
lations (Saunders 2002). For instance, a short-day photo-
phase ranging from 10- to 12-h can be coupled with peri-
ods of scotophase varying from 4- to 72-h [known as the 
Nanda–Hamner protocol: Nanda and Hamner (1958)]. 
Alternatively, insects can be exposed to 48- or 72-h cycles 
consisting of a 12-h photophase with a light pulse sys-
tematically interrupting an extended period of perceived 
night [known as the Bünsow protocol: Bünsow (1960)]. In 
both types of experiments, these aberrant light cycles are 
repeated throughout the photoperiod-sensitive period, after 
which short-day effects are assessed for each condition. A 
circadian involvement is suspected when short-day effects 
occur in alternating peaks and troughs with an approximate 
24-h periodicity in the extended scotophase. Conversely, 
the absence of this pattern is evidence of an hourglass-like 
timer, which is the case in the aphid Megoura viciae (Lees 
1973). An hourglass is a mechanism that follows a set time 
course in darkness after being initiated at lights off and 
needs a minimum duration of light to restart the measure-
ment process at the beginning of the next scotophase. This 
can be considered a non-circadian mechanism; however, it 
can also be considered a heavily dampened circadian oscil-
lator, of which oscillation is easily dampened out below 
threshold in extended periods of darkness (Saunders 2010). 
Such dampened oscillator is able to measure only one night 
in the extended darkness, so that the accumulation of short-
day information is lowered, so reducing the final incidence 
of diapause. This heavily dampened circadian oscillator has 
been shown to be important for photoperiodic timing even 
in M. viciae (Vaz Nunes and Hardie 1993). Thus, the func-
tional role of a circadian clock in photoperiodic time meas-
urement is now widely accepted, although some details are 
still under dispute (Bradshaw and Holzapfel 2007).

When T. urticae was reared in cycles consisting of 8-h 
of photophase and different durations of scotophase (the 
Nanda–Hamner protocol), peaks of high diapause incidence 
recurred with cycle lengths (duration of light plus dark) of 

approximately 24, 44, 64 and 84  h, which correspond to 
16-, 36-, 56- and 76-h of scotophases, respectively. Dia-
pause induction was completely averted in photoperiodic 
cycles consisting of 8-h photophase combined with scoto-
phases ranging from 4 to 9, 24 to 28, 44 to 48 and 60 to 
64-h (Veerman and Vaz Nunes 1980; Fig. 5). These results 
indicate a functional connection between the circadian sys-
tem and photoperiodism in T. urticae. It is important to 
note that the resonance peaks are approximately 20-h apart. 
This indicates that period of the circadian clock involved 
in Tetranychus photoperiodism in the free-run state (free-
running period) is 20-h.

Veerman and Vaz Nunes (1987) compared the response 
under a 12-h light:12-h dark (LD 12:12 h) with that from 
a 12-h light:36-h dark (LD 12:36  h) cycle. As the num-
ber of the light–dark cycles increased, diapause incidence 
increased in both conditions. However, the efficacy of dia-
pause induction under the LD 12:36 h cycle was approxi-
mately half of that of LD 12:12 h, indicating that a night 
36-h long in the environmental cycle of 48-h in LD 12:36 h 
is effectively one long night. If the clock measuring night 
length is an oscillator which is able to free-run under con-
stant darkness, with a night 36-h long in an LD cycle of 
12:36 h is measured as two long nights (Fig. 6). Thus, pho-
toperiodic time measurement in the spider mite is either a 
true non-circadian hourglass or a heavily damping oscilla-
tor. Based on these results, Vaz Nunes proposed the double 
circadian oscillator model (Vaz Nunes 1998). This model 
assumes the presence of two independent circadian mecha-
nisms where both play a role in the determination of the 
length of a night. One of the mechanisms is the long night 
(LN) system, which assigns scotophase a positive value 
when the night is long. The other is the short night (SN) 
system, which assigns scotophase a positive value when the 
night is short. The model successfully simulates the pho-
toperiodic response in T. urticae with the assumption of a 
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rapidly damping LN system and a non-damping SN system 
(Vaz Nunes 1998).

In insects, interlocked positive and negative feedback 
loops based on transcription and translation are the essence 
of circadian clocks, and major players of the loops include 
period (per), timeless (tim), mammalian-type cryptochrome 
(cry-m; also known as cry2), cycle (cyc) and Clock (Clk) 
genes (Tomioka and Matsumoto 2015). Some insect species 

possess another type of cryptochrome; i.e. Drosophila-type 
cryptochrome (cry-d; also known as cry1). Its protein prod-
uct acts as a photoreceptor molecule to reset the circadian 
clock (Tomioka and Matsumoto 2015). Knocking down 
these clock genes using RNAi revealed their causal involve-
ment in photoperiodism in some insect species, (Numata 
et  al. 2015). For example, RNAi of per, cry-m, cyc, and 
Clk disrupted the photoperiodic induction of reproductive 
diapause in the bean bug Riptortus pedestris (Ikeno et  al. 
2010, 2011a, b, 2013). NAi directed against per, tim, and 
cry-m, and pigment-dispersing factor (pdf), a putative 
output gene of the circadian clock, also disrupts the pho-
toperiodic response in the mosquito Culex pipiens (Meuti 
et  al. 2015). per RNAi disrupted photoperiodic induction 
of larval diapause in the jewel wasp Nasonia vitripennis 
(Mukai and Goto 2016) and photoperiodic induction of 
nymphal diapause as well as circadian locomotor rhyth-
micity in M. siamensis (Sakamoto et  al. 2009). A genetic 
variant found in nature also supports causal involvement of 
the circadian clock in photoperiodism. A genetic variant of 
the drosophilid fly, Chymomyza costata, which is named 
the non-photoperiodic diapause (npd), showed an abnormal 
photoperiodic response (Riihimaa and Kimura 1988) and 
an arrhythmic pattern of adult eclosion (Lankinen and Rii-
himaa 1992). Daily oscillations in per and tim expression 
were clearly observed in wild-type flies, whereas per was 
expressed arrhythmically at low levels and tim mRNA was 
completely absent in the variant (Koštál and Shimada 2001, 
Pavelka et al. 2003), due to a large deletion in a crucial cis-
regulatory element and minimal promoter (Kobelková et al. 
2010). A genetic linkage analysis mapped the gene respon-
sible for the abnormal photoperiodic phenotype to the locus 
containing tim (Pavelka et al. 2003). These results provide 
evidence for the role of tim in the photoperiodic induction 
of diapause in C. costata.

These studies raise the question: does malfunction of 
circadian clock genes affect photoperiodism by altering 
clock function, or does malfunction of circadian clock 
genes directly affect diapause? This question is a focal 
point in the discussion concerning the molecular basis of 
photoperiodism, with some studies in R. pedestris sup-
porting the former possibility after analysing results from 
knocking down all major clock genes (Numata et al. 2015). 
Recently, Pegoraro et al. (2014) focussed on the photoperi-
odic response in chill-coma recovering time (CCRt) in D. 
melanogaster. Wild-type flies maintained under short-day 
conditions exhibited significantly shorter CCRt than flies 
under long-day conditions. Arrhythmic mutant strains, 
per01, tim01 and ClkJrk, demonstrated a disrupted photoperi-
odic response in CCRt. It is of interest to note that mutants 
with long free-running periods consistently showed short-
day-type responses in CCRt under both long and short pho-
toperiods, compared with mutants with short free-running 
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periods. The results aligned with those expected under 
Bünning’s hypothesis. In mutants with a long free-running 
period (where photophil is longer), various photophases 
consistently coincided with the photophil phase and were 
interpreted as short-day conditions (Pegoraro et al. 2014). 
The different photoperiodic phenotypes of the slow and 
fast clock mutants suggest a causative role for the circadian 
clock in the photoperiodic time measurement. Mohamed 
et al. (2014) focussed on the link connecting the circadian 
clock to a photoperiodic endocrine switch in the Chinese 
oak moth Antheraea pernyi, of which pupal diapause can 
be terminated by long-day conditions. Through employing 
RNAi, immunohistochemistry, radioimmunoassay (RIA) 
and radioenzymatic assay, they demonstrated that N-acetyl-
transferase (AA-NAT), a rate-limiting enzyme for the pro-
duction of melatonin and one of the clock-controlled genes, 
regulates secretion of the prothoracicotropic hormone 
(PTTH), which stimulates the prothoracic gland to secrete 
ecdysteroids, and terminate diapause.

Although the causal involvement of the circadian clock 
in photoperiodism has been reported in these insect spe-
cies, controversial evidence has accumulated in T. urticae. 
Veerman and colleagues focussed on the critical day length 
(CDL) to clarify the role of the circadian clock in photoper-
iodism in T. urticae. The CDL is the day length in which a 
half of population shows a long-day response with a distinct 
latitudinal cline (Goto and Numata 2014). Vaz Nunes et al. 
(1990) compared variation in CDL with variation in the 
free-running period of the Nanda–Hamner rhythm, which is 
involved in the photoperiodic response in T. urticae. If the 
circadian clock is indeed involved in the photoperiodic time 
measurement, there must be a correlation between them, as 
indicated by Pegoraro et al. (2014). However, only a very 
weak correlation between them was observed (Fig.  7), 
with little or no correlation between CDL and the circa-
dian phenotype reported in Drosophila auraria (Pittencrigh 
et  al. 1984), Drosophila littoralis (Lankinen and Forsman 
2006), and the pitcher plant mosquito, Wyeomyia smithii 
(Bradshaw et  al. 2003, 2006). Genetic analysis has also 
been completed in the spider mite. Reciprocal crosses were 
made between two strains of mites, which differed by 3-h 
in CDL and 2-h in the free-running period of the Nanda–
Hamner rhythm. The crossing experiments showed that a 
short free-running rhythm is almost completely dominant 
over a long free-running rhythm, whereas CDL is inherited 
in an intermediate way (Vaz Nunes et  al. 1990), indicat-
ing that these characteristics are governed by independent 
genetic elements. Moreover, in two strains of T. urticae, 
originating from the same latitude, CDL appeared to be the 
same, whereas the period of the free-running rhythm of the 
Nanda–Hamner experiments differed from 1 to 3-h among 
the strains, depending on temperature (Koveos and Veer-
man 1996). Veerman and Veenendaal (2003) revealed that 

the photoperiodic time measurement system is sensitive 
to light ranging from orange to red, whereas the Nanda–
Hamner rhythm (of which free-running period is 20-h) is 
insensitive to the light, and therefore, it free-runs under the 
orange-red light photoperiod. These results do not provide 
evidence in favour of a circadian-based photoperiodic time 
measurement.

Based on these results, Veerman (2001) emphasized 
that a clock role for the circadian system in mite photo-
periodism is highly unlikely and photoperiodic time meas-
urement in mites most likely is a non-circadian hourglass 
mechanism. In his idea, positive Nanda–Hamner and Bün-
sow results indicate that some subsystem(s) other than the 
photoperiodic time measurement system is affected by 
the circadian system, resulting in the rhythmic responses 
observed. Indeed, a wide array of physiological processes 
in an organism is expected to be fallen under circadian 
control (Allada and Chung 2010). Currently, there is a 
debate regarding which of the concepts (hourglass timer 
vs. circadian clock) in T. urticae is based only on classic 
physiology, and therefore, understanding of this process 
is still highly conceptual. It would be beneficial for new 
approaches to address the point to be proposed.

Homologues of clock and clock-related genes are 
also found in T. urticae (per, tetur11g03490; tim, 
tetur27g02370; cry-m, tetur09g05920; cyc, tetur08g07430; 
Clk, tetur08g07600; cry-d, tetur16g02770). pdf gene 
has not been found in T. tetranychus genome, but its 
putative receptor (tetur04g08940) was detected (Veen-
stra et  al. 2012). Also in P. ulmi, transcripts of puta-
tive per (GCAC01001617 and very short sequence of 
GCAC01025045), cry-m (GCAC01005533 and rather short 
sequence of GCAC01001108), cyc (GCAC01002042), and 
Clk (GCAC01003834) and 2 cry-d (GCAC01000428 and 
GCAC01007196) were found, but tim transcript was not. 
However, the roles of these clock genes in the circadian 
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clock and also in photoperiodism have not been investi-
gated in any Acari species.

Counter

The photoperiodic counter registers successive cycles 
during the sensitive period until an internal threshold is 
reached, which triggers a physiological response medi-
ated by endocrine effectors. In one model of photoperi-
odic summation, organisms accumulate a hypothetical 
diapause-inducing substance under short-day conditions in 
the counter system after processing photoperiodic informa-
tion in the time measurement system (Gibbs 1975). Thus, a 
short-day response is elicited upon exceeding the internal 
threshold, whereas a long-day response is induced at sub-
threshold values (Gibbs 1975; see also Tagaya et al. 2010). 
In T. urticae, Koveos and Veerman (1994) found that the 
threshold for diapause termination in long-day conditions, 
expressed as the number of light–dark cycles required for 
50 % diapause termination, is lower in the southern strain 
than the northern strain (Fig. 8). In addition, considerable 
differences in the number of light–dark cycles required for 
diapause termination were also observed among strains. 
These inter- and intra-strain variations would be derived 
from variation in the synthesis rate of the hypothetical 
substance or the threshold. However, their molecular and 
neural bases are still largely unknown. In A. pernyi, it has 
been suggested that the photoperiodic counter is driven by 
mutual inhibition between the melatonin and dopamine 
pathways (Wang et al. 2015). AA-NAT increased in expres-
sion level in response to long-day conditions, whereas dopa 
decarboxylase (DDC), the rate-limiting enzyme for the 
production of dopamine, decreased in expression level in 

response to changes in the photoperiod. Wang et al. (2013) 
also found in A. pernyi that expression of one type of sero-
tonin receptors (5HTRB) decreases in response to long-day 
conditions, and RNAi directed against the receptor induces 
PTTH accumulation and results in early diapause termina-
tion. Injection of 5,7-dihydroxytryptamine (5,7-DHT), a 
pharmacological agent decreasing serotonin concentration, 
induces early emergence even under short-day conditions.

At least five (tetur22g00750, tetur12g02440, 
tetur01g00420, tetur07g07500, and tetur247g00020) and 
two (GCAC01002910 and GCAC01007129) sequences 
showing high similarity to DDC have been found in T. urti-
cae and P. ulmi, respectively. Several genes and transcripts 
showing high similarity to the serotonin receptor are also 
found in them. Although genes homologous to AA-NAT 
have not been identified in Acari (Hiragaki et  al. 2015), 
its activity and the action spectrum for suppression of the 
activity have been investigated in T. urticae (Suzuki et al. 
2008b). It is of interest to measure the levels of these bio-
genic amines and the expression levels of these genes in 
mites under diapause-inducing short-day conditions and 
diapause-averting long-day conditions. They are the candi-
dates of the diapause-inducing substances hypothesized by 
Gibbs(1975).

Endocrine effector

Although there is no conclusive evidence, it is reasonable 
to assume that embryonic and reproductive diapause in 
the spider mite is hormonally regulated, as reported pre-
viously in insects. In insects, embryonic diapause is regu-
lated by diapause hormone (DH) or ecdysteroids, whereas 
reproductive diapause is regulated by juvenile hormone 
(JH) or ecdysteroids (Denlinger et al. 2012). DH, a mem-
ber of the FXPRL-amid peptide family, is a crucial factor 
that directly regulates embryonic diapause of the silk moth 
Bombyx mori (Yamashita 1996). Although downstream 
cascade of DH has also been elucidated in B. mori, there 
is no evidence to suggest that the regulatory mechanisms 
documented in the species is applicable to embryonic dia-
pause in other insect species. Ecdysteroids, a specific fam-
ily of sterol derivatives, are essential for controlling insect 
development, including moulting, metamorphosis, and 
also diapause (Lafont et  al. 2012). Embryonic diapause 
of the Australian plague locust Chortoicetes terminifera 
and the migratory locust Locusta migratoria is consid-
ered to be induced by the absence of ecdysteroids (Gregg 
et al. 1987; Tawfik et al. 2002a), whereas that of the gypsy 
moth Lymantria dispar is induced by an elevated ecdys-
teroid titre (Lee and Denlinger 1997). Low titre of JH, a 
family of acyclic sesquiterpenoids, is well-known to induce 
reproductive diapause in many insect species, such as the 
Colorado potato beetle Leptinotarsa decemlineata (de Kort 
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1990), the Northern house mosquito Culex pipiens (Readio 
et al. 1999), and P. stali (Kotaki et al. 2011). On the other 
hand, absence of ecdysteroids is considered to be the key 
in reproductive diapause in D. melanogaster (Richard et al. 
1998) and L. migratoria (Tawfik et al. 2002b).

Genome analysis revealed that T. urticae has no ability 
to produce JH due to a lack of the CYP15A1 gene, which 
encodes the enzyme introducing the signature epoxide 
of insect JHs. Instead of JH, T. urticae produces methyl 
farnesoate (MF) (Grbić et al. 2011). The role of MF in spi-
der mite physiology has not been verified, but Regev and 
Cone (1976) reported that females of T. urticae treated 
topically with farnesol laid more eggs than females. This 
result implies some role of MF in their reproduction. MF 
is also the final product in crustaceans, but there is a debate 
regarding its role. Laufer et al. (1998) revealed in the cray-
fish Procambarus clarkii that administration of MF stim-
ulates ovarian maturation. However, recent studies have 
indicated that MF has no effects on vitellogenin (Vg) gene 
expression in the hepatopancreas of shrimp (Metapenaeus 
ensis), lobster (Homarus americanus), and crab (Charybdis 
feriatus) (Subramoniam 2011). In contrast, Marsden et al. 
(2008) indicated an inhibitory role of MF in the late stage 
of ovary development in black tiger prawn Penaeus mono-
don. In ticks, 20-hydroxyecdysone (20E) is responsible for 
the initiation of Vg synthesis, and ecdysteroids secreted 
by the epidermis and converted into 20E by the fat body 
(Cabrera et al. 2009). Vg is synthesized primarily in the fat 
body and midgut, and to a lesser extent in the ovary (Rosell 
and Coons 1992; Thompson et  al. 2007). However, the 
source of extraovarian Vg has not been clearly determined 
for any mite species and it remains to be addressed, because 
in contrast to ticks, most mites lack the fat body (Cabrera 
et al. 2009). In Tetranychus, the midgut has been suggested 
to be a source of Vg (Shatrov 1997, 2002). The T. urticae 
genome lacks two P450 genes, CYP306A1 and CYP18A1, 
which encode C25 hydroxylase and a C26 hydroxylase/
oxidase involved in hormone inactivation, respectively. The 
absence of CYP306A1 indicates that the spider mite uses 
the ecdysteroid, ponasterone A, as the moulting hormone 
instead of the typical arthropod 20E, which was confirmed 
by biochemical analysis of spider mite extracts (Grbić et al. 
2011).

Cabrera et al. (2009) proposed a hypothesis to describe 
the regulation of vitellogenesis and female reproduction 
in Acari and theorized that ecdysteroids play an important 
role in acarine vitellogenesis. The synganglion synthe-
sizes an ecdysiotropic hormone (EDTH) that initiates the 
production of ecdysteroids in the epidermis. The ecdyster-
oid then, possibly ponasterone A, induces Vg production 
in the midgut and ovary (Fig.  9). Reproductive diapause 
in mites is possibly induced and maintained by some pro-
cess suppressing ponasterone A secretion. Kawakami and 

Numata (2013) found that topical application of a synthetic 
pyrethroid, cypermethrin (CyM), induces ovarian devel-
opment in T. urticae undergoing diapause. In unengorged 
adult females of the soft tick Ornithodoros moubata, CyM 
induces Vg synthesis in the fat body and vitellin accumu-
lation in the oocytes, whereas it does not induce oviposi-
tion (Chinzei et al. 1989; Taylor et al. 1991). Although the 
mechanism of action of the pyrethroid leading to the induc-
tion of vitellogenesis is unknown, Chinzei et  al. (1989) 
suggested that the endocrinological steps required for vitel-
logenesis are induced by neurosecretory factors secreted 
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ian development in Tetranychus urticae. Anterior and posterior eyes 
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comprised opsin protein and a vitamin A-based pigment, would be 
involved in photoreception. The physiological basis of the photoperi-
odic time measurement system and the counter system is still largely 
unknown. Reproduction is possibly regulated by the ecdysteroid (E), 
ponasterone A. Cabrera et  al. (2009) proposed that the synganglion 
synthesizes an ecdysiotropic hormone (EDTH) that initiates the 
production of ecdysteroids in the epidermis. The ecdysteroid then 
induces vitellogenin (Vg) production in the midgut and ovary. After 
incorporation into oocytes, Vg is stored in a crystalline form as vitel-
lin (Vn), a reserve food source for the future embryo. Some process 
regulating ponasterone A synthesis would be involved in diapause 
induction. The role of methyl farnesoate (MF) in spider mite physiol-
ogy has not been verified
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artificially, due to the change in electrical activity of neuro-
secretory cells driven by the pyrethroid. In diapause adults 
of the beetle Henosepilachna vigintioctopunctata, pyre-
throids also stimulate ovarian development and partially 
induce oocyte maturation and oviposition (Kono and Ozeki 
1987). Diapause in mites is likely induced and maintained 
by suppression of neurosecretory secretion, although the 
identity of the neurosecretory factors remains unknown. 
Endocrinological mechanisms promoting embryonic dia-
pause in spider mites are still unknown.

Future prospectives

Although we have accumulated much data on the physi-
ological mechanisms of mite photoperiodism, the molecu-
lar mechanisms underlying it, especially those related to 
photoperiodic time measurement and the counter, are still 
largely unknown (see Fig.  9 for a summarising model). 
Since genomic information is available for T. urticae (Grbić 
et al. 2011), now it is easy to clone genes of interest. Gene 
silencing is possible in T. urticae by injecting or feeding 
the organism double-stranded RNA (Khila and Grbić 2007; 
Kwon et al. 2013), although its efficacy seems to be very 
low. Silencing candidate genes considered to be involved 
in the photoperiodic cascade (for example, those involved 
in light perception, the circadian clock, and hormone syn-
theses) would be a valuable method to dissect molecular 
mechanisms underlying photoperiodism.

Recently, it has become relatively easier to access 
high-throughput technologies, including next-generation 
sequencing platforms and microarrays. Bryon et al. (2013) 
investigated essential physiological processes in T. urticae 
in diapause by studying genome-wide expression changes, 
using a custom-built microarray. Analysis of this data-
set showed that 11  % of the total number of predicted T. 
urticae genes was differentially expressed. Similar experi-
ments focussing on differential gene expression in diapause 
and nondiapause individuals have also been performed in 
various insect species (for example, Kankare et  al. 2010; 
Kumar et  al. 2014; Poelchau et  al. 2013; Qi et  al. 2015; 
Wadsworth and Dopman 2015). However, use of a high-
throughput approach during the photoperiod-sensitive stage 
has been limited (Le Trionnaire et al. 2009; Poupardin et al. 
2015; Zhang et al. 2011). Huang et al. (2015) utilized pow-
erful RNA-seq technologies to elucidate gene expression 
in C. pipiens during its photoperiod-sensitive stage. This 
study found upregulation of tim, cry-d and JH-inducible 
proteins and activation of two amino acid metabolic path-
ways in non-blood-fed females under diapause-inducing 
short-day photoperiods. These genes and proteins are the 
candidates of the players in the photoperiodic time meas-
urement and counting. The photoperiod-sensitive stage for 

diapause induction in T. urticae is predominantly restricted 
to deuronymphs with some sensitivity observed at the lar-
val and protonymphal stages (Suzuki and Takeda 2009). 
It would be very interesting to compare gene expression 
between deutonymphs maintained in short-day and long-
day conditions.

Geographic variation in diapause potential has been 
reported in T. urticae (Gotoh and Shinkaji 1981; Takafuji 
et  al. 1991; Koveos et  al. 1993; Vaz Nunes et  al. 1990). 
Genetic crosses revealed that variation in diapause poten-
tial could be attributed to various genetic systems includ-
ing the presence of dominant alleles at multiple loci 
(Kawakami et al. 2010), a recessive allele at a single locus 
(Kawakami et  al. 2010; Ignatowicz and Helle 1986), and 
incompletely recessive alleles at multiple loci (Goka and 
Takafuji 1990, 1991; So and Takafuji 1992). Although 
several genes responsible for natural variation in the dia-
pause phenotype have been elucidated in the model insect 
D. melanogaster (Schmidt et al. 2008; Tauber et al. 2007; 
Williams et al. 2006), such loci or genes responsible for the 
phenotype have not yet been revealed in T. urticae. Map-
ping the location of causal mutations using genetic crosses 
has traditionally been a complex and multistep procedure, 
but next-generation sequencing now allows for the rapid 
identification of causal mutations at the single-nucleotide 
resolution level even in complex genetic backgrounds 
(Schneeberger 2014). Recent advances of this mapping-by-
sequencing approach include methods that are independent 
of reference genome sequences, genetic crosses or any type 
of linkage information. Van Leeuwen et al. (2012) adopted 
this methodology (bulk segregant analysis mapping method 
with high-throughput sequencing technology) to verify the 
locus responsible for the resistant phenotype to the acari-
cide etoxazole in the field-collected T. urticae population. 
Finally, they clarified a single amino acid change in the chi-
tin synthase 1 as conferring target site resistance to etoxa-
zole. These approaches could shed light on the molecular 
mechanisms underlying not only photoperiodism but also 
other physiological processes in spider mites (Van Leeu-
wen and Dermauw 2016).
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