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Changes in glucose, glycogen, thyroid activity and hypothalamic
catecholamines in tench by starvation and refeeding
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Abstract The effects of short-term food deprivation
(7 days) and refeeding (2 days) on different biochemical
and neuroendocrine parameters were studied in tench. A
7-days fast resulted in a significant reduction of plasma
glucose and glycogen hepatic content, supporting the
key role of liver glycogen as energy depot for being
consumed during fasting. The rapid recovery of normal
values of blood glucose and glycogen stores by refeeding
indicates a rapid replenishment of liver glycogen stores.
The short-term starvation decreased circulating thyroid
hormones (both T3 and T4) and T4 release from thyroid,
supporting an interaction between nutritional state and
thyroid function in tench. All these metabolic and hor-
monal changes were partial or totally reversed under
refeeding conditions. An increase in hypothalamic con-
tent of norepinephrine and dopamine was found in
fasted fish. This result might be a consequence of stress
induced by starvation.
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Abbreviations bw body weight Æ DA dopamine Æ DHBA
3,4-dihydroxybenzilamine Æ E epinephrine Æ HSI
hepatosomatic index Æ NE norepinephrine Æ T3 3’,5,3,-
triiodothyronine Æ T4 thyroxine Æ TH thyroid
hormones Æ TSH thyroid-stimulating hormone

Introduction

It is known that many fish alternate feeding and fasting
periods during the annual cycle as a consequence of

reproductive processes or seasonal variations in tem-
perature or food availability (Madrid et al. 2001). A
variety of strategies for surviving to different periods of
food deprivation have been adopted by fish, including
metabolic, hormonal and behavioural responses. As a
rule, fish appear to use catabolic energy conservation
strategies which meet their caloric needs but minimize
their tissue energy loss (Navarro and Gutiérrez 1995).
However, the nature of metabolic changes in starvation
depends on the species and duration of the fasting per-
iod. Certain fish such as goldfish, carp, rainbow trout
(Baanante et al. 1991) and porgy (Rueda et al. 1998)
preserve glycogen stores while metabolizing lipids and/
or proteins. Alternatively, other species, such as cod
(Hemre et al. 1993), tilapia (Hsieh and Shiau 2000) and
coho salmon (Larsen et al. 2001) conserve protein and
lipid while partially depleting glycogen stores.

Several hormones play a central role in regulating
nutrient utilization during periods of fasting in all ver-
tebrates, including fish. Thyroid hormones (TH) repre-
sent a good candidate signal in the adaptive metabolic
response to starvation, and it can exert both hypergly-
caemic and glycogenolytic actions. It has been reported
that fasting or reduced feeding can down-regulate the
hypothalamus-hypophysis-thyroid axis, and whereby,
the anabolic activity is inhibited during these periods of
starvation (Bentley 1998). In teleost fish, food depriva-
tion reduces thyroid tissue sensitivity to thyroid stimu-
lating hormone (TSH), plasma 3’,5,3,-triiodothyronine
(T3) and thyroxine (T4) concentrations and clearance,
liver T3 nuclear receptors density, and monodeiodinase
activity, as well as eliminates plasma TH daily patterns
(Cerdá-Reverter et al. 1996; Kühn et al. 1998; Sohn et al.
1998; Van der Geyten et al. 1998; Gaylord et al. 2001).

Brain monoaminergic systems are involved in feeding
regulation in vertebrates (De Pedro et al. 1997, 1998;
Meguid et al. 2000). Changes in nutrient composition
and/or ration of food intake can modify such brain
monoamines in homeotherms (Hajnal and Lénárd 1997;
Meguid et al. 2000; Tachibana et al. 2000). Some reports
have shown the effect of diet on brain monoaminergic
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activity in teleosts (Sloley et al. 1986; Pouliot et al. 1988),
but the possible effects of starvation on endogenous
brain catecholamines have been scarcely examined.

The tench (Tinca tinca) is an economically important
cyprinid widely distributed in Europe. Recent studies
have shown a seasonal pattern in metabolic resources in
this species (Guijarro et al. 2003), clearly influenced by
environmental factors such as the food availability. The
specific responses of tench to food deprivation and re-
feeding are unknown. Therefore, the present study was
undertaken to examine the effects of 7 days fasting and
subsequent access to food for 2 days on hepatosomatic
index, plasma glucose levels, liver glycogen content and
some neuroendocrine parameters (thyroid hormones in
blood and thyroid gland, and hypothalamic content of
catecholamines).

Materials and methods

Animals

Tench (6.2±1.4 g body weight, bw) supplied by the ‘‘Centro
Regional de Acuicultura. Piscifactorı́a Las Vegas del Guadiana’’
(Badajoz, Spain), were maintained at the laboratory in glass
aquaria (50 l) with painted black walls to avoid stress during the
acclimation period. Fish were held in flowing and aerated tap
water, under natural photoperiod (15L:9D) and water temperature
21±2�C (Spring) for 1 month before the experiment. Food con-
sisted in Sera Biogran pellets at a daily ration of 1% bw at
10:00 hours.

Experimental procedure

Tench were divided in three groups (n=10/group): (1) fed group
(F): fish fed throughout the experimental period with the same
daily ration as before (1% bw); (2) starved group (S): 1 week food-
deprived animals; and (3) starved and refed group (S+RF): fish
were starved 7 days and refed for 2 days (1% bw). Fish were sac-
rificed by decapitation at 14:00 hours (4 h after the last food in the
fed groups). Blood was collected using heparinized capillary tubes
and plasma samples were stored at )25�C until analysis. Liver,
lower jaws containing the thyroid tissue, and hypothalamus were
rapidly removed and frozen on solid CO2. The tissue samples were
stored at )25�C until analysis.

Analytical procedures

Plasma glucose levels were determined by the glucose-oxidase
method using a commercial kit (Glucose Trinder, Knickerbrocker
Labs). Hepatic glycogen content was measured by spectropho-
tometry (Dubois et al. 1956) after extraction with ethanol and
previous digestion with KOH (Cifonelli et al. 1956; Montgomery
1957).

The extraction procedure of free and bound fractions of thyroid
hormones in the thyroid was previously described in detail (De
Pedro et al. 1995a, 1995b). Lower jaws containing the thyroid tissue
were homogenised in methanol (12 ml g)1 wet weight) and centri-
fuged (4,500 rpm for 15 min). The hormones thus extracted in the
supernatant represent the free thyroid T4 and T3 contents. Thyro-
globulin-bound T4 and T3 were obtained after overnight proteo-
lytic digestion of the pellet with pronase (0.58%). Plasma thyroid
hormones were extracted and measured as previously described
by Morreale et al. (1985) with minor modifications for fish
samples (De Pedro et al. 1995b). T3 and T4 were extracted with

chloroform-methanol (2:1) and CaCl2 (0.05%), and further purified
with Bio-Rad AG 1·2 resin columns.

Thyroid hormone content (T4 and T3) were determined by
highly sensitive and specific RIAs described by Obregón et al.
(1979). The limits of detection were 1.5 pg for T4 and 0.78 pg for T3

per tube. The intra- and interassay coefficients of variation were
4.16 and 8.55% (1.56 pg, n=9), 7.9 and 18.26% (25 pg, n=10) for
T3; 4.63 and 6.69% (10 pg, n=10), 7.91 and 14.85% (160 pg,
n=10) for T4.

The validation of the RIA for tench samples was performed by
comparing the displacement curves obtained with different volumes
of either extracted plasma or thyroid samples with standard curves
(T4 and T3). Parallelism was statistically tested by one-way analysis
of variance (ANOVA) between the slopes of standards and sample
dilutions, previously calculated by linear regression after logit-log
transformation of the data.

Protein content in liver and jaw homogenates was determined
by the method of Lowry et al. (1951), using serum bovine albumin
as standard.

Hypothalamic content of norepinephrine (NE), epinephrine (E)
and dopamine (DA) was quantified by HPLC with coulometric
detection (Coulochem II, ESA), as previously described (De Pedro
et al. 1997). Hypothalami were homogenised by sonication in
120 ll of cold 0.2 N perchloric acid containing 0.4 mmol l)1

sodium bisulphite, 0.4 mmol l)1 EDTA and 25 ng ml)1 of 3,4-
dihydroxybenzilamine (DHBA) as internal standard. The homog-
enate was centrifuged (13,000 rpm for 1 min) and the supernatant
filtered (0.45 mm, Millex-HV13). The mobile phase (flow rate
1 ml min)1) consisted of 10 mmol l)1 citric acid, 5 mmol l)1

disodium phosphate, 0.05 mmol l)1 EDTA, 0.12 mmol l)1

sodium octanesulphonic acid and 3% methanol (pH 3). The HPLC
system consisted of a Waters 590 pump, a pulse dampener, a
Rheodyne injection valve with a 25-ll loop and a C18 reversed-
phase column (125 mm·4.6 mm ID, 5 lm particle size). A proce-
dure of oxidation/reduction was used (conditioning cell: +300 mV;
analytical cell no. 1: +100 mV; analytical cell no. 2: )250 mV).
Signal from analytical cell no. 2 was recorded with a sensitivity of
50 nA on a Waters 746 integrator and results were calculated as the
area under peaks and expressed as nanograms per hypothalamus.

Statistical analysis

All data were expressed as mean±SEM. Data were analysed by
ANOVA followed by Duncan’s multiple range test for multi-group
comparisons. A probability level of P<0.05 was considered sta-
tistically significant.

Results

Figure 1 shows parallel displacements of serial dilutions
of both plasma and thyroid tissue-extracted samples and
the T3 and T4 standard curves. There were not signifi-
cant (P>0.05) differences between the slopes of stan-
dards and sample dilutions (Table 1).

Changes in circulating glucose, hepatic glycogen
content and hepatosomatic index (HSI) induced by
starvation and refeeding in tench are presented in Fig. 2.
Plasma glucose levels were significantly (P<0.005) re-
duced in response to 7 days starvation, which was to-
tally reversed after 2 days refeeding (Fig. 2a). Similarly,
significant (P<0.005) reductions in both hepatic content
of glycogen and HSI were observed in tench after 7 days
starvation (Fig. 2b, c), whereas refeeding for 2 days
partially reversed such decreases.

476



Figure 3 summarises the effects of starvation and
refeeding on free and bound T3 and T4 thyroid content
in tench. No significant changes in thyroid content of
free and bound T3, and bound T4 after the different
feeding conditions were observed. However, starvation
significantly (P<0.05) reduced the T4-free fraction in
thyroid tissue, which recovered normal values after
2 days refeeding (Fig. 3b, left). The T3/T4 ratio for both
free and bound fractions was not statistically modified in
any of the studied experimental groups.

Starvation for 7 days induced a significant decrease in
both T3 and T4 plasma levels (P<0.05 and P<0.005,

Table 1 Equations of the regression lines for 3’,5,3,-triiodothyronine (T3) and thyroxine (T4) standard curves and samples dilution of free
and bound fraction and plasma from tench (Tinca tinca)

T3 T4

Standard curve Free fraction Bound fraction Plasma Standard curve Free fraction Bound fraction Plasma

A 14.295 12.468 18.297 19.562 12.511 16.144 9.273 10.502
B 3.545 3.266 5.031 4.986 4.721 4.778 4.266 4.067
r 0.983 0.928 0.988 0.983 0.997 0.994 0.99 0.926

A intercept to the y-axis; B slope of the equations of the regression lines; r correlation coefficient

Fig. 1 Comparison of 3’,5,3,-triiodothyronine (T3) and thyroxine
(T4) standard curves (filled triangles) with different volumes of
thyroid-bound fraction (filled circles), thyroid-free fraction (filled
squares) and plasma (filled diamonds) samples. Each point
represents the average of duplicate determinations for samples.
Standard curves represent the average of three different standard
curves. Error bars <5%

Fig. 2 a Plasma glucose levels, b hepatic glycogen content and c
hepatosomatic index (HSI=liver weight/body weight·100) in tench
(Tinca tinca). F feeding (1% body weight, bw) for 7 days; S 7 days
starvation; S+RF 7 days starvation followed by 2 days refeeding
(1% bw). Data are expressed as mean±SEM (n=10/group).
***P<0.005
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respectively), that was partially reversed by refeeding for
2 days (Fig. 4). Plasma T3/T4 ratio remained unchanged
in the different groups of fish.

The hypothalamic content of NE, E and DA after the
different feeding paradigms in tench is presented in Fig. 5.
Starvation for 7 days significantly increased norepi-
nephrine (P<0.01) and dopamine (P<0.005) content in
relation to fed fish (Fig. 5a, c). Refeeding for 2 days did
not significantly reverse such effect of fasting. There were
no statistically significant modifications of epinephrine
hypothalamic content by starvation (Fig. 5b).

Discussion

During early stages of fasting (1 week) tench mobilized
liver glycogen depots. This strategy for supplying energy

during short starvation periods adopted by tench is in
line with other fish species that also use liver glycogen
for the maintenance of metabolic functions during early
starvation (Hemre et al. 1993; Soengas et al. 1996; Hsie
and Shiau 2000, Larsen et al. 2001). Moreover, a fall in
plasma glucose levels was clearly produced by fasting in
tench. Similar decreases in glycemia have been shown
in other species under different periods of food depri-
vation (Soengas et al. 1996; Figueroa et al. 2000; Blasco
et al. 2001). The concomitant decrease in both blood
glucose and liver glycogen observed in tench after 7 days
starvation indicates that the active glycogenolysis pro-
duced to counteract fasting was not enough to maintain
the glycemia, which agrees with data obtained in
Atlantic salmon (Soengas et al. 1996). However, in
starved cod plasma glucose levels are maintained by
reducing the rate of glucose utilization and/or increasing

Fig. 4 Plasma levels of a T3, b T4 and c T3/T4 ratio in tench (Tinca
tinca). F feeding (1% bw) for 7 days; S 7 days starvation; S+RF
7 days starvation followed by 2 days refeeding (1% bw). Data are
expressed as mean±SEM (n=10/group). *P<0.05, **P<0.01,
***P<0.005

Fig. 3 Thyroid content of free (left) and bound (right) T3 (a) and T4

(b) fractions, and T3/T4 ratio (c) in tench (Tinca tinca). F feeding
(1% bw) for 7 days; S 7 days starvation; S+RF 7 days starvation
followed by 2 days refeeding (1% bw). Data are expressed as
mean±SEM (n=10/group). *P<0.05
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gluconeogenesis (Hemre et al. 1993). This different re-
sponse to fasting could be related to many factors, such
as interspecies variability, age, past nutritional history,
season and others, as it has been suggested (Soengas
et al.1996; Boujard et al. 2000).

In the present study, refeeding for 2 days induced a
partial recovery of liver weight and glycogen content.
This result corresponds with previous studies in teleosts
(Böhm et al. 1994; Soengas et al. 1996; Rueda et al.
1998; Larsen et al. 2001) where a rapid restoration of
liver reserves during refeeding has been reported,
emphasizing the key role played by the liver during short
fasting periods. The fact that tench refed for 2 days
exhibited normal values of glycemia and significantly
recovered hepatic glycogen content indicates that at least
a fraction of such increase in post-feeding plasma glu-
cose levels were directed to replenish the exhausted liver

glycogen depots, as it occurs in carp (Böhm et al. 1994)
and rainbow trout (Figueroa et al. 2000). Nevertheless,
the existence of indirect pathways producing glycoge-
nogenesis during refeeding, e.g. from 3-carbon com-
pounds via the gluconeogenic pathway (Baanante et al.
1991), can not be discarded.

Metabolism is controlled by the interaction of many
hormones under different nutritional conditions, which
keep energy reserves necessary for maintenance of the
healthy organism. During periods of fasting or starva-
tion, pancreatic hormones, growth hormone, as well as
glucocorticoids play important metabolic roles. How-
ever, the possible role of thyroid hormones is unclear at
this time, mainly in ectothermic animals. In our study,
starvation for 1 week clearly produced an inhibitory
effect of thyroid activity in the tench, i.e. a decreased free
fraction of intrathyroidal T4 and circulating thyroid
hormones. These results agree with previous reports on
the inhibitory action of fasting on different aspects of
thyroid function (Cerdá-Reverter et al. 1996; Kühn et al.
1998; Sohn et al. 1998; Van der Geyten et al. 1998;
Gaylord et al. 2001).

The fasting-induced reduction of intrathyroidal free
T4 content in tench indicates a decreased secretory
activity of the thyroid, bearing in mind that this fraction
represents the hormone ready to be released into circu-
lation. Moreover, such hypothetical reduction in thy-
roidal T4 secretion is supported by the decrease of TH
plasma levels together with an unchanged peripheral
deiodination (plasma T3/T4 ratio). Nevertheless, there
may be interactions with other endocrine systems that
are also modified by starvation. Thus, it has been shown
that corticosteroids (presumably released during stress
situations as starvation) inhibit thyroid function, caus-
ing decreases in plasma levels of T3 and T4, accompanied
or not by a reduced deiodinating activity (Kühn et al.
1998). Moreover, in addition to direct actions of TH on
metabolism, these hormones exert a permissive role in
the action of other hormones and enzymes involved in
the metabolism regulation (Bentley 1998).

Thyroxine is the main thyroidal secretion in many
teleost species, being mostly T3 of extrathyroidal origin
(Kühn et al. 1993). Our data support this preferential
synthesis and secretion of T4 by the thyroid in tench,
but we have also quantified significant amounts of in-
trathyroidal T3, suggesting that this hormone in tench
could be released by the thyroid and thus significantly
contribute to the plasma T3 pool. This is in agreement
with recent results in sturgeon, which indicate that
thyroid can be a significant direct source of T3 (Ploh-
man et al. 2002). Previous evidences in rainbow trout,
where circulating T3 is more dependent on this thy-
roidal release than on its formation in peripheral tissues
(Sefkow et al. 1996), also corroborate our data in
tench.

On the other hand, decreases in circulating levels of
TH during the fasting period may point to a general
mechanism used by tench to meet a food deprivation
period by slowing down the metabolic rate, as suggested

Fig. 5 Hypothalamic content of a norepinephrine (NE), b epineph-
rine (E), and c dopamine (DA) in tench (Tinca tinca). F feeding (1%
bw) for 7 days; S 7 days starvation; S+RF 7 days starvation
followed by 2 days refeeding (1% bw). Data are expressed as
mean±SEM (n=10/group). **P<0.01, ***P<0.005
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by Hemre et al. (1993) for the cod. The decline in thyroid
activity induced by starvation is clearly an adaptive re-
sponse to reduce metabolism or growth and preserve
nutritional reserves. In fact, thyroid hormones could
participate in the adjustment of seasonal changes of
metabolic activity described for this species (Guijarro
et al. 2003), mainly in conditions of limited food supply,
as it occurs in winter.

Two days of refeeding allows the recovery of normal
values in the metabolic and hormonal parameters stud-
ied in tench. Our results suggest a rapid compensatory
mechanism of food intake, when tench are returned to
full rations of food. There is evidence that periods of
food deprivation are followed by hyperphagic responses
and compensatory growth (Rueda et al. 1998; Boujard
et al. 2000; Gaylord et al. 2001).

The hypothalamic content of catecholamines in tench
was similar to that found in others cyprinids, such as
goldfish (De Pedro et al. 1997, 1998), but the response of
hypothalamic catecholaminergic system to starvation
was different depending on species. Thus, fasting induces
an increase in hypothalamic NE and DA content in the
tench versus a reduction of both catecholamines in
goldfish (De Pedro et al. 2001). This discrepancy may
result from differences in feeding pattern: tench show
nocturnal feeding activity, while goldfish tend to be day
active (Sánchez-Vázquez et al. 1996). In contrast to
goldfish, tench is highly sensitive to stressful stimuli.
Then, it can be hypothesized that the NE and DA in-
crease observed in the present study could be a conse-
quence of starvation-induced stress, as it has been
described in starved insects (Barreteau et al. 1993). Re-
cent studies have shown that fish subjected to different
stress conditions present an increased serotoninergic and
dopaminergic activity (Jobling et al. 1999; Amcoff et al.
2002). The determination of plasma cortisol levels in
tench could be relevant to support this hypothesis.

In summary, the present results show for the first time
some hormonal and biochemical adjustments adopted
by tench to cope with 1 week of fasting, and restoration
after 2 days of refeeding. In agreement with findings in
other vertebrates, plasma TH levels can also be used as a
rapid indicator of nutritional status in tench. Data from
the present study represent important reference values
useful for aquaculturists and physiologists working with
this species.
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