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Abstract In the marine fish intestine luminal, HCO3
- can

remove divalent ions (calcium and magnesium) by pre-

cipitation in the form of carbonate aggregates. The process

of epithelial HCO3
- secretion is under endocrine control,

therefore, in this study we aimed to characterize the

involvement of transmembrane (tmACs) and soluble

(sACs) adenylyl cyclases on the regulation of bicarbonate

secretion (BCS) and water absorption in the intestine of the

sea bream (Sparus aurata). We observed that all sections of

sea bream intestine are able to secrete bicarbonate as

measured by pH–Stat in Ussing chambers. In addition, gut

sac preparations reveal net water absorption in all segments

of the intestine, with significantly higher absorption rates in

the anterior intestine that in the rectum. BCS and water

absorption are positively correlated in all regions of the sea

bream intestinal tract. Furthermore, stimulation of tmACs

(10 lM FK ? 500 lM IBMX) causes a significant

decrease in BCS, bulk water absorption and short circuit

current (Isc) in a region dependent manner. In turn, stim-

ulation of sACs with elevated HCO3
- results in a signifi-

cant increase in BCS, and bulk water absorption in the

anterior intestine, an action completely reversed by the

sAC inhibitor KH7 (200 lM). Overall, the results reveal a

functional relationship between BCS and water absorption

in marine fish intestine and modulation by tmACs and sAC.

In light of the present observations, it is hypothesized

that the endocrine effects on intestinal BCS and water

absorption mediated by tmACs are locally and reciprocally

modulated by the action of sACs in the fish enterocyte, thus

fine-tuning the process of carbonate aggregate production

in the intestinal lumen.
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Introduction

The body fluids of teleost fish are hyperosmotic to fresh

water (FW) and hypoosmotic to seawater (SW), and in

these environments, fish tend to gain or lose water,

respectively. The high osmolality of seawater tends to

cause dehydration, as water is lost mainly through the gills.

Thus, to maintain homeostasis in seawater (Fuentes and

Eddy 1997b), high drinking rates are necessary and toge-

ther with efficient water absorption in the intestine are

essential for osmoregulation (Fuentes and Eddy 1997b;

Whittamore et al. 2010). Imbibing high volumes of sea-

water leads to the exposure of the gastro-intestinal tract

to high concentrations of Na? and Cl- and large amounts

of divalent ions i.e. Ca2?, Mg2? and SO4
2- (Kurita et al.

2008; Whittamore et al. 2010).

A primary step of net ion assimilation from imbibed water

takes place in the esophagus and is driven by NaCl via a Na?/

K?/2Cl- (NKCC) co-transporter (Hirano and Mayer-Gostan

1976; Parmelee and Renfro 1983) and decreases fluid

osmolality to facilitate water absorption in the intestine.

Water absorption in seawater fish intestine is believed to take

place by two distinct pathways, (1) a transcellular pathway

that involves aquaporins and (2) a paracellular pathway that
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involves tight junctions (Cerdà and Finn 2010; Marshall and

Grosell 2006; Martinez et al. 2005; Raldúa et al. 2008;

Whittamore 2011; Wood and Grosell 2012).

Regardless of the route of water absorption it appears that

Cl- uptake is the driving force for the majority of water

absorption in intestinal epithelia. The importance of a

bumetanide-sensitive mechanism mediated by apical NKCC

co-transporters has been established (Loretz 1995). How-

ever, recent studies indicate that apical Cl-/HCO3
-

exchangers are also involved in chloride uptake (Grosell

2006; Grosell et al. 2005; Kurita et al. 2008; Taylor et al.

2010; Wilson et al. 2002). Moreover, apical Cl-/HCO3
-

exchangers are responsible for the secretion of high amount

of HCO3
- into intestinal luminal fluid to raise the pH and

promote the removal of divalent cations Ca2? and Mg2? by

precipitation in the form of carbonate aggregates (Grosell

2011; Kurita et al. 2008; Wilson and Grosell 2003). The

formation of carbonate aggregates reduces luminal fluid

osmotic pressure (Kurita et al. 2008; Whittamore 2011;

Wilson and Grosell 2003) and allows net water absorption.

As a result, a strong relationship between bicarbonate

secretion (BCS) and water absorption probably occurs in

marine fish intestine (Grosell et al. 2005), although this

depends on the composition of the external environment.

Furthermore, at least in the European flounder, an elevated

calcium concentration in the lumen fluid is a strong stimu-

lator of BCS (Cooper et al. 2010; Wilson et al. 2002),

although calcium concentration, in parallel with NaCl con-

centration, decreases along the length of the intestinal tract.

Studies to establish if a water absorption gradient related to

BCS also exists along the length of the intestine are lacking.

Apical BCS in the intestinal lumen has two origins

(Whittamore et al. 2010; Wilson et al. 2002): intracellular

resulting from the hydration of CO2 and transcellular

originating from plasma HCO3
- that enters the cell via

Na?/HCO3
- co-transporters (Grosell 2006). In addition to

luminal divalent aggregate formation, it appears that

HCO3
- has an important role in water absorption by acti-

vation of soluble adenylyl cyclase (sAC) (Tresguerres et al.

2010a). sAC activation has been suggested to induce, via

the cAMP signaling pathway, recruitment to the membrane

of transporters related to cellular acid–base regulation, such

as the apical NKCC and the basolateral Na?/K? ATPase,

thus promoting NaCl and water absorption via cAMP

stimulation. sACs belong to the adenylyl cyclase family

which also comprises transmembrane adenylyl cyclases

(tmAC) (Buck et al. 1999). sAC is suggested to be regu-

lated by cytoplasmic HCO3
- and Ca2? and, unlike tmAC,

is insensitive to forskolin (FK) (Litvin et al. 2003; Tres-

guerres et al. 2011). In higher vertebrates, sAC is suggested

to locally modulate tmAC activation resulting from endo-

crine actions by regulation of functional signaling micro-

domains (Tresguerres et al. 2011). In marine fish sAC has

been reported in the intestine of the Gulf toadfish (Opsanus

beta) and in dogfish (Squalus acanthias) gills (Tresguerres

et al. 2010a, b).

In seawater fish drinking, water absorption and BCS are

under endocrine control. For example, cortisol increases

drinking in Salmo salar and Ocorhynchus mykiss upon

transfer to seawater (Fuentes et al. 1996). Further, stimula-

tion of the renin-angiotensin system induced higher drinking

rates in Salmo salar (Fuentes and Eddy 1997b). In contrast,

parathyroid hormone-related protein (PTHrP), a hypercal-

cemic factor, influences water balance by reducing drinking

rate of sea bream larvae (Guerreiro et al. 2001). Moreover, a

reciprocal negative interaction has been shown between

PTHrP and cortisol in sea bream (Guerreiro et al. 2006).

17b-Estradiol (E2) prevents water absorption, BCS and

carbonate aggregate precipitation in rainbow trout intestine

(Al-Jandal et al. 2011), but its action is likely indirect and

through the action of PTHrP (Fuentes et al. 2007) on its

receptor PTH3R (Rotllant et al. 2006). Additionally, PTHrP

that uses cAMP as a secondary messenger in enterocytes

(Rotllant et al. 2006), reduces BCS in fish intestine, while

stanniocalcin-1 increases BCS and likely increases carbon-

ate aggregate formation (Fuentes et al. 2010). The actions of

PTHrP in drinking (Guerreiro et al. 2001) and bicarbonate

secretion (Fuentes et al. 2010) suggest that calciotropic

hormones may participate in the regulation of water balance,

but their mode of action is not understood. Additionally, it

has been demonstrated that both serotonin and vasoactive

intestinal polypeptide reduce NaCl and water absorption via

tmACs in marine fish intestine (Bakker et al. 1993; Trischitta

et al. 1996, 1999). Although several studies have demon-

strated the hormonal control of drinking and NaCl absorp-

tion in fish intestine, little information is available about the

hormonal activation of tmACs and interaction with sACs in

relation to BCS, ion, and water regulation. Therefore, the

main objective of the present study was to characterize the

role of tmACs and sAC cAMP-dependent mechanisms in

BCS and water absorption in the intestine of the marine

teleost, sea bream (Sparus aurata).

Materials and methods

Animals

Sea bream (Sparus aurata) juveniles were donated by

CUPIMAR SA. (Cadiz, Spain) and transported to

Ramalhete Marine Station (CCMAR, Faro, Portugal). Fish

were maintained for 60 days in 1,000 l tanks with running

seawater at a density\5 kg/m3 and fed 2 % ration (fish wet

weight, Sorgal, S.A., Portugal; Balance 3) twice daily up

until the experiments. For the experiments, 67.2 ± 3.2 g

fish were transferred to 500 l tanks in a closed circuit
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(35 ppt) with a biological filter, water temperature of

18–21 �C and 12 h light/dark photoperiod. Food was

withheld for 36 h before sacrifice. No mortality was

observed during the experiments.

The experiments conducted comply with the guidelines

of the European Union Council (86/609/EU). All animal

protocols were performed under a ‘‘Group-1’’ licence from

the Direcção-Geral de Veterinária, Ministério da Agricul-

tura, do Desenvolvimento Rural e das Pescas, Portugal.

Chemicals and reagents

All reagents were analytical grade and obtained from

Sigma-Aldrich (Spain). In experiments, forskolin (FK) was

used at 10 lM, 3-isobutyl-1-methylxanthine (IBMX) was

used at 500 lM and (E)-2-(1H-benzo[d]imidazol-2-ylthio)-

N0-(5-bromo-2-hydroxy benzylidene) propanehydrazide

(KH7), a specific inhibitor of sAC, was used at a nominal

concentration of 200 lM (Hallows et al. 2009; Schmid et al.

2007; Tresguerres et al. 2010a). However, the effective dose

was likely much lower since, in agreement with the obser-

vation in toadfish experiments (Tresguerres et al. 2010a),

immediate precipitation of KH7 was observed.

Bicarbonate secretion (BCS) in vitro pH–Stat

Fish were anesthetized in seawater containing 2-phenoxy-

ethanol (1:2,000) and killed by decapitation. The abdominal

region was exposed and the whole digestive tract removed

and placed in pre-gassed serosal solution (160 mM NaCl,

1 mM MgSO4, 2 mM NaH2PO4, 1.5 mM CaCl2, 5 mM

NaHCO3, 3 mM KCl, 5.5 mM glucose and 5 mM HEPES

(4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid); pH

7.800). The intestine was divided into 3 sections: the

anterior intestine, which extends 3–4 cm caudal to the

pyloric caeca; the middle intestine that is recognizable by

its thinner musculature and terminates at the ileorectal

sphincter; and the rectum, which is delimited by the ileo-

rectal and anal sphincters and is 2–3 cm in length.

A segment of epithelium was excised from the region of

interest and mounted on a tissue holder (model P2413,

0.71 cm2, Physiological Instruments, San Diego, US) and

positioned between two half-chambers (P2400, Physio-

logical Instruments, San Diego, US) containing 1.5 ml of

physiological saline. The basolateral side contained pre-

gassed serosal solution was continuously mixed by bub-

bling through 0.3 % CO2 ?99.7 % O2. The apical side

contained 88 mM NaCl, 9.5 mM MgCl2, 3 mM KCl,

7.5 mM CaCl2, 126.5 mM MgSO4 and 1 mM Na2HPO4;

pH 7.800 by pH–Stat; (Fuentes et al. 2006, 2010) and was

continuously gassed with 100 % O2.

In experiments in which NaHCO3 was omitted from the

basolateral saline it was replaced with an equivalent

concentration of HEPES-Na (2-(4-(2-Hydroxyethyl) piper-

azinyl-1-ethanesulfonic acid sodium salt) and was mixed by

bubbling through 100 % O2 (160 mM NaCl, 1 mM MgSO4,

2 mM NaH2PO4, 1.5 mM CaCl2, 5 mM HEPES-Na, 3 mM

KCl, 5.5 mM glucose and 5 mM HEPES; pH 7.800). The

temperature of the medium was maintained at 22 �C in all

experiments. All bioelectrical variables were monitored by

means of Ag/AgCl electrodes (with tip asymmetry\1 mV)

connected to either side of the Ussing chamber with

3-mm-bore agar bridges (KCl, 1 M in 3 % agar). Voltage

(mV) was monitored under current clamp of epithelia

(0 lAmp). Epithelial resistance (Rt, X cm2) or conductance

(mS cm-2) was calculated using the voltage deflections

induced by a biphasic 2 s pulse of 10 lA cm-2 every

minute. Current injections were performed by means of a

VCC 600 amplifier (Physiological Instruments, San Diego,

US) and recorded onto a PC using a data acquisition system

(LabTrax, WPI, Sarasota, US). For pH–Stat, a pH electrode

(PHC 4000.8) and a microburette tip were immersed in the

luminal saline and connected to a pH–Stat system (TIM

854, Radiometer, Copenhagen, Denmark) grounded to the

amplifier to allow pulsing during titration. The character-

ization of bicarbonate secretion was performed on luminal

saline at a physiological pH of 7.800 throughout the

experiments. The pH values and the volume of acid titrant

(HCl, 2.5 mM) were manually recorded. The total bicar-

bonate secreted was calculated from the titrant volume, the

titrant concentration, and the surface area and is presented

as nmol h-1 cm-2 or nmol g-1 h-1. The experimental

protocol included 1 h of tissue stabilization, 30 min of

stable control periods of bicarbonate secretion, when the

bioelectric properties were monitored and a 30 min exper-

imental period for FK ? IBMX addition. Throughout the

experimental procedures, basolateral saline was gassed

0.3 % CO2 ? 100 % O2 in the basolateral side. However,

when required for sAC activation and inhibition, tissue was

stabilized for 1 h followed by 30 min of stable control

periods of bicarbonate secretion (100 % O2 in the basolat-

eral side), when the bioelectric properties were monitored,

plus 30 min experimental periods with 40 mM HCO3
-

basolateral followed by a 30 min experimental period with

KH7 in the basolateral side (0.3 % CO2 ? 100 % O2).

FK ? IBMX was used to directly stimulate tmACs. sAC is

insensitive to FK, and stimulation was achieved by raising

the basolateral HCO3
- to 40 mM. sAC specific actions

were exposed by the addition of its specific inhibitor KH7 in

the presence of elevated HCO3
- (Hallows et al. 2009;

Schmid et al. 2007; Tresguerres et al. 2010a).

Voltage clamp in Ussing chambers

An intestinal segment of the region of interest was excised

(anterior, middle and rectum in the case of FK ? IBMX
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experiments; only the anterior intestine in the case of sAC

stimulation), mounted on a tissue holder (0.71 cm2, model

P2413, Physiological Instruments, US) and positioned

between two half-chambers each containing 2 ml of pre-

gassed serosal solution in which short circuit current (Isc,

lA cm-2) was monitored by clamping epithelia to 0 mV.

Epithelial resistance (Rt, X cm2) and conductance (Gt,

mS cm-2) was manually calculated (Ohm’s law) using the

current deflection induced by a 2 mV pulse of 3 s every

minute. Current injections were performed using a DVC-

1,000 voltage clamp amplifier (WPI, Sarasota, US) or a

VCC 600 amplifier (Physiological Instruments, San Diego,

US). The apical side of the preparation was considered as

the ground. Therefore, negative currents are absorptive,

while secretory currents are positive.

The FK ? IBMX experiments included bilateral addi-

tion, followed by monitoring for 40 min. To test the

response to HCO3
- increase, each concentration was added

bilaterally and the bioelectric parameters monitored. After

a steady state was achieved, usually within 25–30 min, a

higher dose of bicarbonate was added (bilaterally).

Water absorption—gravimetric measurements

The intestinal tract was placed in oxygenated basolateral

solution, flushed with saline, cleaned, and divided into

three segments (anterior, middle and rectum) to form

intestinal sacs. One of the edges of each segment was

sealed with Teflon tape and the sac filled with 0.15–1 ml of

pre-gassed serosal solution. Once filled, care was taken to

remove gas bubbles and a second ligature was applied to

create a watertight preparation with an internal pressure of

15 cm of water using PE 50 polythene tubing. In control

experiments as well as for testing the effect of basolateral

FK ? IBMX addition, the sacs were maintained in pre-

gassed serosal solution (0.3 % CO2 ? 99.7 % O2)

throughout the experiments.

To test the involvement of sAC in water absorption in

the anterior intestine, NaHCO3 was omitted from the saline

and was replaced by HEPES-Na as described above The

sacs were maintained in oxygenated physiological saline

bubbled with 100 % O2 to measure water absorption

(period 1). When NaHCO3 (40 mM) was added to the

medium, gassing was switched to 0.3 % CO2 ? 99.7 %

O2, and maintained until the end of the experiments in the

absence (period 2) or presence (period 3) of 200 lM KH7.

Water absorption was calculated by weighing the sacs at

pre-determined intervals and registering weight loss to the

nearest 0.1 mg. At the end of the experimental period,

the sacs were opened, flattened, and laid out on milli-

metric paper to measure the surface area to the nearest

0.1 cm. Water absorption is presented as ll h-1 cm-2 or

ll g-1 h-1.

Statistics

All results are shown as mean ± standard error of the

mean (mean ± SEM). After assessing homogeneity of

variance and normality, statistical analysis of the data was

carried out using paired Student’s t test, one-way analysis

of variance or repeated measures analysis of variance as

appropriate followed by the post hoc Bonferroni test (Prism

5.0, GraphPad Software for McIntosh). The level of sig-

nificance was set at p \ 0.05.

Results

Intestinal BCS and water absorption

are region- and tmACs-dependent

BCS in discrete intestinal regions. The three regions of the

sea bream intestine secrete HCO3
- as measured in vitro by

pH–Stat (Fig. 1). However, there was a gradual decrease in

HCO3
- secretion from the anterior intestine, which

secretes the highest to the rectum, which secretes the

lowest (Fig. 1a, p \ 0.05, one-way ANOVA).

In a functional intestine, the surface area of the intestinal

regions used in the study differs: anterior intestine 2.9 ±

0.19 cm2, middle intestine 6.4 ± 0.46 cm2, and rectum
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Fig. 1 Basal bicarbonate secretion (BCS, nmol h-1 cm-2) in, a dis-

crete regions of the sea bream intestine (anterior, middle and rectum)

mounted in Ussing chambers under current clamp (I = 0 lAmp) as

measured by pH–Stat and b total BCS in each region per gram of

animal (nmol g-1 h-1). Results are shown as mean ± SEM (n = 6).

Bars displaying different superscript letters are significantly different

(p \ 0.05, one-way ANOVA)
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1.79 ± 0.13 cm2. After normalization for region-specific

BCS rates using the total surface area of each intestinal

region and fish mass, the contribution of each region to

total intestinal HCO3
- output differed. The middle intes-

tine had the highest contribution to BCS, followed by the

anterior region and the rectum (Fig. 1b; p \ 0.05, one-way

ANOVA).

Effect of FK ? IBMX on intestinal BCS. Basolateral

addition of FK ? IBMX caused a significant decrease in

BCS in all three regions of the intestine (Fig. 2a–c;

p \ 0.05, paired Student’s t test). Additionally, TEP

became less negative by 68 % in the anterior intestine,

83 % in the middle intestine, and 80 % in the rectum

(Fig. 2d–f, p \ 0.05, one-way ANOVA repeated measures).

The percentage inhibition of basal BCS in response to

FK ? IBMX (Fig. 2g) of the anterior and rectum intestinal

region is significantly different (p \ 0.05, one-way

ANOVA repeated measures).

Water absorption in discrete intestinal regions. Negative

values in water absorption rates indicate net absorption and

are used for consistency with Isc data. The anterior and

middle intestine absorbs water at similar rates while the

rate of water absorption in the rectum was significantly

lower (Fig. 3a; p \ 0.05, one-way ANOVA).

After normalization of specific water absorption rates

using the total area of each intestinal region and fish mass,

their contribution to total intestinal water absorption dif-

fered (Fig. 3b). The middle intestine has a significantly
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Fig. 2 Bicarbonate secretion

(a–c; BCS, nmol h-1 cm-2)

and the corresponding

transepithelial potentials

(d–f; TEP, mV) in response to

basolateral addition of 10 lM

FK ? 500 lM IBMX

(FK ? IBMX) to different

regions of the sea bream

intestine: a, c anterior intestine;

b, d middle intestine; and

c, e rectum. g Shows region-

specific percentage inhibitions

of basal BCS. Results are shown

as mean ± SEM (n = 6).

Asterisks represent statistical

differences (p \ 0.05) from

basal periods. In a–c paired

Student’s t test; in d–f one-way

ANOVA repeated measures.

In g groups displaying

different superscript letters
are significantly different

(p \ 0.05, one-way ANOVA)
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greater contribution to total intestinal water absorption

(59.6 ± 4.3 %), followed by the anterior intestine

(31.7 ± 2.1 %), and the rectum (8.53 ± 0.6 %) (p \ 0.05,

one-way ANOVA). The water absorbed by the intestinal

tract (from the point of insertion of pyloric caeca to rec-

tum) per gram of fish was—2.4 ± 0.4 ll g-1 h-1.

Effect of FK ? IBMX on intestinal water absorption. The

basal water absorption in untreated intestinal sacs was

constant in all regions analyzed over the duration of the

experiments (Fig. 4a–c). Basolateral addition of FK ?

IBMX resulted in a significant 45–55 % inhibition in water

absorption in the anterior and middle intestine with an

effective response within 20 min after the onset of treat-

ment (Fig. 4d–e; p \ 0.05, one-way ANOVA repeated

measures) but the rectum was not affected (Fig. 4f). The

percentage inhibition of basal water absorption in response

to FK ? IBMX (Fig. 4g) is similar in the anterior and

middle intestine and significantly lower in the rectum

(p \ 0.05, one-way ANOVA).

There is a strong positive relationship between specific

rates (per cm2) of basal intestinal water absorption and

BCS through the intestinal regions (Rbasal
2 = 0.975).

FK ? IBMX is able to decrease this relationship between

water absorption and BCS (RFK?IBMX
2 = 0.421).

Effect of FK ? IBMX on short circuit current (Isc,

lA cm-2). Isc in the anterior intestine and the middle

intestine was absorptive with basal values of -9.2 ± 1.3

and -6.9 ± 1.3 lA.cm-2, respectively. In contrast, the

rectum sustained a secretory current with a basal value of

?13.0 ± 4.5 lA cm-2 (Fig. 5). The application of bilateral

FK ? IBMX resulted in a significant decrease of Isc in the

anterior intestine and middle intestine (Fig. 5a–b; p \ 0.05,

one-way ANOVA repeated measures), although it never

became secretory. The rectum Isc was not modified in

response to bilateral addition of FK ? IBMX (Fig. 6c). Gt

increased significantly in the anterior intestine and rectum

after bilateral addition of FK ? IBMX (Fig. 5d, f;

p \ 0.05, one-way ANOVA repeated measures) but was

unchanged in the middle region (Fig. 5e).

Intestinal BCS and water absorption are sAC-dependent

HCO3
- affects intestine short circuit current. Increasing

bilateral concentrations of HCO3
- by addition of

NaHCO3
- to 5, 10, 20 and 40 mM HCO3

- tested the

sensitivity of the intestinal epithelia to HCO3
-, and is an

indicator of sAC modulation of Isc and Gt. A significant

increase of the Isc was observed at 20 and 40 mM HCO3
-

exposure (Fig. 6a; p \ 0.05, one-way ANOVA repeated

measures). Statistically significant increases of Gt were

also observed at the same concentrations (Fig. 6b;

p \ 0.05, one-way ANOVA repeated measures).

Effect of HCO3
- and KH7 on apical BCS. Basolateral

addition of 40 mM HCO3
- caused a significant increase in

apical BCS (Fig. 7a; p \ 0.05, one-way ANOVA repeated

measures). This effect was reversed by the sequential

addition of 200 lM KH7. Gt increased significantly from

basal only in the presence of both HCO3
- and KH7

(Fig. 7b; p \ 0.05, one-way ANOVA repeated measures).

Effect of KH7 on water absorption. Basolateral addition of

40 mM HCO3
- caused a significant increase in bulk water

absorption (Fig. 8; p \ 0.05, one-way ANOVA repeated

measures). Sequential addition of KH7 reversed the effect

to levels significantly lower than control (p \ 0.05, one-

way ANOVA repeated measures).

Discussion

All regions of the sea bream intestine are able to absorb

water and secrete HCO3
-. They are also sensitive to reg-

ulation by transmembrane adenylyl cyclases (tmACs) and

soluble adenylyl cyclases (sACs), which act in opposite

directions. Stimulation of tmACs in vitro with a combi-

nation of FK ? IBMX results in a reduction of both epi-

thelial BCS and bulk water absorption. In contrast,

stimulation of sACs with elevated bicarbonate induced

increases of BCS and bulk water absorption, which could
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be abolished by the sAC specific inhibitor KH7. This

demonstrates an integration of the endocrine effects on

intestinal BCS and water absorption mediated by tmACs

and the local chemical sensing mediated by the action of

sACs in the fish enterocyte.

It is generally accepted that marine fish drink at rates

between 2 and 7 ml kg-1 h-1 (Fuentes and Eddy 1997a).

The sea bream drinks 5 ml kg-1 h-1 (Guerreiro et al.

2002), a rate slightly higher than those described for

Opsanus beta (Genz et al. 2008; Grosell et al. 2004), Salmo

salar (Fuentes et al. 1996) or Oncorhynnchus mykiss in

seawater (Fuentes et al. 1996; Wilson et al. 1996). In

agreement with variable drinking rates, intestinal water

absorption is also highly variable between species. Values

in the range 38–85 % net absorption of imbibed water have

been described (Genz et al. 2008; Wilson et al. 1996,

2002). In the present study, bulk water absorption by the

whole sea bream intestine was 2.4 ± 0.4 ml kg-1 h-1

which (Fig. 3), considering the published results for

drinking in fish of similar size (Guerreiro et al. 2002),

accounts for roughly 45 % of the imbibed water. How-

ever, while all intestinal regions are absorptive, different

absorption rates are measured along the intestinal tract

(Fig. 3), with higher absorption rates in the anterior and

middle intestine, compared to the rectum. These results

contrast with those reported in Fundulus heteroclitus where

no difference in water absorption was reported between the

anterior and posterior intestine using intestinal sac prepa-

rations (Marshall et al. 2002).

In keeping with the regionalization of water absorptive

capacity in the intestinal tract of the sea bream, regionali-

zation of BCS was also observed (Figs. 1 and 2), which is

in good agreement with the observations in the Gulf

toadfish (Opsanus beta), where higher rates of BCS were
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described in the anterior intestine (Guffey et al. 2011).

However, it contrasts with results from Fundulus hetero-

clitus (Genz and Grosell 2011), Parophrys vetelus and

Citharichthys sordidus (Wilson et al. 2002) where similar

BCS rates were shown for anterior and posterior intestine.

BCS and water absorption are FK-dependent

FK is a well-known activator of tmACs and IBMX is used

to inhibit the action of phosphodiesterases that can

decompose cAMP (Buck et al. 1999; Litvin et al. 2003;

Tresguerres et al. 2010a, 2011). The use of FK in combi-

nation with IBMX is common practice to increase

intracellular cAMP. IBMX is a non-specific inhibitor of

phosphodiesterases that could also increase intracellular

cGMP. No studies have been performed in fish to sub-

stantiate isolated effect of IBMX in cGMP accumulation.

However, IBMX alone was without effect in cGMP levels

in cultured human airway smooth muscle cells (Hamad

et al. 1997) or the human colonic adenocarcinoma cell line

T84 (Sopory et al. 2004).

FK induces tmAC activation, coupled to G-proteins and

intracellular cAMP signaling. A number of endocrine

factors, such as serotonin and vasoactive intestinal poly-

peptide (Bakker et al. 1993; Trischitta et al. 1996, 1999)

that are known to act at the level of the intestinal tract use
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Fig. 5 Short circuit current

(a–c; Isc, lA cm-2) and the

corresponding transepithelial

conductances (d–f; Gt,

mS cm-2) in response to

basolateral addition of 10 lM

FK ? 500 lM IBMX

(FK ? IBMX) to discrete

regions of the sea bream

intestine as measured in Ussing

chambers under voltage clamp:

a, d anterior intestine,

b, e middle intestine and

c, f rectum. Results are shown

as mean ± SEM (n = 6).

Asterisks represent statistical

differences (p \ 0.05, one-way

ANOVA repeated measures)

from basal periods
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intracellular cAMP signaling. Of special interest is PTHrP

that stimulates cAMP production in isolated sea bream

enterocytes presumably via the PTH3R (Rotllant et al.

2006), and more importantly decreases BCS measured in

Ussing chambers (Fuentes et al. 2010). The present results

(Fig. 2) confirm our previous observations that treatment

with FK ? IBMX (tmACs activation) results in responses

similar to those of PTHrP on BCS (Fuentes et al. 2010).

Moreover, the preceding results are congruent with the

intestinal effects of serotonin and vasoactive intestinal

polypeptide (which act via tmACs) on NaCl and water

absorption in the goldfish and eels (Bakker et al. 1993;

Trischitta et al. 1996, 1999).

In the intestine of the killifish, Fundulus heteroclitus

(Marshall et al. 2002), co-stimulation with the calcium

ionophore ionomycin and a combination of the perme-

able cAMP analog dibutyryl-cyclic AMP ? IBMX are

required to make the epithelium secretory in relation

to both fluid and NaCl. In the sea bream, activation of

tmACs (ionomycin absent) with a combination of FK ?

IBMX does not evoke a shift from net absorption to water

secretion, as shown by both the decrease of bulk water

absorption in intestinal sacs (Fig. 4) and the decrease

of short circuit current (Isc) in the absorptive epithelia

anterior and middle intestine (Fig. 5), which never

became secretory.
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This study has not identified the specific molecular

mechanisms that drive the decrease of BCS and water

absorption in response to FK ? IBMX. However, there is

previous evidence of the contribution of apical Cl-/HCO3
-

exchangers to Cl- driven water absorption in the intestine

of marine fish (Grosell et al. 2005). That would be in

agreement with the following observations: (1) decreased

TEP; (2) decreased BCS and (3) decreased water absorp-

tion observed in the sea bream intestine.

The regulatory actions of FK ? IBMX in the sea bream

intestine contrast with those in mammals where stimulation

of different epithelia with FK ? IBMX results either in

stimulated water absorption or in apical secretion. For

example in the renal thick ascending cell system, treatment

with FK ? IBMX stimulates recruitment of the NKCC2

co-transporter to the apical membrane to enhance NaCl

absorption and subsequently water reabsorption (Caceres

et al. 2009). In the mouse gallbladder (Martin et al. 1998),

murine duodenum (Clarke and Harline 1998) and even the

submucosal glands of the piglet esophagus, the combina-

tion stimulates apical secretion of HCO3
-. In the airway

epithelium (Smith and Welsh 1992), in mouse intestine

(Seidler et al. 1997) and pancreas (Quinton 2010) with

defective CFTR activity, FK ? IBMX fails to stimulate

HCO3
- or Cl- secretion. The different response of mam-

malian and fish intestinal epithelia to FK ? IBMX may be

explained by the putatively different function of BCS.

While in terrestrial vertebrates BCS functions in protection

and as a stabilizer of mucous secretion (Quinton 2010), in

fish it serves, amongst other functions, as a facilitator of

water absorption and calcium homeostasis (Fuentes et al.

2010; Grosell 2006; Wilson and Grosell 2003). The

divergent role of BCS in mammals and fish may have led to

the evolution of different endocrine and intracellular con-

trol mechanism and may explain the differences identified

in fish.

BCS and water absorption are KH7-dependent

The majority of intracellular cAMP is generated through

the stimulation of tmACs, although cAMP can also

be generated by tmAC-independent routes such as the

acid–base sensor sAC (Buck et al. 1999; Litvin et al. 2003;

Tresguerres et al. 2010a, 2011). sAC is activated by

intracellular concentration of HCO3
- and may modulate

the recruitment of membrane transporters required in acid–

base regulation (Tresguerres et al. 2010a, 2011). In the fish

enterocytes, HCO3
- is generated and transported for apical

secretion at such high rates that it has been proposed to act

as a potential stimulator of sAC activity (Tresguerres et al.

2011). For example, in the intestine of the Gulf toadfish a

sAC system has been shown to serve as a modulator of

absorptive short circuit current (Tresguerres et al. 2010a).

In the present study in the sea bream, increased concen-

trations of HCO3
- evoked increases of short circuit current

in the anterior intestine that indicates sAC activation

(Fig. 6). Further characterization demonstrated that raised

HCO3
- induced both an increase in BCS as measured by

pH–Stat (Fig. 7) and bulk water absorption in intestinal sac

preparations (Fig. 8). In addition, the specific sAC inhibitor

KH7 abolished the increase of both BCS and water

absorption. The role of sAC in water absorption in the Gulf

toadfish shows activation of apical NKCC co-transporters

(Tresguerres et al. 2010a). However, this mechanism may

not totally explain the results of the present study with the

intestine of the sea bream. KH7 in the presence of 40 mM

HCO3
- (0.3 % CO2 in O2) eliminated the increase in BCS

evoked by raised HCO3
- to pre-treatment levels. Never-

theless, KH7 reduced the water absorption to levels far

lower than basal. It would be tempting to suggest that the

effects of KH7 in water absorption are mediated possibly

through additional effects on aquaporin inactivation.

The HCO3
- dependent stimulation of absorptive short

circuit current, apical BCS, water absorption, together with

the specific inhibitory effects of KH7 point to the presence

and functional importance of a sAC in the intestine of the

sea bream. However, to establish the presence of a func-

tional sAC in the intestine of marine fish further charac-

terization with genomic/transcriptomic tools is required.

The proposed modes of water absorption in fish intestine

involve aquaporins (transcellular pathway) or modification

of tight junctions (paracellular permeability) (Cerdà and

Finn 2010; Marshall and Grosell 2006; Martinez et al.

2005; Raldúa et al. 2008; Whittamore 2011). In the present

study, we detect increases of epithelial conductance (Gt,

electric expression of paracellular permeability) in voltage
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- (0.3 % CO2 in O2)

and subsequent basolateral addition of the sAC inhibitor KH7

(200 lM). Each column represents mean ± SEM (n = 8). Different

subscript letters indicate significant differences between treatments

(p \ 0.05, one-way ANOVA repeated measures)
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clamp experiments that coexist with a decrease in water

absorption as shown both by decreased short circuit current

and by bulk water absorption in intestinal sacs. Our

hypothesis is supported by a recent study in the Fundulus

heteroclitus intestine (Wood and Grosell 2012) demon-

strating that intestinal water absorption is HgCl2 sensitive,

thus likely aquaporin mediated. In functional terms, this

implies a transcellular and not a paracellular pathway for

the regulation of water absorption.

The present study demonstrates that all regions of the

sea bream intestine are able to secrete bicarbonate and

absorb water and that both processes are cAMP sensitive.

However, the source of the enzyme generating cAMP in

fish enterocytes is crucial and membrane-bound adenylyl

cyclase (FK ? IBMX-sensitive/HCO3
- insensitive) down

regulates BCS and water absorption, while soluble aden-

ylyl cyclases (FK ? IBMX-insensitive/HCO3
--sensitive)

enhances BCS and water absorption. In a whole body

context, these results demonstrate that the endocrine effects

on intestinal BCS and water absorption evoked by endo-

crine stimulation via tmACs are locally modulated by the

action of sACs in the fish enterocyte. sAC acts as a

chemical sensor (to CO2/HCO3
- and likely Ca2?) to

locally integrate the cellular response of chemical sensing

and endocrine control (tmAC).
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