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Abstract
Migratory animals can detect and use the Earth’s magnetic field for orientation and navigation, sometimes over distances 
spanning thousands of kilometers. How they do so remains, however, one of the greatest mysteries in all sensory biology. 
Here, the author reviews the progress made to understand the molecular bases of the animal magnetic sense focusing on insect 
species, the only species in which genetic studies have so far been possible. The central hypothesis in the field posits that 
magnetically sensitive radical pairs formed by photoexcitation of cryptochrome proteins are key to animal magnetoreception. 
The author provides an overview of our current state of knowledge for the involvement of insect light-sensitive type I and 
light-insensitive type II cryptochromes in this enigmatic sense, and highlights some of the unanswered questions to gain a 
comprehensive understanding of magnetoreception at the organismal level.
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Introduction

Magnetoreception, the ability of an organism to sense and 
use the Earth’s magnetic field to accomplish a variety of 
navigational tasks to locate shelter, food sources or breeding 
grounds, is widespread in nature (Mouritsen 2018; Putman 
2022). We do know that insects, birds, sea turtles, fishes, and 
amphibians rely on magnetic compass information to point 
them in the right direction (Wiltschko and Wiltschko 1972, 
2005; Lohmann and Lohmann 1993; Bottesch et al. 2016; 
Phillips and Borland 1994; Guerra et al. 2014; Dreyer et al. 
2018). Despite its fundamental role for both short- and long-
range navigation, what we do not know is exactly how mag-
netoreception works, making the magnetic sense the least 
understood senses in all biology (Nordmann et al. 2017). In 
this short review, the author aims to integrate recent research 
outcomes and progress made to understand this enigmatic 
sense at a mechanistic level from molecules to behavior, 
with a focus on insects.

With a rich repertoire of navigational behaviors, insects 
have emerged as promising experimental models to study 
magnetoreception. Some of the most remarkable examples 
of animals using the geomagnetic field for navigation are 
long-distance migratory species. Similar to birds and sea 
turtles which utilize the geomagnetic field as a compass cue 
for orientation (Wiltschko and Wiltschko 2005; Lohmann 
et al. 2004), migratory insects like the diurnal American 
monarch butterfly (Danaus plexippus) and the nocturnal 
Australian bogong moth (Agrotis infusa) appear to rely, at 
least in part, on magnetic cues for orientation during their 
migratory journeys (Dreyer et al. 2018; Guerra et al. 2014). 
Other species of navigators such as desert ants can also use 
the geomagnetic field for shorter range navigational tasks. 
Cataglyphis desert ants use the geomagnetic field for path 
integration, a navigation strategy that integrates information 
of the direction and distance traveled relative to its starting 
point, allowing them to align their gaze directions toward 
the nest entrance during their initial learning walks (Fleis-
chmann et al. 2018, 2020). Many more species, including 
bees, cockroaches, firebugs, and fruit flies, have been shown 
to be magnetosensitive (Vale and Acosta-Avalos 2021; 
Netusil et al. 2021; Gould et al. 1978; Bazalova et al. 2016; 
Fedele et al. 2014b; Gegear et al. 2008; Oh et al. 2020), 
although the ecological significance of a magnetic sense in 
these species remains often unclear.
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Because of its ability to respond to magnetic fields 
and its genetic tractability, the fruit fly Drosophila mela-
nogaster has been used as a genetic model to provide the 
first in vivo molecular insights into magnetoreception. The 
lack of clear ecological significance for a magnetic sense 
in this species has, however, led to questioning whether 
findings in D. melanogaster could apply broadly in other 
species, including migratory birds and insects. The advent 
of the CRISPR–Cas9 genome editing system has started 
and will continue to unlock the potential for similar genetic 
approaches in other non-conventional model insects, 
including migratory ones (Wan et al. 2021). Comparative 
approaches should ultimately help unravel the molecular 
and cellular bases of the magnetic sense and their evolution 
across the animal kingdom.

The Earth’s magnetic field and its detection

Before diving into recent molecular advances in the field, 
what are the magnetic field cues animals can sense and how 
these signals could in theory be transduced for navigation 
behavior? The geomagnetic field, distributed throughout 
the surface of the globe, can be roughly represented by a 
field generated by a magnetic dipole that is tilted at an angle 
of about 11° with respect to the Earth’s rotational axis. It 
originates from the Southern hemisphere, re-enters the Earth 
in the Northern hemisphere, and varies in three parameters 
defined in biological terms as intensity, inclination, and 
declination (Fig. 1). The geomagnetic field intensity var-
ies from 25 μT at the magnetic equator to 65 μT at each 
magnetic pole (Fig. 1A). The inclination of the field, which 
is the angle difference between the magnetic lines and the 
Earth’s surface, is 0° at the magnetic equator when the lines 
are parallel to the Earth’s surface and gradually changes to 
reach + 90° or – 90° at the magnetic Northern and South-
ern poles, respectively (Fig. 1A, B). Finally, the difference 
between true geographic north and magnetic north, called 
magnetic declination, varies with geographic location on 
the Earth's surface. As magnetic North travels, the declina-
tion angle changes by units of degrees slowly over decades. 
Thus, in theory, intensity, inclination, and declination of the 
Earth’s magnetic field provide a reference system for animals 
to navigate. By providing information on latitudinal posi-
tion, the inclination of the geomagnetic field can be used as 
a navigation system for determining the direction of travel 
relative to the goal. When combined with the field intensity, 
inclination can also provide unique magnetic characteristics 
associated with a given location on Earth’s surface, helping 
animals to determine their location (i.e., map position) rela-
tive to their destination (Lohmann et al. 2004). Because of 
its singularity at any location and its usefulness as a cue to 
discriminate East–West, declination could also contribute 

to an animal’s map sense (Akesson et al. 2005; Chernetsov 
et al. 2017). Unlike birds, sea turtles, fishes, amphibians, 
and crustaceans in which the use of both a magnetic com-
pass and a magnetic map has been established (for review, 
(Mouritsen 2018)), long-distance migratory insects have so 
far only been shown to use magnetic compass cues (Dreyer 
et al. 2018; Guerra et al. 2014).

How land animals sense the Earth’s magnetic field param-
eters remains far from being fully understood, but three 
main models have been proposed: (i) an electromagnetic 
induction-based model in which movement of an animal 
through the Earth’s magnetic field would induce a current 
in the inner ear (Jungerman and Rosenblum 1980; Nimpf 
et al. 2019); (ii) a magnetic particle-based model whereby 
intracellular chains of magnetite (Fe3O4) crystals would 
detect field intensity and function as compass needles (Uebe 
and Schuler 2016; Bazylinski and Frankel 2004); and (iii) 
a radical-pair-based model relying on the spin chemistry of 
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Fig.1   Characteristics of the Earth’s magnetic field. A The Earth has 
two sets of poles, geographic and geomagnetic poles. The geomag-
netic field is generated by electric currents in Earth’s outer core, and 
flow out of Earth through the magnetic South pole, extends tens of 
thousands of kilometers into space before re-entering in the mag-
netic North pole. The intensity of the field varies at its surface, rang-
ing from 25 µT at the magnetic equator (white line) to 65 µT at each 
magnetic pole. The angle of the field between a magnetic pole and a 
geographic pole corresponds to its declination, and the angle between 
the field vectors and the Earth’s surface is called the inclination 
(orange arrows). Examples of insect species used as models to study 
the role of cryptochromes in magnetosensing are shown on the left. 
B Detailed representation of the inclination of Earth’s magnetic field, 
which varies from 0° at the magnetic equator to 90° at each magnetic 
pole (orange arrows in A)
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radical-pair reactions initiated by light in specialized pho-
toreceptors (Hore and Mouritsen 2016; Ritz et al. 2000; 
Schulten et al. 1978).

Despite being found in many organisms, including bees 
and ants (de Oliveira et al. 2010; Schiff 1991), magnetite 
has yet to be demonstrated as a magnetosensory molecule 
capable of regulating behavior. Similarly, evidence for elec-
tromagnetic induction is lacking in insects. More attention 
has been paid to the radical-pair hypothesis. The theoretical 
framework underlying the radical-pair mechanism posits that 
a light-induced electron transfer reaction generates a radical 
pair that can exist in singlet (antiparallel) or triplet (parallel) 
spin states. The Earth’s magnetic field affects the singlet–tri-
plet interconversion in an orientation-dependent manner 
relative to the sensor molecule, leading to a change in the 
singlet–triplet yield. This in turn triggers a signaling cascade 
in the relevant cells, leading to a physiological and behavio-
ral response (Hore and Mouritsen 2016; Rodgers and Hore 
2009). Magnetic field effects on radical-pair reactions have 
been established by numerous in vitro studies (reviewed in 
Hore and Mouritsen 2016), albeit with field of several orders 
of magnitude stronger than the one on Earth’s. The proof 
that the photochemistry of a radical-pair mechanism is sen-
sitive to Earth-strength magnetic fields and can function as 
an inclination compass has, however, been provided using a 
synthetic carotenoid–porphyrin–fullerene model compound 
(Maeda et al. 2008; Kerpal et al. 2019), further supporting 
the idea that a radical-pair mechanism for magnetoreception 
is plausible. Although not formally demonstrated in vivo, an 
ever-increasing amount of evidence supports this hypothesis.

Cryptochrome: a key player in insect 
magnetoreception

The light dependency of magnetosensitivity in many species 
has led the field to postulate that a photoreceptive molecule 
would be the candidate light-dependent magnetic detector 
(Ritz et al. 2000). Light-activable opsins, G protein-coupled 
receptors well known to function in vision, are activated 
when the bound chromophore retinal undergoes isomeriza-
tion upon the absorption of a photon of light causing a con-
formational change that triggers a phototransduction cascade 
(Terakita 2005). Although this appeared to happen without 
the production of a radical pair, a recent study using quan-
tum chemical calculations showed evidence that ultraviolet 
(UV) opsins can generate triplet states in a retinal chromo-
phore (Filiba et al. 2022), rendering them potentially sensi-
tive to the magnetic field. The other photoreceptive mol-
ecule proposed to form magnetically sensitive radical pairs 
of electrons is cryptochrome (CRY) flavoproteins, following 
photoexcitation of their flavin adenine dinucleotide (FAD) 
co-factor (Maeda et al. 2012). Magnetically sensitive radical 

pair products would be generated when the fully oxidized 
FAD chromophore is photoreduced via a sequence of elec-
tron transfers along a chain of tryptophan residues within 
the CRY polypeptide (Rodgers and Hore 2009; Wong et al. 
2021; Ritz et al. 2000).

Animal CRYs, which are best known for their role in 
circadian function, can be classified into three categories, 
Drosophila-like type 1 CRYs, mammalian-like type 2 CRYs 
and bird-like type 4 CRYs. Drosophila-like type 1 CRYs 
(CRY1s) are UV-A/blue-light photoreceptors responsible 
for the synchronization of the circadian clock to the daily 
light:dark cycle (Emery et al. 2000; Zhu et al. 2005). Mam-
malian-like type 2 CRYs (CRY2s) do not appear to be light 
sensitive and function as transcriptional repressors of the 
heterodimeric CLOCK:BMAL1 transcription factor that 
drives the circadian transcriptional feedback loop (Merlin 
et al. 2013; Michael et al. 2017; Zhu et al. 2005). Bird-like 
type 4 CRYs are also light sensitive, but unlike type 1 CRYs, 
do not have any clock function (Zoltowski et al. 2019). In 
insects, the core oscillator has evolved, giving rise to at 
least three types of clocks based on the presence/absence of 
CRY1s and/or CRY2s (Yuan et al. 2007). Mammalian-like 
type 2 CRYs are found in all insect species examined so far 
with the exception of flies in the brachyceran lineage, which 
includes D. melanogaster (Yuan et al. 2007; Zhang et al. 
2017; Zhu et al. 2005). Thus, D. melanogaster expresses 
only the type 1 CRY, named CRY. Several insects, like mos-
quitoes, butterflies, and the cockroach Blattella germanica, 
express both CRY1 and CRY2 (Zhu et al. 2005; Bazalova 
et al. 2016). Others, like the honeybee Apis mellifera, the 
beetle Tribolium castaneum, and the cockroach Periplaneta 
americana only express CRY2 (Rubin et al. 2006; Zhu et al. 
2005; Bazalova et al. 2016).

Driven by the availability of genetic tools and the devel-
opment of behavioral assays, the fruit fly D. melanogaster 
has been used to provide the first in vivo demonstration that 
light-sensitive type 1 CRYs mediates light-dependent mag-
netoreception in a wavelength-dependent manner (Fedele 
et al. 2014a, 2014b; Gegear et al. 2008; Yoshii et al. 2009). 
Responses of wild-type flies to a magnetic field under full-
spectrum light were abolished when wavelengths in the 
CRY-sensitive, UV-A/blue part of the spectrum (< 420 nm) 
were blocked, as well as in Cry-null mutant flies. Unexpect-
edly, overexpression of monarch butterfly and human CRY2s 
in CRY-deficient flies restored light-dependent responses to 
magnetic fields (Foley et al. 2011; Gegear et al. 2010; Fedele 
et al. 2014a). Other studies, coupling gene knockdown or 
reverse genetics to behavioral analyses in the cockroaches 
P. americana and B. germanica, as well as in the firebug 
Pyrrhocoris apterus, have added support to a possible role 
of insect CRY2 in magnetoreception (Netusil et al. 2021; 
Bazalova et al. 2016). Altogether, this suggests the tantaliz-
ing possibility that type 2 CRYs may undergo the necessary 
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photochemical reactions for magnetosensitivity (Fedele et al. 
2014a; Gegear et al. 2010). Because CRY2s lack the struc-
tural features to bind FAD and current evidence indicates 
that, at least in mammals, type 2 CRYs do not bind FAD 
(Kutta et al. 2017), if CRY2 function in magnetoreception, 
it is likely that it would do so via an unknown mechanism. 
However, in striking contrast to the studies mentioned above, 
a recent study by our group in the monarch butterfly dem-
onstrated that, while CRY1 is necessary for response to 
changes in the inclination of Earth strength magnetic fields, 
CRY2 is dispensable (Wan et al. 2021). The contrasting find-
ings between this study and the one in which monarch CRY2 
was overexpressed in CRY-deficient flies could be the results 
of CRY2 overexpression and/or the use of non-physiological 
magnetic field intensities in the D. melanogaster study, in 
which responses were rescued by monarch CRY2 but only 
modestly (Foley et al. 2011; Gegear et al. 2010). Never-
theless, the apparent inconsistencies on the requirement of 
CRY2 for magnetic responses between insect species cannot 
be ignored. It is conceivable that insect species that have 
lost the light-sensitive CRY1 evolved compensatory mecha-
nisms for CRY2 to function in magnetoreception. However, 
it remains unclear why two species that have both CRY1 
and CRY2 such as the monarch butterfly and the cockroach 
B. germanica, would display different requirements of one 
type of CRY over the other for magnetosensing. One for-
mal possibility is that B. germanica CRY1 may have lost its 
ability to function in magnetoreception and CRY2 took on 
this function. The divergence of the C-terminal domain of 
B. germanica CRY1 from those of D. melanogaster CRY 
and monarch butterfly CRY1 may support such a possibility 
(see below). Ultimately, the use of additional insect models 
possessing either both CRY1 and CRY2 or only CRY2 that 
would be amenable to genetic manipulations and presenting 
robust responses to magnetic fields of intensities found on 
Earth would help resolve this issue.

The magnetosensitive organs: eyes 
and antennae as prime candidates

The anatomical localization of the site of magnetoreception 
has also been a sought-after area of investigation. Looking 
for tissue-specific expression of CRY1 and CRY2 would 
not yield conclusive results, given that both proteins play 
important roles within the circadian clock and that circadian 
clocks operate broadly and autonomously in all peripheral 
tissues in insects (Glossop and Hardin 2002). Approaches 
used to identify the location of magnetosensitive cells within 
tissues have relied on either cell type/tissue-specific rescue 
in D. melanogaster or blocking the light input to candidate 
organs with black paint in other species in which tissue-
specific genetic manipulations are not yet available. In D. 

melanogaster, three separate anatomical locations were 
implicated: a subset of CRY-positive clock cells in the brain 
known as dorsal-lateral clock neurons (LNds), the antennae, 
and the eyes (Fedele et al. 2014b). Importantly, specific CRY 
expression in any one of these cells/organs was sufficient to 
restore magnetosensitivity of Cry loss-of-function mutants, 
suggesting some level of cellular redundancy (Fedele et al. 
2014b). Interestingly, in the monarch butterfly, painting the 
antennae or compound eyes black resulted, in each case, in 
a loss of their ability to respond to a reversal of magnetic 
inclination (Guerra et al. 2014; Wan et al. 2021), indicat-
ing that both antennae and eyes are necessary for monarch 
magnetosensing and that impairing magnetosensitivity in 
one organ cannot be compensated by the other. Using simi-
lar painting experiments, eyes were also found to be neces-
sary for magnetoreception in the cockroach P. americana 
(Bazalova et al. 2016). In this species, CRY2 immunolo-
calization revealed an orderly pattern of cellular expression 
just underneath the pigmented layer of the retina, consist-
ent with the widely accepted view that molecules that are 
necessary for the transduction of a magnetic stimulus into 
a cellular response should be oriented in an orderly fashion 
(Hore and Mouritsen 2016). Determining if such a CRY 
expression retinal pattern is conserved across insect species 
and in which cells CRY is expressed in the antennae will be 
necessary to expand our understanding of the cellular bases 
of the magnetic sense.

Is cryptochrome the bona fide 
magnetoreceptor or a downstream signaling 
molecule?

While evidence for the involvement of CRYs in magnetore-
ception is undisputable, whether CRYs serve as bona fide 
magnetoreceptors or signaling molecules functioning down-
stream of an unknown receptor remains a debated question. 
As previously mentioned, CRY was originally proposed as 
a candidate magnetoreceptor based on its ability to initiate 
an electron transfer cascade along a conserved chain of Trp 
residues when bound to its co-factor FAD (Ritz et al. 2000; 
Hore and Mouritsen 2016; Rodgers and Hore 2009). How-
ever, a formal test of this hypothesis in D. melanogaster 
cast skepticism as mutating the terminal Trp of the Trp-triad 
(currently known as the Trp-tetrad) in D. melanogaster CRY 
and monarch CRY1 did not impair the ability of transgenic 
flies to respond to the magnetic field (Gegear et al. 2010; 
Fedele et al. 2014b). Interestingly, the C-terminal (C-ter) 
domain of D. melanogaster CRY, which becomes exposed 
once CRY undergoes conformational changes triggered by 
FAD photoreduction (Vaidya et al. 2013), was shown to be 
required for magnetosensing (Fedele et al. 2014b). As this 
domain does not contain the canonical FAD-binding domain 
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and the Trp chain, this suggested that it may function in 
the intracellular signaling of the CRY response to magnetic 
fields by modulating downstream protein–protein interac-
tions (Fedele et al. 2014b).

In an unexpected twist, recent work showed that the 52 
C-ter amino acids of D. melanogaster CRY are not just 
required, but sufficient to facilitate magnetoreception (Bra-
dlaugh et al. 2023) (Fig. 2A). The single Trp present on this 
domain does not seem to bind free FAD. Remarkably, the 
magnetic response mediated by the CRY C-ter can be poten-
tiated in a dose-dependent manner by providing exogenously 
free FAD that is capable of forming radical pairs on its own, 
but not by providing its precursor riboflavin that cannot 
form radical pairs (Bradlaugh et al. 2023). Additionally, it 
appears that even in absence of the CRY C-ter, high doses 
of free FAD alone can cause a similar effect, suggesting that 
FAD may act as a magnetoreceptor at high concentration 
(Bradlaugh et al. 2023). Together, these results support the 
existence of a CRY-independent radical-pair mechanism and 
place CRY in the signaling cascade for magnetoreception, 
perhaps in addition to its receptor function.

In line with the idea that the C-ter of D. melanogaster 
CRY plays a role in transducing the magnetic signal, the 
integrity of a putative PDZ-binding motif (EEEV; Fig. 2A) 
to which scaffold PDZ proteins bind for the assembly and 
cellular localization of signaling complexes was shown 
to be required to support a magnetic response, as a single 
valine to lysine mutation is sufficient to abolish it (Brad-
laugh et al. 2023) (Fig. 2A). This discovery may hold the 
key to deploy molecular approaches for the in vivo identi-
fication of protein interactors and perhaps transmembrane 

proteins that transduce the radical pair signal into a neu-
ral one, ultimately leading to behavioral responses. It 
may also provide a framework to settle apparent contro-
versies related to which type of CRY (CRY1 vs. CRY2) 
are involved in insect magnetoreception. As previously 
mentioned, insect species that have lost the light-sensi-
tive CRY1 may have evolved mechanisms for CRY2 to 
take on the function in magnetoreception. But what about 
insect species that possess both CRYs but use either CRY1 
or CRY2 in a species-specific way, as is the case for the 
monarch and the cockroach B. germanica? Perhaps the 
answer lies in the CRY1 C-ter region. Aligning C-ters of 
D. melanogaster CRY and CRY1s from the monarch and 
the cockroach B. germanica reveals that monarch CRY1 
C-ter exhibits a high degree of conservation with that of D. 
melanogaster CRY, including the presence of a relatively 
well-conserved PDZ-binding domain (EDEV), while the 
most distal end of B. germanica C-ter is truncated and 
lacks this domain (Fig. 2B). If indeed this domain is key 
for CRY1 function in magnetoreception, it could explain 
why B. germanica is relying on CRY2, and not CRY1, for 
magnetic responses. Given that most of the experiments 
conducted by Bradlaugh et  al. used non-physiological 
magnetic fields, validating whether the necessity and suf-
ficiency of the CRY C-ter is conserved in species relying 
on CRY1 and responding to physiological magnetic fields 
will be important. This could be achieved in the monarch 
butterfly via the use of CRISPR/Cas9 for the generation of 
truncated mutants (Markert et al. 2016; Zhang et al. 2017) 
and the development of transgenesis for sufficiency tests.

PDZ motif
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K

Fig. 2   Role of the Drosophila melanogaster CRY C-terminal domain 
in magnetoreception and sequence conservation/divergence in insects. 
A Schematic of D. melanogaster CRY highlighting the different 
domains, including the Trp (W)-tetrad bearing FAD-binding domain 
and the 52 amino acids C-terminal (C-ter) domain shown to be suf-
ficient for magnetic responses. The most distal C-ter contains a puta-
tive PDZ-binding motif (EEEV; shown in red), whose integrity is 
essential for CRY function in magnetoreception. When the valine (V) 

is mutated to a lysine (K) in the full-length CRY, D. melanogaster 
is no longer able to exhibit responses to the magnetic field. Blue 
W, single Trp residue in the most distal C-terminus. Modified from 
(Bradlaugh et  al. 2023). B Alignment of amino acid sequences of 
the light-sensitive CRY/CRY1 C-termini of D. melanogaster (d), the 
monarch butterfly Danaus plexippus (dp) and the cockroach Blattella 
germanica (bg)
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Concluding remarks

Due to the lack of obvious adaptive function of magnetic 
susceptibility in most insects studied so far, their use for 
the dissection of the molecular underpinnings of magne-
toreception is sometimes questioned. The power of the 
genetic approaches that can be undertaken in D. mela-
nogaster and the existence of a light-sensitive CRY1 and/
or light-insensitive CRY2 in many other species make 
insects, however, uniquely suited for furthering the neu-
rogenetic dissection of the molecular and cellular basis of 
magnetosensitivity. As discussed in this minireview, there 
is ample evidence that both types of CRYs play a critical 
role in magnetosensitivity in a species-specific manner, 
although it remains to be seen whether they function as 
a receptor or a downstream signaling molecule. Another 
major remaining challenge will be to determine how neu-
ral signals are transduced and integrated in the brain to 
give rise to behavioral responses, particularly in migratory 
insects that use magnetic fields for long-distance orienta-
tion and navigation such as the bogong moth and the mon-
arch butterfly. The use of electrophysiological recordings 
with multi-electrode arrays from brains of tethered flying 
insects (Beetz et al. 2022) that would be orienting to mag-
netic fields hold great promise to identify the neural sites 
of integration of magnetic information and its encoding. 
Ultimately, forward progress will require highly interdisci-
plinary approaches, and that the community remains open 
to unexpected findings as we continue to dig deeper into 
this fascinating sense.
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