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Abstract
Desert ants use path integration to return from foraging excursions on a shortcut way to their nests. Intriguingly, when walking 
over hills, the ants incorporate the ground distance, the paths’ projection to the horizontal plane, into their path integrator. 
This review discusses how Cataglyphis may solve this computational feat. To infer ground distance, ants must incorporate 
the inclination of path segments into the assessment of distance. Hair fields between various joints have been eliminated as 
likely sensors for slope measurement, without affecting slope detection; nor do postural adaptations or changes in gait provide 
the relevant information. Changes in the sky’s polarization pattern due to different head inclinations on slopes were ruled 
out as cues. Thus, the mechanisms by which ants may measure slopes still await clarification. Remarkably, the precision of 
slope measurement is roughly constant up to a 45° inclination, but breaks down at 60°. An encounter of sloped path segments 
during a foraging trip induces a general acceptance of slopes, however, slopes are not associated with specific values of the 
home vector. All current evidence suggests that Cataglyphis does not compute a vector in 3-D: path integration seems to 
operate exclusively in the horizontal plane.
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Introduction

Cataglyphis ants are renowned for their path integration 
capacities. In featureless saltpans individual ants perform 
large distance foraging excursions (up to 1200 m; Bühl-
mann et al. 2014; Huber and Knaden 2015), from which 
they return on a direct, shortcut way to their nests (Wehner 
and Wehner 1986; Müller and Wehner 1988; Wehner and 
Srinivasan 2003). Two kinds of information are essential for 
path integration: information about the direction of any path 
segment and about the distance covered in that direction. 
These two variables are then processed to update a ‘home 
vector’ that represents the homing direction and the distance 
to the nest (Wehner and Srinivasan 2003; Ronacher 2008). 
The walking directions are derived primarily via a sky com-
pass that takes advantage of the sun azimuth position and the 

polarization pattern of the sky (Wehner 1997, 2014; Wehner 
and Labhart 2006; Wehner and Müller 2006; Heinze and 
Homberg 2007). Additional cues may be used as well, for 
example the spectral gradients across the sky (Wehner 1997) 
or the direction of steady wind (Wolf and Wehner 2000; 
Müller and Wehner 2007).

Various hypotheses have been proposed how insects may 
gauge walking distances—energy consumption, optic flow 
or idiothetic cues (Heran 1956; von Frisch 1965; Ronacher 
and Wehner 1995; Ronacher 2008). Distance estimates of 
desert ants are quite precise (Sommer and Wehner 2004; 
Bühlmann et al. 2014), and surprisingly robust against vari-
ous disturbances as carrying heavy prey, walking backwards, 
or even the loss of one or two legs (Steck et al. 2009; Pfeffer 
et al. 2016). By putting ants on stilts, Wittlinger and col-
leagues have convincingly shown that Cataglyphis uses a 
pedometer—more precisely a stride integrator—to assess 
travelled distances (Wittlinger et al. 2006, 2007a; for a simi-
lar conclusion in crabs see Walls and Layne 2009). Remark-
ably, different odometry mechanisms are used by walking 
and flying insects (Collett et al. 2006). Honeybees use optic 
flow cues to gauge foraging distances (Esch and Burns 
1995; Srinivasan et al. 1997, 2000; Dacke and Srinivasan 
2007; Srinivasan 2014) whereas optic flow cues seem less 
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important in Cataglyphis ants (Ronacher and Wehner 1995; 
Ronacher et al. 2000; Bescond and Beugnon 2005), although 
they can be sufficient to allow distance estimates under cer-
tain conditions (Pfeffer and Wittlinger 2016). Although bees 
cannot use a pedometer during flight, the observation that 
walking bumble bees do gauge a feeder distance correctly 
in complete darkness suggests that bees possess a pedom-
eter like ants (Chittka et al. 1999). Honeybees that were 
induced to walk in a channel system to a 6 m distant feeder 
indicated path integration in their waggle dances (Bisetzky 
1957). This also suggests distance estimation by means of a 
pedometer. Conceivably, insects may generally employ two 
distance estimates, optic flow and pedometer based, however 
with different weights depending on their respective reli-
abilities (Wolf et al. 2018).

The desert ant, Cataglyphis fortis, however, shows 
another behavioral feat which demonstrates that the meas-
urement of walking distances is even more complex than 
mere stride integration. In 2000, Sandra Wohlgemuth pre-
sented first evidence that ants are able to infer the ground 
distances when walking over hills (Wohlgemuth et al. 2001, 
2002). Having been trained to forage over a series of hills 
(Fig. 1a), Cataglyphis does not only measure the actual 
walking distance but computes the base line distance, i.e., 
the projection of the path onto the horizontal plane, and uses 
this value for path integration. In this respect ants differ from 
bees which signal to nest mates the total path length when 
forced to forage on a detour path (von Frisch 1965; Dacke 
and Srinivasan 2007; Evangelista et al. 2014).

This unexpected capacity of desert ants provoked a series 
of questions: (1) Do Cataglyphis ants compute a three-
dimensional vector when travelling in undulating terrain?, 
(2) What aspects of a three-dimensional path do ants memo-
rize?, and (3) To infer ground distances Cataglyphis must be 
able to measure the inclination of a path and to integrate this 
information into the assessment of distances. Hence we have 
to ask what type of cues are used for measuring substrate 
inclination and how precisely can ants assess slopes?

In this review I will discuss different experimental 
attempts to answer these questions as well as emphasize 
some more general aspects of 3-D navigation.

Do ants perform path integration in the third 
dimension?

As the experiments described above were performed in a lin-
ear array (Wohlgemuth et al. 2001, 2002; Fig. 1a), one could 
argue, as an attentive referee actually did, that in this design 
not 3-D but 2-D orientation had been investigated, though 
in the x–z-plane. Hence the question of whether Cataglyphis 
does indeed assess ground distances was further investigated 
in various 3-D path designs (Fig. 1b, c). In the experimen-
tal design of Fig. 1c the combination of a 90°-bend of the 
channel with a hill has the consequence that the path length 
of the hill as experienced by the ant will be converted into 
different azimuth angles of the home vector, depending on 
whether the ants would rely on the ground distance or the 
actual walking distance (Grah et al. 2005). Clearly, the ants’ 

Fig. 1   Experimental setups 
used to test 3-D orientation of 
desert ants. a Linear arrays used 
by Wohlgemuth et al. (2001, 
2002). b, c Three-dimensional 
setups used by Maronde et al. 
(2003) and Grah et al. (2005), 
respectively. The slopes of the 
ascent in b and of the Λ hill in 
c were 70°. d Homing direc-
tions of ants trained in setup 
c, captured at the feeder and 
released in a distant test field. 
Black arrow: expected direction 
if ants use the ground distance 
for path integration, open arrow: 
expected direction for distance 
measurement along the whole 
3-D path. Long arrow: vector 
strength at 2 m radius. For more 
details and additional controls 
see Grah et al. (2005). c, d 
From Grah et al. (2005)
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mean homing direction corresponded to the ground distance 
expectation (black arrow in Fig. 1d), and not to the effective 
walking distance on the hill (open arrow). The data provided 
an independent confirmation of Wohlgemuth’s results that in 
hilly terrain the ants indeed rely on the ground distance for 
path integration—and showed further that ground distance 
is processed with remarkable accuracy (Grah et al. 2005).

Due to geometrical constraints the question of whether 
ants realize a three-dimensional vector navigation is not easy 
to answer in walking animals, as they allow only limited 
degrees of freedom in designing training and test setups 
(Grah et al. 2007). In a first series of experiments one group 
of ants were trained to visit, via a steep, 70° ramp, a feeder 
located in an elevated position (Fig. 2a, ramp training). 
Other ants were trained to forage at a feeder on level ground, 
one group in a flat channel (flat training), a third group via 
an included hill (similar as in Fig. 1c) for finally arriving at 
the level ground feeder (“Λ”-training). After several feeder 
visits the ant’s propensity to accept descents or ascents was 
tested in test channels offering various potential descents 
(Fig. 2a, bottom), or ascents (not shown). The expectation 
was: If ants would compute a 3-D vector, then they should 
exhibit similar behavior in the “Λ” and flat training—same 
feeder elevation—but different behavior after ramp train-
ing to the elevated feeder. The results of various tests did 
not conform to this expectation. After “Λ” training the ants 
accepted test ramps as eagerly as after ramp training whereas 
ants generally refused to descend or climb ramps after flat 
training (Fig. 2b and Grah et al. 2007).1

Perhaps the most convincing evidence against the use of 
a 3-D vector can be deduced from a so-called “half-pipe” 
experiment (Grah et al. 2007). The idea of this experiment 
was derived from the observation that—in the horizontal 
plane—ants reorient their home vector after being forced 
into a detour (see Fig. 1.1.b in Wehner and Srinivasan 2003). 
If ants indeed use a 3-D vector, the same vector adjustment 
should occur if they are forced to a detour in the vertical 
dimension. Ants were trained in a flat channel to a 6 m dis-
tant feeder on level ground (Fig. 3a, b). After at least ten 
feeder visits an ant was released for its homebound trip at an 
elevated position in the test channel. Thus the ant had first to 
descend 1.5 m before reaching the level ground channel; at 
the fictive nest position the test channel offered a 2 m long, 
70° ramp (Fig. 3a). The expectation under the “true” 3-D 
vector hypothesis was: the descent at the start of the test 
ramp should induce a negative vertical vector component 
that—at the end of the test channel—should drive the ant 
to ascend the ramp unhesitatingly for at least 1.5 m to com-
pensate for this accumulated negative vector component. A 
different control group of ants was trained in the same way 
but released on the floor level of the test channel. These ants 
should concentrate their search for the nest around the basis 
of the test ramp. Note that in the test channel ants could not 

escape the channel at the test ramp position. Hence, after 
flat training an ant searching around the fictive nest posi-
tion at the basis of the test ramp would likely climb the test 
ramp for a few decimeters (see Fig. 3c, control). However, 
contrary to the 3-D vector prediction, both groups of ants 
exhibited the identical (rather small) ascent heights on the 
test ramp (Fig. 3c). Note that both groups had experienced a 
flat training and had never before met a ramp (to exclude the 
possibility that the test ramp would be treated as an unusual 
and repellent landmark, mock ramps were erected on both 
sides of the training channel, see Fig. 3 a, b).

Fig. 2   a Training and test channels used to investigate 3-D naviga-
tion. N nest, F feeder, R release point; arrow indicates the position of 
the ramp in training (training distances were 12 or 10.5 m, lengths of 
the ascents 1.95 or 1.5 m). Inset shows the decision points where on 
one side the channel continued horizontally while the other side led 
downwards. The downward channels (1.5 m, not shown in the inset) 
were placed either on the left or on the right side along the whole test 
channel; the sides were changed daily in a balanced design. b Propor-
tion of ants accepting a descent in different training conditions. Ants 
that showed a U-turn within 20  cm while on the ramp were classi-
fied as “rejecters”; after ramp- and Λ-training, the majority of ants 
showed a complete descent—for the distribution of descent heights 
and further results, see Grah et al (2007). a, b From Grah et al (2007)
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Taking together all different evidence we can conclude 
that a path integration mechanism functional in all three 
dimensions is highly unlikely. In desert ants, the path inte-
gration mechanism rather seems to operate exclusively in 
the horizontal plane.

Which aspects of a 3‑D path do ants memorize?

In the experiments comparing ramp training, flat training 
and “Λ” training, it was tested whether the ants would 
remember the location of the training ramp, and would 
select—among a series of offered potential descents—the 
appropriate one. This was clearly not the case. After ramp 
training most ants used the first possible descent in the test 
channel (ramp N° 6 in Fig. 2a) and not the descent at the 
training position (arrow). Obviously, ants did not link the 
preference for ramps to certain values of their home vector 
(Grah et al. 2007).

In a separate experiment, ants experienced a hill seg-
ment only on their outbound foraging trip, whereas they 
were forced to return to the nest in a flat channel. There 
was no difference in the acceptance of a ramp when ants 
were tested on their homebound way or—as a control—
on their outbound way (Grah and Ronacher 2008). These 
results further indicate that the ramps were not treated 
as landmarks. Visual landmarks are stored in the spe-
cific context of outbound or homebound trips (Graham 
et al. 2003; Wehner et al. 2006). Ants also transferred an 
acquired acceptance of slopes to novel foraging trips in a 
different direction (Grah 2008; Grah and Ronacher 2008).

To conclude, the encounter of sloped path segments 
during a foraging trip obviously induces a general accept-
ance of slopes. However, the slope is not associated with 
a specific value of the home vector, nor does it have to 
occur in the sequence as experienced during the outbound 
foraging trip (Grah et al. 2007; Grah and Ronacher 2008, 
cf. Kohler and Wehner 2005).

How could ants assess the inclination of slopes?

The experiments of Wohlgemuth et al. (2001, 2002), and 
of Grah et al. (2005) have shown that the ant’s path inte-
gration module can compensate rather precisely for the 
increased path length over undulating terrain and that the 
accuracy of distance gauging is comparable to that on level 
ground. To achieve this, Cataglyphis fortis must somehow 
measure the slopes of hills and integrate this information 
into its assessment of walking distances. Hence, the follow 
up question to ask was: how do ants measure slopes and 
how precise is this measurement?

Fig. 3   "Half-pipe” experiment as a test for three-dimensional vec-
tor navigation. a Training and test channels. Ants were trained in a 
6  m long flat channel (foreground), provided with small landmarks 
that were most prominently visible on the homebound way in order 
that the ants got used to the home path. Near the nest and near the 
feeder a ‘dummy’ ramp was erected so that later in the test the ants 
were familiar with these ramps and did not shy away from them. In 
the test channel the ants could be released either on an elevated plat-
form, from which they had first to descend 1.5 m (critical test), or at 
the basis of the ramp (control test). At the fictive nest position the test 
channel ended in a ramp (2 m, 70°) where the ascent height of ants 
was monitored. b Schematic drawing of the experiment, see text; note 
the different orientation of nest and feeder as compared to the setup 
shown in a; N nest, F feeder, R release point. Note that in the test 
channel ants could not escape the channel at the test ramp position. 
c Ascent heights of ants released in the control and critical test situa-
tions were statistically indistinguishable. a Courtesy of Gunnar Grah; 
b, c from Grah et al. (2007)
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Energy consumprion as a potential cue?

Lipp et al. (2005) investigated metabolic rates of Campono-
tus ants walking on level ground or on inclines up to 60°. 
Remarkably, energy consumption did differ only slightly 
between the five slopes that had been tested (− 60,  − 30, 
0, 30, 60°). For small ants the additional costs of vertical 
transport seem almost negligible. Could energy consumption 
thus be the parameter of interest to gauge walking distances 
in uneven terrain? The results reported by Wohlgemuth et al. 
(2001, 2002) presented further evidence against the hypoth-
esis that ants may use energy consumption to infer trave-
ling distances. Even if ants bore an additional artificial load 
attached to the pronotum (load on average 1.9 times the ants’ 
weight) the ants did not misjudge the ground distances when 
walking over hills (Wohlgemuth et al. 2002; see also Schäfer 
and Wehner 1993 for loading experiments on level ground). 
Moreover, the walking speed data also argued against time 
combined with speed acting as a potential odometric cue 
(Wohlgemuth et al. 2002).

Hairfield proprioreceptors as sensors?

According to Markl (1962, 1964) gravity perception in 
ants is mediated by hair field proprioreceptors located on 
the joints between head and thorax, between thorax, petiole 
and gaster, and on the coxal joints. Hence some of these hair 
fields might be used to calibrate the odometer to substrate 
inclination. To investigate the potential contribution of the 
supposed receptors, Wittlinger et al. (2007b) performed a 
series of manipulations by shaving hair fields or by immo-
bilizing joints (for example between head and thorax or 
gaster and alitrunk). Ants were trained in a channel com-
posed of several hills (see Fig. 1a) to visit a feeder located 
at 6 m ground distance (corresponding to 10 m walking dis-
tance), and were tested—in most cases immediately after the 
manipulation—in a long flat channel. A control group was 
trained in a 10 m long flat channel and subject to the same 
manipulations. The expectation was that ants whose gravi-
ception system had been impaired would no longer be able 
to sense the up- and downward slopes and hence search in 
the flat test channel for the nest at the larger (10 m) walking 
distance. In stark contrast to this expectation, after various 
manipulations the ants always focused their nest search at 
5 m or smaller distances. Wittlinger et al. (2007b) concluded 
that the disabled hair plate mechanoreceptors were not the 
decisive sensors that allow Cataglyphis to estimate the steep-
ness of slopes and to derive ground distance.

The only hair plates that had not been accessible to the 
shaving or immobilizing procedures applied by Wittlinger 
et al. (2007b), were the sensors on the coxal joints. The 
potential contribution of this cue was covered in a study 
by Seidl and Wehner (2008). The authors investigated 

the kinematics of leg movements of two ant species (Cat-
aglyphis fortis, Formica pratensis) which were induced to 
walk on inclines, and tested several hypotheses of how ants 
might derive ground distance estimates. A straightforward 
potential explanation—that the step lengths increased as a 
consequence of the slope of the substrate—was excluded. 
There was no gait change and only minor changes in duty 
factor between swing and stance phases up to inclinations 
of ± 60°. The authors further concluded that measuring the 
angular positions of legs (via thorax-coxa joint position sen-
sors) would not help to infer the slope of the path (Seidl and 
Wehner 2008; see also Wöhrl et al. 2017).

Weihmann and Blickhan (2009) investigated postural 
adaptations of two ant species walking on inclines. In Cat-
aglyphis some compensatory postural changes have been 
observed, most prominently visible in the caput-substrate 
angle. However, these changes were not sufficient to guar-
antee a constant angle of the head relative to the horizon-
tal plane. In contrast, the head positions on slopes changed 
between approximately horizontal and almost vertical, 
depending on the inclines and the direction of walking, 
uphill or downhill (Weihmann and Blickhan 2009).

Changes of the polarization pattern?

The observation of markedly changing head positions on 
slopes (Weihmann and Blickhan 2009) was an incentive to 
investigate an alternative hypothesis: Whether Cataglyphis 
might monitor changes of the POL-pattern induced by dif-
ferent inclinations of their dorsal rim area (DRA) as a slope 
indicating cue (Heß et al. 2009). Ants were trained to walk 
in a channel over a hill with steep slopes (70°; see Fig. 2, 
Λ training), while either the sight of the sun, or the sight of 
the celestial POL pattern, or both were excluded (Fig. 4a). 
Two control groups were trained with full sight of sun and 
POL pattern, either in a flat or in a hill channel (Fig. 4a, 
i, v). Remarkably, in contrast to the control groups, ants 
that had neither sun nor POL-cues while crossing the train-
ing hill behaved like ants after flat training—they refused 
to ascend or descend a test ramp (now with full access to 
the sky—Fig. 4a, compare iv and v). Previous experiments 
in the horizontal plane had shown that path segments that 
did not provide celestial compass cues were ignored by the 
ant’s path integration system (Sommer and Wehner 2005; 
Ronacher et al. 2006). This observation was now confirmed 
for path segments extending in the third dimension (Heß 
et al. 2009). Similarly, walking bees ignored path segments 
in which celestial cues were withheld (Bisetzky 1957; see 
also Chittka et al. 1999). Sky compass cues seem to be a 
general gate for the transmission of path segments into the 
integrator.

However, the experiments described above did not 
directly deal with the hypothesis of interest here. As a next 
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experiment, ants were therefore trained and tested in chan-
nels covered with a polarization transparency. The ants thus 
experienced a single POL direction both in the horizontal 
and the ascending parts of the channels, which was a suffi-
cient cue for taking notice of these path segments (Fig. 4b). 
If slope perception—under normal conditions—would 
depend primarily on a shift of the celestial POL pattern 
caused by the changed head inclination on slopes, this exper-
iment allows the following prediction: after flat training an 

ant should now easily accept the test ramp (covered with the 
POL transparency) since it would not experience any change 
of the POL pattern that might signal the ramp. The results 
were quite clear. After flat training—training and tests under 
the POL transparency—39 out of 40 ants refused to ascend 
the ramp (Fig. 4b, i); in contrast 22 out of 24 ants readily 
accepted the slope after ramp training (Fig. 4b, ii). Note 
that in this paradigm the training in a flat channel was the 
decisive one. The different responses shown in Fig. 4b, i and 
ii, demonstrate that a change of the POL pattern cannot be 
the essential cue for slope perception (for further details and 
data see Heß et al. 2009).

How precise is slope measurement in desert ants?

To explore the discrimination accuracy for different incli-
nations Cataglyphis fortis were trained to visit an elevated 
feeder via a ramp with fixed slope, and later their spontane-
ous avoidance of deviating inclinations was monitored. Five 
training inclinations were used: 0°, 15°, 30°, 45°, and 60°. 
With this assay ants rejected a ramp that was 25° steeper 
than the respective training slopes (0°, 15°, 30°); for the 45° 
training the difference had to be even larger (Wintergerst and 
Ronacher 2012). It seemed likely that ants are able to dis-
criminate smaller angular differences, but did not show this 
in the present experimental situation. Sabine Wintergerst 
then developed a second assay that involved repeated train-
ing on two slopes while the ants were mildly punished when 
choosing the “wrong” slope. The criterion for discrimination 
was whether a significant proportion of ants did not com-
pletely ascend the test ramp (for details of the training and 
test procedures, see Wintergerst and Ronacher 2012). With 
this new negative reinforcement procedure the discrimina-
tion improved substantially. With training slopes in the range 
between 0° and 45°, the ants significantly discriminated a 
steeper test slope that differed by only 12.5°. Intriguingly, 
after training on a 60° slope, ants readily accepted all steeper 
slopes, up to a vertical ascent, even after intense avoidance 
training (Wintergerst and Ronacher 2012). This change 
of behavior may indicate a saturation range of the sensors 
involved.

A difference in slope of 12.5° appears rather large but we 
have to keep in mind that the ant had to remember the train-
ing slope and compare the previously stored slope with the 
actual slope of the test ramp. Of course, one cannot take the 
behavioral discrimination thresholds of slope inclinations for 
the minimal sensory jnds (just noticeable differences, sensu 
E.H. Weber). Nonetheless, probably they indirectly reflect 
a limit of discriminability.

Using the experimental paradigm shown in Fig. 1c, we 
can estimate the impact an inaccurate slope measurement 
would exert on the path integration performance. Under the 
assumption that an ant would misgauge the inclination by 

Fig. 4   Tests for the potential influence of sky compass information on 
slope perception. a Training in a Λ channel (compare Fig.  2a); the 
symbols on the left indicate whether sun and/or celestial POL infor-
mation were available. POL information was excluded by covering 
the channels with orange perspex filters that blocked UV. In a test 
channel, now with full sight of the sky, it was monitored whether the 
ants refused to climb a ramp—i.e., exhibiting a U-turn while on the 
ramp—or readily accepted the ramp (complete ascent); after training 
without celestial cues (iv) most ants refused to walk on the ramp, like 
in the flat control (v); tests in which the propensity to descend was 
monitored yielded identical results, see Heß et al. (2009). b Training 
and tests in channels covered with a linear POL-filter (left). The dots 
above the channel indicate the cover with the POL-filter transparency; 
vision of the sun was excluded. Right: results of the critical experi-
ment: (i) ants trained in a flat channel refused to ascend on the test 
ramp (black columns) whereas ants of the control group (ii) trained 
on a ramp readily accepted the test ramp. For further data and con-
trols see Heß et al. (2009), a, b from Heß et al. (2009)
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12.5°, this error would induce only a moderate error angle 
of the home vector, of less than 7° for slopes up to 45°. If 
the first leg of the path in Fig. 1c, on even ground, would be 
longer as compared to the hill segment, the deviation of the 
home vector would be even smaller. The estimated rather 
modest impact of the slope measurement error on the home 
vector suggests that there may have been no strong selective 
pressure to further improve the accuracy of slope detection. 
The dramatic behavioral change in slope detection occur-
ring between the 45°- and 60°-training slopes may, how-
ever, indicate a physiological limitation, and hence, in future 
investigations, may give a potential clue to the mechanisms 
involved in slope perception.

Comparison with 3‑D navigation in other animals

In honeybees the function of the visual odometer was inves-
tigated using tunnels of various three-dimensional designs 
(Dacke and Srinivasan 2007). An analysis of the waggle 
dances indicated that bees integrated the optic flow cue 
along the total distance travelled, independent of the orien-
tation of the tunnel (horizontal, vertical, or oblique). Thus, 
unlike desert ants, honeybees do obviously not extract the 
horizontal component of image motion in an oblique tun-
nel. In this respect ants differ from bees which signal to nest 
mates the total path length when forced to forage on a detour 
path (von Frisch 1965; Dacke and Srinivasan 2007; Evange-
lista et al. 2014). Furthermore, the vertical component of a 
flight path is not encoded in honeybees’ dances (Dacke and 
Srinivasan 2007). This may be different in stingless bees 
(Melipona panamica) that are reported to be able to commu-
nicate the height of a food source (Nieh and Roubik 1998; 
but see also Hrncir and Barth 2014 for a different interpreta-
tion). For jumping spiders it has been claimed that they are 
able to perform true path integration in three dimensions 
during the pursuit of prey (Hill 1979).

Although a detailed comparison with results on mammals 
is beyond the scope of this review, some findings deserve 
to be mentioned (for reviews see Etienne and Jeffery 2004; 
Jeffery et al. 2013; Davis et al. 2018). Hayman et al. (2011) 
compared recordings from place cells and grid cells of rats 
that walked on a helix-like staircase or climbed a vertical 
wall with corresponding recordings obtained in flat arenas. 
The authors found vertically elongated firing fields indicat-
ing an anisotropic encoding of three-dimensional space. 
They suggest “that path integration does not function effec-
tively for movement in a dimension that is perpendicular to 
the long axis of the animal (such as, for surface dwelling 
animals, the vertical dimension).” (Hayman et al. 2011, p. 
1187). This interpretation, however, has been challenged by 
Taube and Shinder (2013), see also Ulanovsky (2011). Jef-
fery et al. (2013) analyze and discuss different ways of how 
three-dimensional space could be encoded within the central 

nervous system, and review behavioral evidence as well as 
neurophysiological studies in three dimensions. The authors 
favor a coding scheme termed a ‘bicoded map’, with metric 
properties in the horizontal plane and a non-metric scale in 
the vertical dimension. Hayman et al. (2015) again ques-
tion that distance estimation operates in three dimensions. 
Recordings from grid cells while rats foraged on a tilted 
surface yielded almost the same patterns as if animals moved 
on a horizontal plane. The authors conclude that “the neural 
map of space is ‘multi-planar’ rather than fully volumetric” 
(Hayman et al. 2015). This view is supported by Porter et al. 
(2018) who found that place cells in rats’ CA1 region are 
sensitive to rather small changes in terrain slope, from hori-
zontal to 15° or from 15° to 25° (see also Davis et al. 2018). 
However, in flying bats the hippocampal representation of 
three-dimensional space appears to be isotropic (Yartsev and 
Ulanovsky 2013), corresponding to a ‘volumetric map’ in 
the terminology of Jeffery et al. (2013). Most recently, evi-
dence has been presented that head direction cells provide a 
three-dimensional neural compass also in ground-dwelling 
animals. Thus, a three-dimensional neural map may be a 
basic general property of mammalian species (Angelaki 
et al. 2019; Angelaki and Laurens 2020).

Conclusions and outlook

To pick up the questions posed in the introduction, the 
experiments reviewed here demonstrated that Cataglyphis 
fortis computes ground distance when walking in undulat-
ing terrain, and uses this derived quantity for path integra-
tion (Wohlgemuth et al. 2001, 2002). The accuracy with 
which ants perform path integration even in undulating ter-
rain makes this feat even more admirable (Grah et al. 2005). 
However, all evidence accumulated so far strongly suggests 
that Cataglyphis does not compute a vector in three-dimen-
sions; rather path integration seems to operate exclusively in 
the horizontal plane. If an ant encounters a sloped path seg-
ment during a foraging trip this triggers a general acceptance 
of slopes, but the slope is neither associated with a specific 
value of the home vector, nor does it have to occur in the 
sequence as experienced during the outbound foraging trip.

The crucial question of how Cataglyphis measures the 
inclinations of the substrate, and how it uses this information 
to assess ground distances, still awaits further clarification. 
Several cues proposed so far—proprioceptive sensing of 
posture, gait, joint angles of the legs and information from 
the celestial polarization pattern—have been ruled out. 
A potential “missing link” may be ground reaction force 
production and complex changes of muscular interactions 
which depend on substrate inclination (Seidl and Wehner 
2008; Wöhrl et al. 2017). Hence muscular force sensors or 
cuticular strain sensors like campaniform sensilla might 
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provide the crucial cues that allow ants to derive the base-
line distance from sloped path segments. Future investiga-
tions could focus on a potential contribution of campaniform 
sensilla or other strain receptors. If it were feasible to disturb 
the relationship between step length and stepping forces as 
a first approach, such an experiment may induce misgauged 
distances and thus help to uncover potential mechanisms 
involved in slope measurement. Another promising approach 
could be to extend to inclines the track ball system intro-
duced by Wittlinger and coworkers (Dahmen et al. 2017). 
This paradigm could allow tracing ant trajectories on much 
longer ascents or descents while monitoring stepping pat-
terns, potentially in combination with virtual reality environ-
ments and neurophysiological recordings.
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