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the coelomic fluid. Antioxidant defence responses—cata-
lase (CAT), superoxide dismutase (SOD), and glutathione 
reductase (GR) enzymatic activities—were measured in 
the muscle and respiratory tree tissues, whereas oxidative 
damage was evaluated by measuring levels of superoxide 
radicals (ROS), DNA-strand breaks and lipid peroxidation 
(LPO). Juvenile H. scabra increased SOD and PO activi-
ties when temperature was elevated, and revealed low lev-
els of ROS and damage in both cold and warm treatments 
throughout the experiment, confirming the organism’s mod-
erate thermal stress. After the short acclimation period, the 
immune and antioxidant responses prevented damage and 
maintained homeostasis. This multi-biomarker approach 
highlights its usefulness to monitor the health of H. scabra 
and to gain insight concerning the use of this high-valued 
species in global-scale aquaculture from different tempera-
ture regions.

Keywords Biomarkers · Tropical aquaculture · Climate 
change · Environmental stress · Antioxidant responses · 
Acclimation

Introduction

Water temperature is a crucial factor influencing the physi-
ological status of organisms in terms of growth rates, oxy-
gen consumption and metabolism, or moulting process 
(e.g. Sierra et al. 1999; Zdanovich 1999; Dong et al. 2006). 
While it has been shown that changes in water temperature 
can evoke acute or chronic stress in a variety of organ-
isms (Cheng and Chen 2000; Cheng et al. 2004; Coates 
et al. 2012), there is still some ambiguity concerning the 
effects of temperature variations. One common strategy to 
monitor the effects of temperature stress at lower biological 
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organizational levels is the use of biomarkers (Peakall 
1992; Menezes et al. 2006). Some of the most studied and 
applied biomarkers are parameters related with oxidative 
stress defence against reactive free radical production, 
such as superoxide anions (O2

·−), hydroxyl radicals (OH·), 
and hydrogen peroxide (H2O2) (Dröge 2003). The ability 
to regulate the production of these reactive oxygen species 
(ROS) and maintain “redox homeostasis” determines the 
health status of an organism (Ames et al. 1993).

It is generally known that temperature stress induces the 
generation of ROS (Valavanidis et al. 2006). Disturbing 
the balance between endogenous and exogenous ROS can 
cause a consequent incapacity of the antioxidant defences 
to respond, which may lead to oxidative damage in dif-
ferent target biomolecules and tissues (Sohal et al. 2002; 
Valavanidis et al. 2006). Superoxide radicals, for example, 
are known to have negative impacts on antioxidant vita-
mins (e.g. tocopherol, ascorbate) and enzyme activities 
[e.g. catalase (CAT), glutathione reductase (GR) and per-
oxidases], which can in turn result in DNA damage, enzy-
matic inactivation, or peroxidation in important cellular 
biomolecules, especially lipids (Kono and Fridovich 1982; 
Blum and Fridovich 1985; Valavanidis et al. 2006). Thus, 
antioxidants play a crucial role in the maintenance of cell 
integrity, homeostasis, and in prevention of oxidative dam-
age (Vigo-Pelfrey 1990; Dix and Aikens 1993). Superoxide 
dismutase (SOD) and CAT provide the first line of defence 
in responses to oxidative damage. Initially, SOD converts 
the superoxide radicals to O2 and H2O2 and CAT in the next 
step transforms the H2O2 into O2 and H2O (Howcroft et al. 
2009). Another important enzyme to protect the cells is 
GR, which reduces glutathione disulfide (GSSG) into two 
molecules of glutathione (GSH), which act as a non-enzy-
matic antioxidant (Saint-Denis et al. 2001).

Aside from enzymes involved in oxidative stress 
responses, environmental stress in marine invertebrates 
can also evoke immune responses through for instance the 
activity of phenoloxidase (PO) enzyme (Gomez-Jimenez 
et al. 2000). Phenoloxidase is responsible for the pro-
cess of melanization, which is involved in wound heal-
ing and cellular defence responses (Ratcliffe et al. 1984; 
Rodriguez and Le Moullac 2000; Cerenius et al. 2008). 
Due to the cytotoxic nature of PO, this enzyme is usually 
stored in its inactive precursor form—pro-phenoloxidase 
(ProPO)—being activated only after external stimuli 
(Söderhäll and Cerenius 1998; Rodriguez et al. 2014). 
The ProPO activating system is described for many inver-
tebrates and consists of a cascade of interactions between 
enzymes and their zymogens, inducing the production of 
PO as final product. Both PO and ProPO are well studied 
in arthropods such as crustaceans (Söderhäll and Unestam 
1979) and insects (Laughton and Jothy 2011), but many 
open questions regarding their function and dynamics 

remain for non-arthropod invertebrates, including sea 
cucumbers.

Holothuria scabra is economically the most valuable 
tropical sea cucumber, given the high interest for the food 
industry (bêche-de-mer), as well as for pharmaceutical 
purposes (i.e. bioactive compounds) (Battaglene and Bell 
1999; Hamel et al. 2001; Venugopal 2009; Bordbar et al. 
2011). In addition, concerning their anatomy, sea cucum-
bers have unique organs/tissues with diverse functions (e.g. 
cellular aeration, locomotion, metabolism and regenerative 
processes), suitable for the study of oxidative stress and 
immune responses (Garcia-Arrarás and Dolmatov 2010), 
which make them good target tissues in the study of stress 
responses and oxidative and immune-related analysis. The 
respiratory tree, for example, is a well-developed structure 
responsible for cellular aeration and waste excretion (Spi-
rina and Dolmatov 2001). Muscular system and body wall 
of sea cucumbers are also interesting organs to analyse 
since they are involved in the organisms’ locomotion and 
in the contraction movements in response to environmental 
stimuli (Motokawa and Tsuchi 2003).

These organisms also play an important ecological role 
as bioturbators (Uthicke 2001; Purcell et al. 2012). As shal-
low, bottom dweller species, they undergo seasonal and 
daily temperature fluctuations. Some studies demonstrate 
that H. scabra (Wolkenhauer 2008) and Apostichopus 
japonicus (Dong et al. 2006) seem to be adapted to tem-
perature changes in terms of their burying and feeding hab-
its, but very little is known regarding their mechanisms of 
adaptation and consequences for fitness in the long term.

Therefore, the main objective of the current study was 
to determine the effects of temperature stress (i.e. cold and 
warm) on immune and oxidative stress responses of juve-
nile H. scabra, using biochemical biomarkers involved in 
such processes, in order to understand the capacity of these 
organisms to cope with thermal stress and to find suitable 
markers for effect assessment on those levels.

Materials and methods

Test organism

Holothuria scabra (Jaeger, 1833) originated from the 
hatchery facilities of the Indonesian Research Centre for 
Oceanography (LIPI) on Lombok, Indonesia, were trans-
ported to the Alfred Wegener Institute, Helmholtz-Centre 
for Polar and Marine Research (AWI) in Bremerhaven, 
Germany, where they were maintained in recirculation sys-
tems for 14 days at 27 °C with a photoperiod of 12:12 h 
(light:dark) for acclimation. Sea cucumbers were observed 
and fed every second day with Algamac (Aquafauna—Bio 
Marine Inc.). To ensure optimal water quality, the aquaria 
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water was continuously filtered and aerated. The water 
quality parameters, ammonia, pH and salinity were moni-
tored regularly.

Experimental setup

Experimental design followed previous work from Kühn-
hold et al. (2016). Briefly, after the acclimation period 
(14 days), 18 individuals were randomly assigned to each 
of three water temperature treatments: 21 °C (Cold), 27 °C 
(Control), and 33 °C (Warm). To achieve such tempera-
tures, seawater temperature was decreased (for cold treat-
ment) or increased (for warm treatment) by one degree 
per day over 6 days. Once the desired temperatures were 
reached, six individuals per tank were killed for further 
analysis, corresponding to day zero of the experiment (T0). 
Sampling was then performed at 15 days (T15) and 30 days 
(T30) of exposure to the different temperatures, with six 
replicates. Before killing the organisms, their coelomic 
fluid was collected using a 2-ml sterile syringe inserted 
through the body wall, for the assessment of immune 
responses. The procedure took no more than 20 s to ensure 
minimum effects of sampling on the immune responses. 
Then, muscle, respiratory tree, and body wall tissues were 
sampled for the oxidative stress-related endpoints (see 
below for sample processing details). All samples were 
subsequently stored at −80 °C until further analysis.

Tissue preparations

Immune responses

Following Jiang et al. (2014), two different fractions of 
coelomic fluid were prepared: Coelomocyte Lysate Super-
natant (CLS) and Cell Free Supernatant (CFS). After cen-
trifugation of extracted coelomic fluid at 500g for 10 min 
(4 °C), the supernatant (CFS) was stored at −80 °C, 
whereas the pellet was suspended with 1× PBS buffer to 
prepare the CLS fraction. After sonication for 5 min at 30-s 
intervals (UTR 200, Hielscher, Germany), the re-suspended 
pellets were centrifuged at 12,000g for 10 min (4 °C) and 
the obtained supernatant (CLS) was stored at −80 °C until 
further analysis.

Oxidative stress

According to different protocols and procedures, the oxida-
tive stress-related parameters (except ROS) were measured 
in the muscle and respiratory tree tissues of sea cucum-
bers adapting the protocols more thoroughly described in 
Alves et al. (2016) and Silva et al. (2016). Both tissues 
were homogenized in K-phosphate buffer (0.1 M, pH 7.4) 
in a 1:4 proportion (w/v). Part of the homogenized tissue 

(150 μl) was transferred to a microtube containing 4 % 
BHT solution (2,6-dieter-butyl-4-methylphenol) to prevent 
tissue oxidation for further determination of lipid peroxida-
tion (LPO), and another portion (50 μl) was separated for 
quantifying DNA-strand breaks. Samples were then cen-
trifuged at 10,000g, for 20 min (4 °C). The resulting post-
mitochondrial supernatant (PMS) was stored at −80 °C 
for further protein quantification and activity measurement 
of SOD, CAT and GR. For the determination of superox-
ide free radicals, as a measurement of ROS production, 
50 mg of sea cucumber body wall was separated and kept 
at −80 °C until further analysis.

In all assays, K-phosphate buffer (0.1 M, pH 7.4) was 
used as blank. The spectrophotometric measurements 
were done at 25 °C in a synergy H1 Hybrid Multi-Mode 
microplate reader (Biotek® Instrument, Vermont, USA) and 
the enzymatic reactions were all previously optimized to 
ensure zero-order kinetic reactions (substrate in excess).

Biochemical analysis

Immune responses: phenoloxidase and pro‑phenoloxidase

PO (monophenol, l-dopa:oxygen oxidoreductase, EC 
1.14.18.1) and ProPO (zymogen form) activities were 
measured using the method partially described by Söder-
häll (1981) with modification made by Laughton and Jothy 
(2011) and Jiang et al. (2014).

The activities of ProPO and PO were measured in both 
coelomic fluid fractions, i.e. CLS and CFS. PO activities 
were measured by adding 5 mM l-DOPA (l l-3,4-dihy-
droxyphenylalanine; Sigma, USA), dissolved in sodium 
cacodylate buffer (0.01 M, pH 7.4), to each fraction of the 
sample (CLS or CFS). For the blank reactions, seawater 
was used instead of the sample. The procedure for meas-
uring ProPO was similar with the minor difference that 
chymotrypsin (0.25 mg/ml) was added to the sample, with 
a 10-min incubation prior to the addition of l-DOPA, to 
allow the activation of all phenoloxidase. The conversion 
of L-DOPA into dopachrome was determined spectropho-
tometrically at 490 nm (25 °C) with readings every 10 s 
for 5 min, giving an estimation of the enzyme activity. The 
final PO and ProPO activities were expressed as U/mg of 
protein, where 1U is defined as the amount of enzyme in 
the sample that, by converting the substrate, increases the 
absorbance by 0.001 per min.

Protein quantification

The soluble proteins were quantified according to the 
Bradford method (Bradford 1976), adapted from BioRad’s 
Bradford microassay set up in a 96-well flat-bottom plate, 
using bovine γ-globulin as a protein standard. In each well 
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of the microplate, 10 μl of each sample was added along 
with 290 μl of Bradford reagent (in quadruplicates). After 
15 min of agitation at 150 revs/min, absorbance was read 
at 600 nm and results were expressed in mg of protein/mL.

Antioxidant defences

The activity of SOD (EC 1.15.1.1) was measured perform-
ing an adaptation of the method described by McCord and 
Fridovich (1969), using the xanthine/xanthine oxidase-
mediated reduction of cytochrome C. The reduction of 
cytochrome C was followed at 550 nm and SOD activity 
was expressed in U/mg of protein using an SOD standard 
of 1.5 U/ml, where 1 U represents the amount of enzyme 
in the sample that causes 50 % inhibition of cytochrome 
C reduction. CAT (EC 1.11.1.6) activity was estimated 
following the degradation of H2O2 at 240 nm, adapting 
the method described by Clairborne (1985). CAT activity 
was expressed in μmol/min/mg of protein, using a molar 
extinction coefficient of 40 M/cm. The activity of GR (EC 
1.8.1.7) was estimated by measuring oxidation of NADPH 
in the process of reducing GSSG to glutathione (GSH) at 
340 nm (Cribb et al. 1989). GR activity was calculated 
using a molar extinction coefficient of 6.2x103 M/cm and 
expressed in nmol/min/mg of protein.

Oxidative stress and damage

For the determination of superoxide free radicals pro-
duction in the body wall of sea cucumber, the method of 
Drossos et al. (1995) was followed. Briefly, after adding 
Krebs buffer to the tissue, an incubation with cytochrome 
C (15 µM) was made at 37 °C. The presence of O2

− was 
determined by the capacity of the radicals to reduce 
cytochrome C, which was measured at 550 nm. Using 
a molar extinction coefficient of 19,000 M/cm (Wu et al. 
2011), the amount of superoxide radicals produced was cal-
culated and expressed in nmol O2

−/g wet weight.
Lipid peroxidation levels were assessed by measur-

ing the content of thiobarbituric acid-reactive substances 
(TBARS), using the method described by Ohkawa et al. 
(1979) and Bird and Draper (1984), with modifications 
made by Wilhelm et al. (2001) and Torres et al. (2002). 
After the reaction with TBA 0.73 % (2-thiobarbituric acid) 
reagent, the absorbance of the samples was measured at 
535 nm. The results were calculated using a molar extinc-
tion coefficient of 1.56 × 105 M/cm and expressed as nmol 
TBARS/mg of wet weight.

The DNA-strand breaks were measured using the DNA 
alkaline precipitation assay (Olive 1988), adapted from De 
Lafontaine et al. (2000). After the precipitation of SDS-
associated nucleoproteins and genomic DNA, the remain-
ing single and double-stranded DNA in the supernatant was 

mixed with Hoesch dye (1 μg/mL bisBenzimide, Sigma-
Aldrich) and fluorescence was measured using an excita-
tion/emission wavelength of 360/460 nm. Results were 
expressed as mg of DNA/mg of wet weight, using calf thy-
mus DNA as standard to extrapolate DNA concentration.

Statistical analysis

Statistics was performed using Sigma Plot software for 
Windows, version 11.0 (SigmaPlot 1997). Data were first 
tested for normality and homoscedasticity using Kolmogo-
rov–Smirnov and Levene tests, respectively. To determine 
statistically significant differences between the treatments 
and between each time point, a two-way analysis of vari-
ance (ANOVA) was applied. When significant differ-
ences were found, Holm–Sidak post hoc tests were used 
for multiple comparisons. Correlations between endpoints 
in different tissues, at each time point, were performed 
using Pearson correlations. The results are presented as 
means + standard error (SE). The significance level for all 
statistical analysis was set at p ≤ 0.05.

Results

No mortalities were registered at any treatment at any time 
point.

Immune responses

PO and ProPO activities in cell‑free supernatant (CFS)

Although no significant differences were observed in the 
activity of PO and ProPO in CFS, the activities in both 
cases were higher in the warm treatment with a tendency 
for a decrease with the experiment duration (Fig. 1). In this 
CFS fraction, activities of ProPO and PO were found to 
be similar (within the same order of magnitude) in every 
treatment.

PO and ProPO activities in coelomocyte lysate 
supernatant (CLS)

The PO activity in the CLS fraction followed the same pat-
tern as ProPO, with progressively higher activities in the 
warm treatment over time of exposure (Fig. 2), which in 
the case of PO was found to be statistically significant at 
T30 (p = 0.005, Fig. 2a). Significant differences among 
different temperature treatments were found at the end of 
the experiment (T30), both for PO and ProPO (p = 0.004, 
Fig. 2a; and p = 0.011, Fig. 2b, respectively).

Contrary to the CFS fraction, in CLS ProPO activities 
were between 1000 and 2000× higher than PO activities. 
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Despite the increase in the general immune response of the 
organisms in the warm treatment, the ratio between PO and 
ProPO remains constant among treatments with no signifi-
cant differences being observed (Fig. 2c).

Oxidative stress‑related endpoints

No significant changes in the activity of the tested antioxi-
dant enzymes (SOD, CAT and GR) were observed, either 
in the muscle tissue or in the respiratory tree (Figs. 3, 4). 
However, although the effects were not statistically sig-
nificant, in the muscle there was a trend for higher SOD 

activities in the warm treatment, compared to control and 
cold treatment (Fig. 3a). Antioxidant enzyme activity levels 
were usually higher in the respiratory tree (Fig. 4) than in 
the muscle (Fig. 3), independently of the treatments.

In relation to the parameters addressing oxidative dam-
age, no effects of temperature were seen either in peroxi-
dation of lipids or in higher levels of DNA-strand breaks 
(Figs. 3d, e, 4d, e).

The results of the ROS quantification in the body wall 
show that in the cold treatment, at T0, the organisms pro-
duced significantly less superoxide radicals than in the con-
trol treatment (p = 0.002—Fig. 3f). However, the levels of 

Fig. 1  Immune responses: a phenoloxidase (PO) and b pro-phe-
noloxidase (ProPO) activities in the cell-free supernatant (CFS) frac-
tion of Holothuria scabra coelomic fluid exposed to cold (21 °C), 

control (27 °C) and warm (33 °C) temperatures over different time 
periods (T0, T15, T30 days). Results express average values + stand-
ard error

Fig. 2  Immune responses: a phenoloxidase (PO) and b pro-phe-
noloxidase (ProPO) activities in the coelomocyte lysate supernatant 
(CLS) fraction of Holothuria scabra coelomic fluid exposed to cold 
(21 °C), control (27 °C) and warm (33 °C) temperatures over differ-
ent time periods (T0, T15 and T30 days). Results express average 

values + standard error. a,bSignificant differences between cold, con-
trol and warm treatments within each time point (two-way ANOVA, 
Holm–Sidak, p < 0.05). A,BSignificant differences between time 
points within each temperature treatment (two-way ANOVA, Holm–
Sidak, p < 0.05)
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ROS in this treatment significantly increased with the dura-
tion of the experiment CA (p = 0.009), and no further differ-
ences were observed with the other temperature treatments.

Correlation analysis between all assessed biomark-
ers in H. scabra, relative to immune and oxidative stress 
responses, were performed separately for each time point 
(Tables S1–S3, supplementary material). At all time points, 
especially in muscle tissue, activities of CAT, SOD and 
GR correlated with each other positively, indicating that 

if one of these enzymes is activated or inhibited, the other 
enzymes follow the same pattern. Similarly, some posi-
tive correlations between DNA damage and LPO were 
observed. Moreover, GR (respiratory tree) and ProPO acti-
vating systems (CLS fraction) correlated negatively with 
ROS, while a positive correlation between DNA damage 
of the same tissue and ROS is apparent. Furthermore, PO 
activity of CLS correlated positively with SOD activities 
from both tissues.

Fig. 3  Oxidative stress-related responses: a superoxide dismutase 
(SOD), b catalase (CAT) and c glutathione Reductase (GR) enzy-
matic activities and levels of oxidative damage measured as d 
DNA damage and e lipid peroxidation (LPO) in the muscle tissue 
of Holothuria scabra exposed to cold (21 °C), control (27 °C) and 
warm (33 °C) temperatures over different time periods (T0, T15 and 
T30 days). f Reactive oxygen species (ROS) production in the body 

wall of Holothuria scabra exposed to the same conditions described 
for muscle. Results express average values + standard error. 
a,bSignificant differences between cold, control and warm treatments 
within each time point (two-way ANOVA, Holm–Sidak, p < 0.05). 
A,BSignificant differences between time points within each tempera-
ture treatment (two-way ANOVA, Holm–Sidak, p < 0.05)
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Discussion

Temperature changes influence the growth rate, susceptibil-
ity, and the general health status of invertebrates (Hughes 
et al. 2003; Cheng et al. 2004; Wang et al. 2008; Purcell 
and Simutoga 2008; Hair 2012). The integrated antioxidant 
and ProPO activating systems are known as crucial com-
ponents of invertebrates’ self-maintenance (Mathew et al. 

2007), but little is known about these responses to different 
stress levels. The present study is the first to apply com-
bined investigations of immune responses, cellular oxida-
tive damage and antioxidant enzyme activities to assess 
stress responses in juvenile H. scabra at varying tempera-
tures [i.e. cold (21 °C) and warm (33 °C)], and to assess 
their potential for easy-to-use, fast, and cost-effective 
multi-biomarker applications in aquaculture.

Fig. 4  Oxidative stress-related responses: a superoxide dismutase 
(SOD), b catalase (CAT) and c glutathione reductase (GR) enzymatic 
activities and levels of oxidative damage measured as d DNA damage 
and e lipid peroxidation (LPO) in the respiratory tree of Holothuria 
scabra exposed to cold (21 °C), control (27 °C) and warm (33 °C) 
temperatures over different time periods (T0, T15 and T30 days). 

Results express average values + standard error. a,bSignificant differ-
ences between cold, control and warm treatments within each time 
point (two-way ANOVA, Holm–Sidak, p < 0.05). A,BSignificant dif-
ferences between time points within each temperature treatment (two-
way ANOVA, Holm–Sidak, p < 0.05)
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Immune responses

The nature of sea cucumbers as osmo-conformers (Coteur 
et al. 2004) indicates that any changes in water tempera-
ture may influence their coelomic fluids and particularly 
affect the activities of coelomocytes (Wang et al. 2008). 
The ProPO activating system is considered as the first line 
of defence in the immune response of invertebrates (Sri-
tunyalucksana and Söderhäll 2000), where any reduction 
in PO activities affects the cellular defence of organisms 
(Mathew et al. 2007). This study confirmed that, simi-
lar to the Pacific oyster (Crassostrea gigas) (Hellio et al. 
2007), PO activity is detectable in both fractions of the 
coelomic fluid in H. scabra. Most of PO was activated in 
the CFS fraction, seen by the similar activity between PO 
and ProPO, in contrast to the CLS fraction, where most PO 
remained in the inactive form, as expected at least under 
control conditions, given the cytotoxic nature of the by-
products of the PO activating cascade (Tujula et al. 2001; 
Laughton and Jothy 2011).

In the CFS fraction, which represents the acellular frac-
tion of the coelomic fluid (Gomez-Jimenez et al. 2000), 
there was a tendency for higher activities of both PO and 
ProPO activities in the warm treatment, mainly at the 
beginning of the experiment (Fig. 1). This is in agreement 
with the findings of a parallel study, where under the same 
warm temperature condition, the organisms were con-
suming more energy, possibly indicating the costs of the 
defence responses by inducing for instance these immune 
enzymes (Kühnhold et al. 2016). Similarly, Coates et al. 
(2012) reported that in horseshoe crabs (Limulus polyphe‑
mus), which have hemocyanin-derived phenoloxidase 
(Hc-PO), the activity of Hc-PO at the beginning of expo-
sure was initially increased at the warmer treatment, but 
decreased again over a period of time, suggesting that tem-
perature changes have limited effects on hemocyanin and 
PO activities. It is important to note that the coelomocytes 
of sea cucumbers and haemocytes of crustaceans display 
several common features (Tseng et al. 2009).

In the CLS fraction, this tendency for higher PO activi-
ties with increasing temperatures is also seen for both 
PO and ProPO activities, over the time of exposure. This 
increase in the total ProPO activity suggests that, along 
with the PO activation (in a much lower scale), probably 
more PO is being synthesized (Fig. 2). Although in this 
study the sea cucumbers responded with an increase in 
PO in the warmer treatment, the response of this enzyme 
to temperature changes seems to differ between species. 
For example, Vargas-Albores et al. (1998) reported that the 
yellowleg shrimp (Penaeus californiensis) had lower PO 
activity at higher temperature (32 °C) compared to colder 
treatment (18 °C). Moreover, Cheng and Chen (2000) and 
Cheng et al. (2004) reported that the PO and phagocytic 

activities in the giant freshwater prawn (Macrobrachium 
rosenbergii) and the Taiwan abalone (Haliotis diversicolor 
supertexta) at warmer treatments (34 °C) were lower than 
the ones reared at colder water (27–30 °C).

When comparing the ProPO activities between CFS and 
CLS factions, it is possible to observe that the activities 
are higher in the coelomocytes (CLS), indicating a higher 
potential for PO response in this fraction. These results 
show the importance of testing both cellular and acellular 
fractions of the coelomic fluid in order to accurately locate 
the PO activity. However, the different PO activities found 
in the two fractions might also indicate different types of 
PO enzymes (tyrosinase, laccase or catecholase). Although 
characterization of PO was already done for another hol-
othurian species (Jiang et al. 2014) and this was the base 
for the methods employed here, it would be important for 
further studies to understand which specific enzymes are 
involved in PO activity in each fraction to more precisely 
target those reactions. Nevertheless, the present study rep-
resents already an important indication that PO induction 
might play an important role in H. scabra response to heat 
stress.

Oxidative stress‑related endpoints

Regarding the oxidative stress-related endpoints, results 
showed that exposure to different temperatures had little 
impact on H. scabra. Various studies demonstrated that 
free radicals formed by a stressor could enhance the for-
mation of malonaldehyde and therefore increase LPO (Di 
Pierro et al. 1992). Additionally, the heterogenic DNA mol-
ecules are susceptible to breakage and damage inflicted by 
elevated ROS levels (Cerutti 1985). In the present study, 
however, no signs of oxidative damage were observed in 
any temperature manipulation (Figs. 3, 4). In the beginning 
of the experiment (T0) specimens from the cold treatment 
exhibited even lower ROS levels, which resulted in lower 
levels of LPO in the same condition. These lower ROS lev-
els can also be explained by the lower oxygen consumption 
rates (OCR) verified in a parallel study with the same expo-
sure conditions (Kühnhold et al. 2016).

Increasing temperatures can stimulate oxidative stress 
and specific antioxidant responses in different classes of 
invertebrates. Although the antioxidant activities in H. 
scabra did not show a clear treatment response, induc-
tion of SOD was a constant trend observed in the warm 
treatment. Similar patterns of antioxidant response were 
observed by Ji et al. (2008) and Wang et al. (2008), in stud-
ies with A. japonicus, where at the beginning of exposure 
to higher temperatures, SOD and CAT activities measured 
in both body wall and respiratory tree, increased after a 
short exposure time (12 h). The tendency for higher activ-
ity of SOD is observed in the warm treatment mainly in 
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the muscle, along with lower activities in the cold treat-
ment (Fig. 3a). A similar pattern was reported for shrimps 
(Zhou et al. 2010) and the disk abalone Haliotis discus dis‑
cus (Kim et al. 2007), where the activities of manganese 
superoxide dismutase (MnSOD) and copper superoxide 
dismutase (CuSOD) increased under heat stress. This SOD 
induction in the warm treatment in combination with the 
lack of significant changes in CAT and GR activities over 
the period of exposure, suggests that this enzyme is the 
most sensitive antioxidant enzyme among the ones tested, 
and likely plays an important role in ROS detoxification in 
juvenile H. scabra in response to thermal stress.

However, in the present study, the temperature stress 
resulted in only marginal increases in the antioxidant activ-
ities. This might be explained by the immediate induction 
of heat shock proteins, which reduce heat stress and oxida-
tive stress in the organism, as reported previously for Hali‑
otis tuberculata (Farcy et al. 2007). This cannot, however, 
be confirmed in the present work, since the expression of 
heat shock proteins was not studied.

Another observation of the present study was that the 
respiratory tree in the sea cucumbers had higher anti-
oxidant potential than muscle (higher enzyme activities), 
similar to the gills in molluscs (Farcy et al. 2007; Box and 
Sureda 2009). Considering the functionality of the respira-
tory tree for oxygen circulation and gas exchange at its sur-
face, and also the close contact with water, similarly to the 
gills in molluscs, this tissue is ought to be more susceptible 
to environmental changes. However, a clearer pattern of 
overall response to the induced thermal stress was observed 
in the muscle tissue. Further studies featuring more levels 
and higher intensity of treatment (i.e. lower and higher 
temperature thresholds) are needed in order to create a bet-
ter understanding on the physiological thresholds and sen-
sitivity of the antioxidant responses in this species.

In sum, immune and oxidative stress responses indicate 
that temperature manipulation applied in the present study 
was not severe enough to cause acute stress in juvenile H. 
scabra. This is in accordance with the general assumption 
that most of the sea cucumbers, reared in intertidal ponds, 
can tolerate temperature fluctuations from 20 to 30 °C 
(Dong et al. 2008). Furthermore, with this study it is pos-
sible to infer that immune responses through PO activity, 
and antioxidant activities (particularly SOD) in H. scabra 
seem to be efficient to reduce ROS production and oxida-
tive damage under thermal variations. This is strengthened 
by the correlation analysis between biochemical responses 
throughout the duration of the experiment (Tables S1–
S3, supplementary material), with positive correlations 
between SOD and PO activities and negative correlations 
between the activities of GR or PO enzymes and the lev-
els of ROS. Therefore, this study highlights the importance 
of combining different endpoints into a multi-biomarker 

approach in order to gain a holistic picture of the processes 
and mechanisms underlying stress responses.

Conclusions

Juvenile H. scabra displayed sensitivity to thermal stress 
at the beginning of the experiment, especially in the warm 
treatment, and after a period of time they acclimated to the 
higher and lower temperatures. From an immune response-
related point of view, PO and ProPO activities in the cell-
free coelomic fluid were tendentiously increased in the warm 
treatment at T0, showing an early immune response with the 
temperature change. Antioxidant and oxidative damage bio-
markers indicated that the temperature manipulations applied 
in the present study were not severe enough to cause signifi-
cant oxidative damage to H. scabra, seen by the low produc-
tion of ROS and absence of oxidative damage in either lipids 
or DNA. SOD seems to be the most sensitive enzymatic anti-
oxidant in H. scabra in response to thermal stress.

The present study highlights the benefits of a multi-
biomarker analysis to better understand and interpret bio-
chemical responses to stress, and in particular thermal 
stress. Assessing changes in the immune and antioxidant 
biomarker endpoints, particularly in juvenile H. scabra, 
are promising tools for monitoring the health status of the 
organisms. Also, understanding the impacts of tempera-
ture stress on these organisms, provide important insight 
into the possibility of the use of H. scabra, a high-valued 
species, in global-scale aquaculture from different regions 
with minimum impact concerning thermal stress.
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