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Introduction

Spiders (Araneae) are air-breathing arthropods. Spider res-
piration is a topic that absorbed authors since more than 
100  years. First morphologists and later on physiologists 
studied the respiratory organs and the metabolism of spi-
ders (Bertkau 1876; Edwards 1946; Haller 1912; Kästner 
1929; Lamy 1902; Purcell 1895, 1909, 1910; Simmons 
1894). Respiration in spiders is a sophisticated topic: most 
spiders breathe with both diffusion lungs and tracheae, pos-
sess haemocyanin as their respiratory pigment, and meet 
their maximum metabolic demands via anaerobic pathways 
(Prestwich 1983a). Spiders are adapted to different physi-
ological situations in which staying motionless, escaping 
and aggressive behavior against a threat is possible. Moreo-
ver, different ‘factors’ influence the respiration of spiders: 
lifestyle, temperature, starvation, sex, body size, devel-
opmental stage and reproductive condition, the entire life 
time, courtship behavior and prey capture will influence 
resting and activity metabolic rates (Fig. 1).

In this review the physiological aspect is in the focus. 
Nevertheless, the morphological part will be discussed at 
the beginning to better understand the whole story.

Short description of respiratory systems—lungs 
and tracheae

The Araneae comprise an animal group with a unique 
arrangement of respiratory organs: they can breathe with 
lungs and tracheae simultaneously (Hsia et  al. 2013; 
Schmitz 2013). The book lungs are diffusion lungs, gas 
exchange is regulated by the spiracle entrance area, which 
is muscular controlled and acts as a diffusion control-
ler (Fincke and Paul 1989; Paul et al. 1987). Basic spiders 
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(Mesothelae and Mygalomorphae, some basic Araneomor-
phae  =  Paleocribellata and Austrochiloidea) possess two 
pairs of book lungs in the 2nd and 3rd opisthosomal seg-
ment (Fig.  2). Most modern spiders (Araneomorphae), 
however, are bimodal breathers, reduced one of the lung 
pairs, most often the second one, and replaced it by tracheae 
(Fig.  2). This higher evolved respiratory system is differ-
ently developed in haplogyne and entelegyne spiders but the 
level of development is not linked 1:1 to the systematic level 
of a spider family (Schmitz 2013). In haplogyne Araneo-
morphae two tracheal spiracles are situated directly behind 
the lung spiracles (Dysderoidea), tracheae lack completely 
(Tetrablemmidae, Pholcidae, Diguetidae, Plectreuridae, 
Sicariidae) (Fig.  2), or also the first lung pair is replaced 
by tracheae (sieve tracheae, e.g., Caponiidae) (Lamy 1902; 
Ramirez 2000). In most entelegyne Araneomorphae, how-
ever, the single tracheal spiracle is situated at the end of the 
opisthosoma just in front of the spinnerets (Fig.  2). From 
this spiracle four tube tracheae originate. The outer two tra-
cheae (primary tracheae, lateral tracheae) are relicts of the 
lungs and can be connected to the lung extended lung atria. 
The inner two tracheae (secondary tracheae, median tra-
cheae) are new structures and are hollowed apodemes elon-
gated along the long axis of the spider (Forster 1980; Lamy 
1902; Levi 1967, 1976; Purcell 1909, 1910). Tracheae may 
be elongated into the prosoma and may penetrate muscles, 
nervous system or the epithelia of other organs (Fig.  2) 
(Bromhall 1987b; Hsia et al. 2013; Schmitz 2013; Schmitz 
and Perry 2000, 2001, 2002; Strazny and Perry 1987).

The ultrastructure of tracheae consists of an epidermal 
outer layer and a cuticular inner layer that builds taenidia 

for stabilization. Therefore, spider tracheae look very simi-
lar to insect tracheae. The ultrastructure of lungs was exam-
ined in a couple of species. In the mygalomorph Eurypelma 
californica, the thickness of the epidermal layer is about 
0.02–0.1 µm, while the cuticular layer is down to 0.03 µm 
thin (Moore 1976; Reisinger et  al. 1990, 1991). These 
dimensions are similar to the lungs of araneomorph spiders 
(Fig. 2a, b). E.g. epidermal and cuticular layers have simi-
lar thicknesses in wolf spiders Pardosa lugubris, cellar spi-
ders Pholcus phalangioides and jumping spiders Salticus 
scenicus (both layers combined 0.16–0.19  µm), but about 
twice these values in Tegenaria (Agelenidae) (Schmitz 
2015; Schmitz and Perry 2000, 2001, 2002; Strazny and 
Perry 1984). Both cuticle and epidermis of the tracheae 
constitute about the same proportion of the walls: the walls 
of the smallest tracheae have about the same thickness as 
the lungs (Schmitz and Perry 2001, 2002) (Fig. 2c, d).

Examples for well-developed tracheal systems are the 
sheetweb weavers (Linyphiidae), jumping spiders (Salti-
cidae), crab spiders (Thomisidae), the hackled orb-weaver 
(Uloboridae), the tube dwelling spiders (Segestriidae), the 
woodlouse hunters (Dysderidae) (Fig.  2), the Dictynidae 
and the water spider Argyroneta (Blest 1976; Bromhall 
1987b; Millidge 1986; Schmitz and Perry 2001). In Dys-
deridae, Segestriidae and in Argyroneta lungs are only little 
developed and the tracheal system is the main respiratory 
system (Braun 1931; Bromhall 1987b). In other spiders, 
lungs are the main respiratory organs as in the wolf spiders 
(Lycosidae) (Schmitz and Perry 2002) and the funnel web 
spiders (Agelenidae) (Strazny and Perry 1984). In some 
families, lungs and tracheae complement one another. This 

Fig. 1   Eight main factors that 
influence the metabolism of 
spiders. Prey availability and 
temperature are exogenous 
factors, body mass and tracheae 
and the type of hunting, sex, 
phylogenetic status and life 
time are endogenous factors. 
Red arrows indicate an increase 
in metabolism if the condition 
is given that is written in the 
arrow
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is, e.g., the case in jumping spiders where 25–30 % of the 
entire diffusing capacity lies in the tracheae (Schmitz and 
Perry 2000, 2001). In these spiders, the tracheal system was 
interpreted as being especially responsible for the function 
of the nervous system which is especially well supported 
by tracheae (Schmitz 2004, 2005). In the Uloboridae, it 
was demonstrated that when tracheae are well developed, 
lungs are less developed and vice versa. In this family, an 
extensive tracheal system that also reaches into the legs and 
is best developed in spiders which use their legs actively 
for net monitoring. Thus, tracheae are interpreted as adap-
tations to meet the greater O2 demands in active body parts 
as the legs (Opell 1979, 1987, 1989, 1990, 1998; Opell and 
Konur 1992).

One of the most interesting questions regarding respira-
tory biology of spiders is why these animals reduced the 

existing and well-functioning lungs and developed tracheae 
(Anderson and Prestwich 1975; Ellis 1944; Levi 1967, 
1976; Schmitz 2005). Hypotheses are: reduction of water 
loss, increase in general metabolism, increase in local O2 
demand, and the loss of the hydraulic separation of pro- 
and opisthosoma by tracheae running through the petiolus 
(Anderson and Prestwich 1975; Levi 1967, 1976; Schmitz 
2013). Tracheae evoke a conflict in gas exchange as lungs 
are designed to work together with the hemolymph and 
the hemocyanin herein (see below) and tracheae are most 
effective when used for diffusion at their endings (termi-
nal diffusion). But tracheae enable spiders to become more 
flexible in their respiratory behavior, because their tracheae 
can function as tracheal lungs (general increase in res-
piratory surface area) or use terminal diffusion (local O2 
demands) even in the same animal depending on the exact 

Fig. 2   Anatomy of the respiratory organs in Araneae. a, b give the 
ultrastructure of the lungs of a jumping spider (Salticus scenicus). 
Bar is 100 µm in a and 5 µm in b. The Atrium (At) is situated in front 
of the lung lamellae. The lung lamella are lined by a cuticular (cu) 
and an epidermal layer (ep), the cuticle is adjacent to the air space 
(As), while the epidermis is adjacent the hemolymph space (Hl). c, d 
give two tracheae (Tr) in the nervous system (Ns) and between mus-

cle fibers (Mu). Bars indicate 2  µm. The schematic drawings give 
some examples for the development of lungs (L) and tracheae (Tr). 
Mesothelae are not shown, they have four lungs and the spinnerets 
directly behind them. The schematic longitudinal section of a spider 
shows the relations in many Araneomorphae with one pair of lungs 
and four simple tube tracheae. NS nervous system, H heart, G gut. 
For more information on tracheal systems see Schmitz 2013
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position of tracheae. As tracheal lungs, their entire surface 
may be used as gas exchanger with haemocyanin within the 
hemolymph. In terminal diffusion tracheae reach into the 
epithelia of special organs (e.g., nervous system, muscle of 
the legs) in which gas exchange takes place (Opell 1979, 
1987, 1989, 1990, 1998; Opell and Konur 1992; Schmitz 
2004, 2005). More information about tracheal systems in 
spiders is given in Schmitz (2013).

In Cupiennius salei, mitochondria comprise only 0.1 % 
of leg muscle mass (Linzen and Gallowitz 1975). Even 
if the mitochondria mass of prosoma muscles were never 
measured, anaerobic metabolism must be the standard strat-
egy of a spider during extreme activity in which movement 
of the legs is necessary. In most spiders, this seems to be 
not generally changed when animals developed tracheae. 
But species of the Uloboridae with a more active web-mon-
itoring tactic (using their legs) and greater tracheal supply 
have more mitochondria (counted numbers per cell) in the 
leg muscles (Opell 1987; Opell and Konur 1992). More 
studies are necessary to show the mitochondria mass in the 
muscles of more spider species.

The circulatory system

The construction and the physiology of the circulatory 
system and the haemocyanin as respiratory pigment are of 
importance. The tubular heart is situated dorso-medially in 
the anterior part of the opisthosoma. The anterior aorta sup-
plies the prosoma, while the heart runs out in the posterior 
aorta (Wirkner and Huckstorf 2013). Spiders have an open 
circulatory system without capillaries in which at least in 
the legs gas exchange has to take place along the open por-
tion of the circulatory system. In four-lunged spiders, ante-
rior and posterior circulation is separated, thus that hemo-
lymph from the prosoma passes only through the anterior 
lung pair and hemolymph from the opisthosoma passes 
through the posterior lungs (Paul et al. 1989b).

In the four-lunged Eurypelma californicum (Mygalo-
morphae) in resting animals the arterial O2 pressure (PaO2) 
is 3.7 kPa, stays constant during walking, increases during 
the recovery phase and is maximum at the end of this phase 
(about 9.8  kPa) (Angersbach 1978). The crucial variable 
for O2 transport in the haemolymph is the arterious–venous 
pressure difference (∆PavO2) because a big difference 
causes a more effective uptake of O2 from the outside. Dur-
ing rest spiracles are nearly closed. Only small amounts of 
O2 were uptaken and little O2 is used; therefore, the ∆PavO2 
is small. During recovery after an exhaustive run spiracles 
are open and the ∆PavO2 increases because of an increase 
in PaO2. Together with an increase in heart rate, this results 
in a more intensive use of haemocyanin in respiration (Paul 
et al. 1994b).

In araneomorph spiders the correlation of heart rates 
and the equipment with tracheae was tested. Spiders with 
prosomal tracheae have significantly lower maximum heart 
rates than spiders with tracheae limited to the opisthosoma. 
In addition, the return to normal heart rates in recovery 
phases after running is faster in spiders with prosomal tra-
cheae (Bromhall 1987a). Forced fast running was associ-
ated with a lowering of the heart-rate: a rise occurred when 
activity ceased (Bromhall 1987a). Carrel and Heathcote 
(1976), however, stated that resting heart rate is a measure 
of standard metabolic rate and independent of the respira-
tory organs (lungs and/or tracheae). Other authors (Carrel 
1987; Carrel and Heathcote 1976; Greenstone and Bennett 
1980) correlated the heart rate with lifestyle and not with 
tracheal supply to the prosoma. In these studies, resting 
heart rates of spiders were found to be primarily a func-
tion of body size and can be used as a measure for metabo-
lism. The less active an animal is, the lower is the resting 
heart rate and the tracheal development thus reflecting fun-
damental differences in foraging strategies among spiders. 
Some authors have proposed that spitting spiders (Scytodi-
dae) and brown spiders (Loxoscelidae) (so-called primitive 
hunters and weavers with sticky nets or catching prey by 
squirting them with a gluey secretion) do not have lower 
metabolic rates but lower heart rates compared with salti-
cid spiders which are more active for hunting prey (Carrel 
1987; Carrel and Heathcote 1976; Greenstone and Bennett 
1980).

Haemocyanin as respiratory pigment

Almost all spiders possess haemocyanin in the haemo-
lymph which is most effective with lung breathing because 
lungs are placed only in the opisthosoma and therefore a 
blood carrying pigment is appropriate. Haemocyanin con-
centrations of up to 120 mg ml−1 were reported (Mangum 
1985). The O2-binding capacities of haemocyanin are simi-
lar between different spiders but depend on various effec-
tors, e.g. temperature, allosteric effectors, and pH (Bohr 
effect). The O2-binding curve is typically a sigmoid curve 
as known from the vertebrate hemoglobin (Paul et  al. 
1994a; van Holde and Miller 1995). Tracheae evoke a 
modified use of the haemocyanin in the hemolymph. Com-
parison of the hemocyanin in differently tracheated spiders 
revealed a higher affinity and lower concentration of the 
haemocyanin in spiders with a well-developed tracheal sys-
tem. Even if this point needs further investigation, in tra-
cheal spiders the haemocyanin may work more efficiently 
in O2 storage while in lung spiders it works as a transporter 
for O2 (Schmitz and Paul 2003).

The structure of the haemocyanin is highly conserved. It 
is a protein which is built by hexamers or oligo-hexamers 
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of subunits. Each subunit has a molecular weight of 
70–85  kDa and can bind one O2 molecule by the means 
of two Cu+ ions (Markl and Decker 1992; van Holde and 
Miller 1995). Many spiders possess a 4 × 6-mer haemocy-
anin (e.g., Mygalomorphae, Araneidae, Nephilidae, Pholci-
dae, many Entelegynae). Other spiders possess a mixture 
of a 2 × 6-mer and a 1 × 6-mer haemocyanin (e.g., Age-
lenidae, Cupiennius, Salticidae, Lycosidae, Thomisidae) 
(Burmester 2013; Markl 1986; Markl et  al. 1986). It was 
speculated that the haemocyanin structure, the loss of the 
4 × 6-mer haemocyanin, is interconnected with the devel-
opment of a tracheal system. In a first step a 1 ×  6-mer 
molecule would have been acted as a high-affinity O2 stor-
age protein instead of being an O2 carrier (Ballweber et al. 
2002). Later in evolution the increasing size of the spiders 
may have made simple tracheal systems ineffective and the 
2 × 6-mer haemocyanin evolved which allows a more effi-
cient O2 transport by allosteric interaction. Another hypoth-
esis is that the rebuilding of the haemocyanin was caused 
by a decrease in O2 levels in the atmosphere in the Permian 
period (Berner et al. 2007). Interestingly, in one species of 
spiders with a very well-developed tracheal system (Dys-
dera) no hemocyanin could be found (Rehm et al. 2012).

Physiology of respiration

Anderson (1970) was the first to state that spiders have 
low resting metabolic rates compared with other animals. 
They are mainly sit-and-wait predators that live in fluc-
tuating environments with variable prey availability and 
therefore a great ability to starvation accompanied with a 
reduction of metabolism. Moreover, they have low ener-
getic needs in prey capture because of venom use, a high 
anaerobic capacity and an extension of the legs by hydro-
static pressure (Anderson 1970, 1974; Anderson and 
Prestwich 1982; Canals et  al. 2007, 2015a, b; Carrel and 
Heathcote 1976; Prestwich 1983a, b). To say it in more 
detail, the resting metabolic rate of spiders is 50–80 % of 
that expected in poikilotherms and follow the equation 
VO2/t = 0.33 M0.80 (M = body mass). Other poikilotherms 
follow the Hemmingsen’s prediction according to body 
size VO2/t =  0.82  M0.75 (Anderson 1996; Greenstone and 
Bennett 1980; Hemmingsen 1960). The RQ of resting rates 
in spiders is 0.7, measured for the first time in Eurypelma 
(Paul 1992) and is due to their prey of other small arthro-
pods. It stands for aerobic fat breakdown and aerobic 
energy generation as it is the case in rest in spiders.

Low metabolic rates in spiders need further research, 
especially to determine whether this pattern is a general-
ized characteristic of the animal group, or an adaptation for 
certain modes of life.

To understand the physiology of respiration in spiders 
authors use O2 uptake and CO2 release measurements. 
CO2 measurements might be difficult in some cases as the 
increase in CO2 can also derive from buffering of hydro-
gen ions which are generated anaerobically by bicarbonate 
forming CO2. Most of the data are also summarized in 
Table 1.

Resting metabolic rates

Resting metabolic rates correlate with temperature, life-
style, life spans, body masses, behavior, sex, lifestyle, 
ecology, and developmental stage (Canals et  al. 2015a; 
Foelix 1992). Spiders that live longer (more than 1  year) 
or use webs for prey capture have lower metabolic rates 
than prey-stalking spiders (e.g., wolf spiders, jumping 
spiders) or species that complete their life cycle within 
1 year (many araneid or theriid spiders). In the latter high 
rates of metabolism are related to the high rates of growth 
and reproduction occurring synchronously with seasonal 
pulses of insect prey. Those species have metabolic rates 
equal to or even greater than other poikilotherms (Ander-
son 1994; Anderson and Prestwich 1982). Moreover, low 
metabolic rates were found in primitive hunters and weav-
ers (50–60 % of expected values in Sicariidae and Scytodi-
dae). These results were related to the lifestyle, independ-
ent of respiratory organ and higher metabolic rates were 
expected in higher evolved species (e.g. Pholcus phalan-
gioides) (Canals et al. 2015a). This coincides with the fact 
that higher evolved species, bimodal breathers, e.g., jump-
ing spiders, or P. phalangioides which has no tracheae, 
have higher resting rates than pure and lower evolved lung 
breathers, e.g., mygalomorph spiders (Anderson 1970). In 
spiders that have none or minor developed tracheae, e.g., 
mygalomorph spiders and wolf spiders, the resting rate was 
found to be proportional to the respiratory surface area of 
the lungs (Anderson 1970; Anderson and Prestwich 1982; 
Prestwich 1983b).

Paraphysa parvula (Theraphosidae) has a very low rest-
ing metabolism (only about 20  % of the expected value 
looking at the body mass) (Figueroa et al. 2010). This coin-
cides with the hypothesis that an important aspect of their 
metabolic efficiency includes very low resting metabolic 
rates as the consequence of the anatomical characteristics 
of their respiratory system (lung volume and respiratory 
surface area) (Figueroa et  al. 2010). Another example are 
the crab spiders Mecaphesa asperata and Misumenoides 
formosipes (Thomisidae) which have resting rates of 1.75–
2.3 nmol s−1 g−1 O2 uptake (Schmalhofer 2011). As these 
animals were starved, the lower metabolic rates compared 
with other spider species result presumably from this star-
vation (Schmalhofer 2011). In Salticidae, Lycosidae and 
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Pholcidae resting rates of O2 uptake of 2–2.6 nmol s−1 g−1 
were measured (Schmitz 2004, 2015). This is 70–90 % of 
the expected values according to body mass (Anderson 
1970, 1994, 1996). It can be hypothesized that low metab-
olism might result from the life time of these spiders that 
might last up to 3  years and decreases the metabolic rate 
compared with species that live for shorter time periods. 
The low mitochondrial content of the leg muscles (Linzen 
and Gallowitz 1975) might limit the metabolic rate as well; 
a statement which was already given by Prestwich (1988b).

In two spider species (Zosis geniculata, Uloboridae, 
cribellate) and (Metazygia rogenhoferi, Araneidae, ecribel-
late) the influence of the cribellum and of the form of web-
building on the metabolism was tested (Kawamoto et  al. 
2011). An ecribellate web is adhesive while the cribellate 
silk must be repeatedly combed to produce the capture spi-
ral (Peters 1987). The results revealed that M. rogenhoferi 
(4.7–5 nmol s−1 g−1 O2 consumption) has about three times 
the resting rate of Z. geniculata, which indicates that the 
absence of the cribellum is associated with a higher resting 
metabolic rate (Kawamoto et al. 2011). In other primitive 
spiders lower metabolic rates than in higher developed ones 
were shown as well (Canals et  al. 2015a). If these results 
prove to be a general rule among spiders, the radiation of 
Araneoidea could be connected to a more energy-consum-
ing lifestyle.

In most publications spiders are starved to get the real 
resting rate. But the direct effect of starvation and of food 
quality is dealt with only in some papers: sit-and-wait 
predators with unsteady food availability will have low 
metabolic rates to sustain starvation periods. During food 
deprivation, metabolism is low but aerobic (Anderson 
1974; Canals et  al. 2011; Jensen et  al. 2010; Nakamura 
1987; Tanaka and Itô 1982; Tanaka et al. 1985). In the first 
5 days of starvation a wolf spider (Lycosa t-insignata) con-
siderably decreased CO2 release (presumably postpran-
dial effects) and stabilizes its metabolic rate afterwards 
(Miyashita 1969). In mygalomorph spiders after a 3 weeks 
starvation period a reduction in metabolism was found as 
well (Canals et al. 2007). This additional reduction results 
in longer survival than expected from standard metabolic 
rates. In the wolf spider Pardosa prativaga the diet com-
position (lipid-protein composition) itself did not affect 
the resting and maximal metabolic response (Jensen et al. 
2010).

Metabolism increases after feeding. In a tarantula 
(Euathlus truculentus), it was measured to be about 6.6 
times the standard metabolic rate during about 45 min after 
prey catching and it lasted 8 h to get back to standard rates 
(Nespolo et al. 2011). This fact suggests that spiders spend 
most of the energy for digestion in a short period after prey 
capture, which could be a consequence of their external 
digestion (Nespolo et  al. 2011). Temperature and hunger Ta
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influence the metabolism of crab spiders as well. M. formo-
sipes and M. asperata were tested under increasing temper-
ature (between 10 and 40 °C) and under starvation which 
both strongly affected the resting rates (Schmalhofer 2011).

Males and females—courtship behavior

In general the density of available females and rival males 
is likely to change a male’s lifetime energetic demands. The 
low standard or resting metabolic rates of spiders (Ander-
son 1970) are of importance for males when females are 
rare. This would allow males to reduce energy consumption 
and therefore live longer to ensure that they will have got 
contact to females before they die. When sufficient males 
and females are available, males may have higher ener-
getic costs for competitive courtship and for mate search-
ing (Shillington 2005). In the Australian redback spider 
(Latrodectus hasselti, Theridiidae) resting metabolic rate 
was stated to be lowest if animals were not influenced by 
conspecifics—males or females (Stoltz et  al. 2012). The 
routine metabolic rate decreased with decreasing resource 
abundance, but was positively correlated to the density 
of male rivals and was not correlated to body conditions 
at maturity or to size (Stoltz et  al. 2012). In Nephila plu-
mipes (Nephilidae) it was shown that males that are closer 
to females have higher active metabolic rates than males 
further from females (Kasumovic and Seebacher 2013). 
This higher metabolic activity is paralleled by increased 
citrate synthase activity in the whole body and might be 
due to greater mitochondrial densities (Kasumovic and 
Seebacher 2013). In the Texas tarantula Aphonopelma anax 
(Theraphosidae) higher resting rates are an adaptive strat-
egy to support higher energetic demands for males during 
the mating season (active, locomotory search for females) 
(Shillington 2005). However, no intersexual differences 
in maximum rates and factorial scopes were found in the 
same species (Shillington 2005). This shows a trade-off in 
metabolic rate between the individuals and the competitive 
environment.

More examples are Linyphia litigiosa and Pardosa 
astrigera in which males had about 60  % higher rest-
ing rates than females (Tanaka and Itô 1982; Watson and 
Lighton 1994). Moreover, in the wolf spiders Pardosa mil-
vana (not sexual dimorphic) and Hogna helluo (strongly 
sexual dimorphic), differences in the influence of sex was 
found. While males of P. milvana had higher metabolic 
rates than females (Walker and Irwin 2006), in H. helluo 
no sexual differences in metabolism were found. This is 
explained as Pardosa is actively foraging while Hoga is 
a sit-and-wait predator (Walker and Irwin 2006). Moreo-
ver, in many species females maintain a larger body size 
over a longer life span than do males and also have higher 
energetic costs associated with gamete production (Foelix 

1992). In P. phalangioides, males had a slightly higher 
metabolic rate during rest and after a 120-s stimulation. 
Resting rates were presumably higher because of the lower 
body mass (sexual dimorphism) and therefore a higher 
relation of lungs to body mass in males while the difference 
in metabolism during activity was mainly due to a higher 
activity of the males (Schmitz 2015).

As in H. helluo also in other spider species no clear pat-
tern in male–female comparison of resting metabolic rates 
has been demonstrated in (Canals et al. 2015a; Humphreys 
1977; Kotiaho 1998; Watson and Lighton 1994). But in 
Loxosceles laeta (Sicariidae) and in Scytodes globula (Scy-
todidae) this lacking differences was referred to the non 
breeding season of metabolic measurements (Canals et al. 
2015a). In Hygrolycosa rubrofasciata (Lycosidae) males 
had even lower resting rates than females (Kotiaho 1998). 
In this study, however, males and females might have been 
in different physiological states (Kotiaho 1998).

Energetic costs of courtship behavior were measured 
for two sympatric wolf spiders. Schizocosa ocreata and S. 
rovneri have different signaling modes and activity levels. 
Peak CO2 output while standing or walking was similar 
between species while the courtship behavior of S. ocreata 
has a significantly greater peak CO2 release than that of S. 
rovneri. Differing courtship behavior may serve as a crite-
rion for the mate choice in both species and isolate these 
species reproductively (Cady et al. 2011).

Low and high activity

During phases in which low and medium activity is nec-
essary, such as web-building or egg production, the parti-
tion between aerobic and anaerobic metabolism depends 
on the actual ATP needs and the capability of the species 
specific respiratory organs. For example the energetic costs 
of web-building in Zygiella x-notata are closely related to 
body mass and to web-building activity. For compensa-
tion, these spiders reduce the amount of silk used per web 
when the body mass increases and increase their forag-
ing effort (Venner et al. 2003). In free living spiders, run-
ning activity and respiratory surface are so correlated that 
anaerobic activity is normally very low (Prestwich 1988a). 
Even free hunting species (such as wolf spiders or jumping 
spiders) use a sit-and-wait strategy and are dependent on 
anaerobic capacities for running in short spurts or jumping 
after slowly sneaking up on the prey. Such behavior does 
not require prolonged high metabolic rates. During short 
phases of high activity, anaerobic metabolism predomi-
nates. d-lactate is the major anaerobic by-product and the 
legs and the prosoma are the main site of lactate accumula-
tion (Prestwich 1983a).

Most spiders are completely exhausted after 1–2  min 
of maximum activity because an O2 debt is caused by this 
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activity. This could happen, e.g., during being chased. This 
behavior is difficult to test as most spiders cannot be forced 
to run continuously and continuous running in nature is 
normally shorter than 2  min. Therefore, a treadmill is a 
good solution once the spiders have to run on the wheel 
and have to use the preset velocity (Schmitz 2005) (Fig. 3a, 
b). Moreover, maximum metabolic rates are often accom-
plished when spiders were shaken in a little vessel and try 
to escape this situation (Fig. 3c). Movement in such a way 
requires low prosomal hemolymph pressures and thus per-
mit constant circulation and exchange of O2 (Prestwich 
1983b; Schmitz 2015). The length of recovery depends 
on the duration of anaerobiosis and body mass. Complete 

lactate removal requires 30–45  min in small spiders and 
several hours in large species, e.g., mygalomorph spiders 
(Paul 1986; Schmitz 2005). In mygalomorph spiders, tested 
in Brachypelma, metabolic scopes during aerobic metabo-
lism (slow running) were 8× times the resting rate, while 
the heart rate is 3.2×, and the ventilation rate is 11× the 
resting rate (Anderson and Prestwich 1985). In the same 
species, metabolism was aerobic in resting phases (RQ 
0.7), became anaerobic during maximum activity (while 
running) and had their maximum O2 uptake rates during the 
long recovery phase in which the O2 debt is payed back. 
The CO2 released during recovery partly arises from buff-
ering the anaerobically produced pH depression. A delay in 

Fig. 3   CO2 release of spiders during high activities. In a, b the same 
spider was taken for being tested intact or with glued spiracles. a 
Gives the CO2 traces of a jumping spider (Marpissa muscosa). The 
animal ran for 6 min at a velocity of 2.5 cm s−1 on a treadmill. The 
intact animal showed the highest CO2 release. If the lung is sealed, 
the CO2 release is the smallest, while gluing of the tracheal spira-
cle has a smaller influence. b Gives the CO2 release of a wolf spider 

(Pardosa lugubris). Gluing of one lung has a larger influence as in the 
jumping spider. In c the CO2 release traces of the wolf and the jump-
ing spider and in addition of a cellar spider (Pholcus phalangioides) 
are given by shaking the experimental vessel for 2 min (red bar). In 
Pholcus the CO2 release is lower than in the two other species and in 
addition it is reduced by gluing one lung spiracle. Data are taken from 
(Schmitz 2004, 2005, 2015)
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CO2 release compared to the O2 uptake is caused by the cir-
cular transit time which is higher in larger animals (Ander-
son and Prestwich 1985; Paul 1986, 1991, 1992; Paul and 
Fincke 1989; Paul et al. 1989a).

Comparing species with different respiratory organs, 
spiders with tracheae have higher maximum metabolic 
rates. We tested jumping spiders (Marpissa muscosa, well-
developed tracheal system), and cellar spiders (Pholcus 
phalangioides, only lungs) (Schmitz 2004, 2005, 2015). 
M. muscosa has maximum rates of CO2 release that are 
30–150  % higher than in P. phalangioides (Fig.  3a, c). 
This is higher than the lungs could manage as the diffusing 
capacity for O2 of the lungs is only up to 30 % higher than 
in P. phalangioides (Schmitz 2015). Even if one considers 
the different body masses of jumping spiders (27–39 mg) 
and cellar spiders (11–28  mg), jumping spiders have the 
highest metabolic rates (Schmitz 2015). Prestwich com-
pared a wolf spider, Lycosa lenta (four simple tube tra-
cheae), a jumping spider, Phidippus audax (well-developed 
tracheal system), and in addition a filistatid spider (Fil-
istata hibernalis), which has only rudimentary tracheae 
(Prestwich 1983b). Animals were stimulated to maximum 
activity for 120 s. The anaerobic dependence of maximum 
metabolism is inversely associated with respiratory surface 
area: in Filistata 87–95 % of the power came from anaero-
bic energy production, in Lycosa 65  % and in Phidippus 
55 %. Aerobic scopes, maximum respiratory rates and also 
the increase during exercise were greatest in Phidippus and 
least in Filistata. In addition, recovery periods were short-
est in Phidippus (Prestwich 1983a, b, 1988a, b). The jump-
ing spider with the well-developed tracheal system is there-
fore also the most aerobic spider. But as already stated, 
the mobilization of the anaerobic partition of respiration 
depends on the running velocity and the arrangement of the 
gas exchange organs, but also depends on the aerobic capa-
bilities of the muscle tissue. This was not yet studied in spi-
ders. Moreover, for jumping spiders it was shown that tra-
cheae support aerobic metabolism at high intense activity 
(Fig. 3a, b). This indicates that tracheae may have evolved 
because of higher aerobic needs in this spider group (Prest-
wich 1988a; Schmitz 2005).

In other spider species, factorial scopes during locomo-
tory activity are between 2 and 18. In Lycosidae they are 
sometimes even up to 22 for short periods in males of 
Hydrolycosa rubrofasciata during sexual signaling (drum-
ming) (Anderson 1970; Culik and McQueen 1985; Ford 
1977a, b; Humphreys 1977; Kotiaho 1998; McQueen 1980; 
McQueen and Culik 1981; Miyashita 1969; Schmitz 2004, 
2005, 2015; Seymour and Vinegar 1973; Shillington and 
Peterson 2002; Watson and Lighton 1994). In Pardosa pra-
tivaga (Lycosidae) the factorial scope was 5–6 between fast-
ing and feeding (Jensen et al. 2010). In Geolycosa domifex 
(Lycosidae) activity rates were measured to be 3.2–10× 

resting rates (different in burrow and running activities) but 
were found to be 17.8× resting rates as a maximum value 
during running (Culik and McQueen 1985; McQueen 1980; 
McQueen and Culik 1981; McQueen et al. 1979).

As the metabolism decreases under starvation (see 
above), starvation increases also the factorial scope which 
was shown for Pardosa astrigera (Tanaka and Itô 1982). 
Moreover, the factorial scope in Nephila (Nephilidae) was 
4.2 for the spontaneous activity of males (Kasumovic and 
Seebacher 2013), while it was 6.6 for Euathlus truculentus 
(Theraphosidae) for feeding (Nespolo et  al. 2011). In the 
two crab spiders, M. asperata and M. formosipes, the rest-
ing rate was increased by feeding to about 3–5× (Schmal-
hofer 2011).

Hardly investigated is the metabolic activity in response 
to a predator. In jumping spiders it was shown that the 
metabolism reacts to a visual stimulus with a first increase 
and is then decreasing to a lower level for a longer time 
period (Okuyama 2015).

Respiration under water

Finally, I want to give a very short introduction in respira-
tion under water in spiders. Argyroneta aquatica is the only 
spider species that lives under water. It breathes almost 
exclusively with tracheae (Braun 1931; Crome 1952/53). 
A study reveals that the diving bell of Argyroneta works 
as a physical gill to meet their metabolic O2 requirements 
by diffusive O2 uptake from the water (Seymour and Hetz 
2011). This bell is sufficient for more than 1 day when spi-
ders are resting and frequent replenishment with air from 
the surface is necessary only in severely hypoxic water or 
in exceptionally small bells. The bell itself acts as an O2 
collecting device but it only works with a certain partial 
pressure difference between bubble and water (Seymour 
and Hetz 2011). This leads to a low PO2 within the bub-
ble which has consequences for the PO2 the spider has to 
cope with. In the raft spider (Dolomedes fimbriatus), which 
hunts underwater, the abdomen is superhydrophobic and 
retains a thin gas film while submerged (visible as a silvery 
layer). The gas film acts as a physical gill for a minimum of 
20 min (Pedersen and Colmer 2012).

Conclusions

Respiration in spiders is a very interesting topic and almost 
each spider family has its own morphological and physi-
ological characteristics. It is very interesting to see in one 
animal group that two respiratory organs (lungs and tra-
cheae) are developed with very different characteristics in 
each family. There is the tendency that higher developed 
spiders with a well-developed tracheal system reduce the 
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concentration and/or the function of their respiratory pig-
ment and increase the maximum metabolic rates. But tra-
cheae are also helpful in saving water and especially to 
provide O2 to special organs, such as the nervous system 
or some highly active leg muscles. Not only the equipment 
with lungs or tracheae influences the metabolism in spiders, 
but also other factors as life time, sex, and prey availability 
have a large influence on the use of the respiratory system. 
Metabolic rates can be analyzed from the physiological 
limits point of view and from the ecological constraints 
point of view. Forthcoming studies have to deal more with 
these conflicting approaches.
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