
Vol.:(0123456789)1 3

Journal of Comparative Physiology A (2019) 205:415–426 
https://doi.org/10.1007/s00359-019-01327-3

ORIGINAL PAPER

Stingless bees and their adaptations to extreme environments

Michael Hrncir1  · Camila Maia‑Silva1 · Vinício Heidy da Silva Teixeira‑Souza1 · Vera Lucia Imperatriz‑Fonseca1,2

Received: 26 November 2018 / Revised: 2 March 2019 / Accepted: 5 March 2019 / Published online: 22 March 2019 
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Nearly half of all terrestrial tropical ecosystems around the globe comprise dry forests, characterised through elevated tem-
peratures all year round, and short rainy seasons at irregular intervals. The consequent water deficit over several consecutive 
months limits the availability of floral resources to often very brief and unpredictable periods, which poses a challenge to the 
maintenance of perennial colonies in highly eusocial bees. Thus, only few highly eusocial bees occur permanently in tropical 
dry forests, among them some highly adapted species of stingless bees (Apidae, Meliponini). In the present review, we discuss 
the current knowledge on the adaptations to such extreme environments in Melipona subnitida, a stingless bee native to the 
Brazilian tropical dry forest. Key to the success of this species is not so much heat resistance of foragers, as it is the ability 
to maintain perennial colonies despite extended dearth periods. After several months of drought, M. subnitida colonies are 
capable of re-establishing fully functional colonies from nests containing only few dozens of workers. This surprising resil-
ience is based on a quick reaction to precipitation-driven increase in floral resource availability, mainly owing to selective 
foraging at high-profit resources and an immediate up-regulation of brood production once food storage conditions improve.
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Introduction

The stingless bees (Apidae, Meliponini) are among the most 
common and abundant native flower visitors in many tropi-
cal terrestrial ecosystems, and, thus, are indispensable pol-
linators in those areas (Roubik 1989). This group of highly 
eusocial bees, comprising more than 510 species living pre-
dominantly in tropical habitats around the globe (Michener 
2013; Ascher and Pickering 2018), differs in several biologi-
cal aspects from the honey bees (Apidae, Apini). (Michener 
1974; Sakagami 1982; Engels and Imperatriz-Fonseca 
1990). One of these is the gradual and progressive estab-
lishment of new colonies in stingless bees, as opposed to the 
honey bees’ swarming behaviour (Michener 1974; Nogueira-
Neto 1954). The advantages of this strategy of colony repro-
duction are a granted food supply during the initial phase of 

low population size and, if necessary, quick replacement of a 
lost queen (Engels and Imperatriz-Fonseca 1990). However, 
owing to the necessity of persistent resource allocation from 
the maternal to the filial nest, both usually are within short 
distance of each other, which may cause an overcrowding 
of nesting sites and limits the possibility of expansion into 
new territories (Hubbell and Johnson 1977; Roubik 2006).

The limited dispersal ability of the stingless bees may be 
key to today’s taxonomic diversity of this bee group, which 
is higher than that of all the other corbiculate bees combined 
(Michener 2007; Rasmussen and Cameron 2010). Origin 
and distribution of present-day species, presumably, are 
related to recurrent climate changes during the Pliocene and 
Pleistocene (Camargo 2013). Particularly, glaciation events 
in the Northern hemisphere, with cycles of 100,000 years 
interrupted by short warm periods, led to temporary habi-
tat fragmentation through periodic forest contractions and 
expansions in South America (Hewitt 1996), therewith cre-
ating severe genetic bottlenecks (Alves et al. 2011). The 
consequent isolation of stingless bee species in often small 
ecological refuges over several tens of thousands of years 
have promoted adaptations to very particular environmental 
conditions.
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Peculiar habitats for eusocial bees are tropical dry forests 
(Fig. 1). Usually, people associate the Tropics with exuber-
ant rain forests, like the Amazon or the Kongo, that provide 
food for flower visitors practically all year round (Wilms 
and Wiechers 1997; Kajobe and Echazarreta 2005). How-
ever, 42% of all tropical vegetation types around the globe 
are dry forests (Murphy and Lugo 1986). These ecosystems 
are characterised by annual rainfall average of between 400 
and 1800 mm distributed over 3–9 months (Murphy and 
Lugo 1986; Andrade et al. 2017; Silva et al. 2017). The 
severe water deficit over several consecutive months due to 
elevated solar radiation and annual mean temperatures of 
up to 30 °C (Vasconcellos et al. 2010; Andrade et al. 2017) 
limits the availability of floral resources to often short and 
unpredictable periods (Machado et al. 1997; Lima and Rodal 
2011; Lopezaraiza-Mikel et al. 2014; Quirino and Machado 
2014; Maia-Silva et al. 2015, 2018). Recurrent events of 
supra-annual droughts in tropical dry forests, during which 
precipitation remains up to 50% below the annual average 
(Marengo et al. 2017), presumably, impose a high selective 
pressure upon bees owing to a critically reduced food offer 
for several years.

For eusocial bees, who rely on a more or less constant 
food supply to maintain their perennial colonies, long-lasting 
dry spells and the concomitant shortage of floral resources 
in the environment pose a threat to colony survival. Thus, 
when food becomes scarce, tropical honey bees (Apis mel-
lifera scutellata and Africanized honey bees, a hybrid of 

Western and African honey bee subspecies) abandon their 
nests and migrate into areas of greater resource abundance 
(Schneider and McNally 1992; Winston 1992). Stingless 
bees, however, are far less flexible. Because mated queens 
are unable to fly (Fig. 2), colonies would have to leave their 
queen behind when abandoning the nest. Consequently, 
resource-induced absconding, as known from honey bees 
(Winston 1992) is rare in the Meliponini, and they need to 
adopt alternative strategies to sustain their permanent colo-
nies during the extended dearth periods they experience in 
tropical dry forests.

Owing to environmental conditions largely unfavourable 
for eusocial bees, only few stingless bee species occur in 
tropical dry forests despite a large bee diversity in adjacent 
biomes (Zanella 2000; Aguilar et al. 2013; Ayala et al. 2013) 
(Fig. 1). On the one hand, the colonization by stingless bee 
species is constrained by the necessity of specific physiolog-
ical and behavioural adaptations to survive long-lasting dry 
spells, and only few environmental super-generalists succeed 
in crossing the border from neighbouring habitats (Zanella 
and Martins 2003). On the other hand, tropical dry forest-
specialists are hardly found outside of their native habitat, 
resulting in an elevated degree of endemism in these ecosys-
tems (Zanella 2000; Zanella and Martins 2003).

So, what are the adaptations of stingless bees that permit 
them to survive under the extreme environmental condi-
tions in tropical dry forests? In our review, we try to answer 
this question analysing the foraging behaviour and brood 

Fig. 1  Caatinga, the Brazilian tropical dry forest. Representative 
photographs of the vegetation a in the dry season, and b in the rainy 
season. c Diversity of stingless bee species in Brazil. Given is the 

average number of species per state comprising the respective biome 
(data from: Pedro 2014)
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production of Melipona subnitida (Fig. 2), a stingless bee 
species native to the Brazilian tropical dry forest in the semi-
arid region of northeastern Brazil. In particular, we were 
interested in (1) how foragers cope with elevated ambient 
temperatures during food collection, and (2) how colonies 
successfully overcome the extended periods of drought.

Strategies of stingless bee foragers to avoid 
overheating

In the Brazilian tropical dry forest, the Caatinga (Fig. 2), 
mean air temperatures, with annual averages of up to 28 °C 
in lowland regions, show little variation in the course of a 
year (Marengo et al. 2017). Daily maxima, however, can 
reach values close to 40 °C in the shade (Maia-Silva et al. 
2015). Most importantly for flower-visiting insects, soil 

surface temperatures in full sunlight and air temperatures 
closely above the tree canopy (Ta−sun) exceed shade tempera-
tures (Ta−shade) by up to 15 °C (Souza et al. 2015; Ferreira 
et al. 2017). Thus, bees foraging in the Brazilian tropical 
dry forest, even when collecting floral resources well before 
noon (Fig. 3), may be exposed to temperatures determined 
as critical (CT) or even lethal (LT) for meliponine spe-
cies that inhabit cooler regions (Austroplebeia essingtoni, 
northern Australia: CT = 37.2–43.9 °C, Ayton et al. 2016; 
Melipona beecheii, Yucatan Peninsula: CT = 38 °C; Macías-
Macías et al. 2011; Scaptotrigona postica, southern Brazil: 
CT = 38.5 °C, LT = 41 °C; Macieira and Proni 2004).

An important first step towards our understanding of the 
foraging strategies of stingless bees in the Brazilian tropical 
dry forest is the evaluation of the workers’ thermal tolerance. 
One of the most relevant measures in this context is the criti-
cal thermal maximum of individuals, defined as the cease of 
controlled motoric activity (Lutterschmidt and Hutchingson 
1997; Terblanche et al. 2011). Although individuals may 
recover from this state, their limited mobility hampers the 
escape from the adverse thermal conditions, which, eventu-
ally, results in their death (Mitchell et al. 1993). In experi-
ments subjecting animals to static heat stress, the critical 
thermal maximum can be inferred from the sudden increase 
in mortality above certain experimental temperature (Silva 
et al. 2017). A crucial parameter in this context is exposure 
time (Chappell 1982; Li et al. 2011). When subjecting M. 
subnitida workers to elevated temperatures for 24 h, simulat-
ing constant heat stress within the nest, the critical thermal 
maxima were 40.0 °C when individuals had access to water, 
and 38.6 °C without water supply (Silva et al. 2017) (Fig. 4). 
However, after short-term exposure for 30 min, the average 

Fig. 2  Melipona subnitida, a stingless bee species native to the Bra-
zilian tropical dry forest. a Physogastric queen on brood comb and 
worker provisioning brood cell. Note dilated abdomen of the queen, 
which renders absconding impossible. b Top view of nest showing 
the horizontal brood comb as well as pollen and honey storage pots

Fig. 3  Elevated air temperatures in foraging areas. Given are average 
temperatures (N = 10 days) measured by a weather station (shade air 
temperature, dashed line) and at four flower patches (sun air temper-
ature, open symbols) at canopy level of Libidibia ferrea, a common 
tree species in the Brazilian tropical dry forest that provides nectar to 
flower visitors (original data: Ferreira et al. 2017). Inset: M. subnitida 
forager collecting nectar at a flower of L. ferrea 
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foraging trip time of M. subnitida (Pereira 2017), revealed 
a significantly higher critical thermal maximum of 48.0 °C 
(Ferreira et al. 2017) (Fig. 4).

On first sight, therefore, M. subnitida foragers should 
have no physiological problem with collecting food even 
in full sunlight in the Brazilian tropical dry forest. Yet, the 
critical thermal maximum refers to body temperature, which 
does not necessarily equal air temperature (Ta). Due to the 
activity of the flight muscles, the thoracic temperature (Tth) 
of foraging bees usually exceeds ambient temperature (Hein-
rich and Kammer 1973; Heinrich 1975). In tropical bees, this 
temperature excess may reach up to 20 °C at ambient tem-
peratures between 20 and 25 °C, yet it decreases to around 
5 °C at higher air temperatures (Ta = 35–40 °C) mainly 
due to conductance of heat from the thorax to the abdo-
men (Chappell 1982; May and Casey 1983; Stone 1993). 
In M. subnitida collecting sugar syrup at an artificial food 
source in full sunlight, we observed a very similar pattern 
(Fig. 5). Surprisingly, at sun air temperatures above 41 °C, 
Tth dropped below Ta−sun by up to 5 °C (Ferreira et al. 2017) 
(Fig. 5). As known from honey bees, this downregulation of 

the thoracic temperature at high air temperatures may be due 
to an accelerated heat redistribution from the thorax to the 
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Fig. 5  Thoracic temperature of M. subnitida foragers collecting 
sugar water at artificial feeder in full sunlight. a Thoracic tempera-
tures of foragers as function of sun air temperatures at the feeding 
station (N = 394 foragers). Linear regression (dashed line): Tth = 
21.7 + 0.48 × Ta−sun; R2

adj = 0.83, F = 1923,8, P < 0.0001. b Tem-
perature excess (Tex = Tth −  Ta−sun) as function of sun air tempera-
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adj = 0.85, F = 2266.2, P < 0.0001. Note cool-
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abdomen and the head (Heinrich 1979, 1980) as well as to 
active evaporative cooling through regurgitation of parts of 
the honey crop contents (Esch 1976; Roberts and Harrison 
2009). Although we do not know yet the exact thermoregula-
tory mechanism in M. subnitida, it efficiently prevents for-
agers from reaching their critical thermal maximum even at 
Ta−sun close to 50 °C (Fig. 5).

While foragers collecting nectar or water may easily 
increase evaporative cooling by regurgitating their crop 
content, pollen foragers, who leave the nest with only a few 
microlitres of nectar (Harano and Nakamura 2016), would 
quickly spend the entire crop content for cooling during 
food collection at high temperatures (Cooper et al. 1985). 
Alternatively, they may use their body water reserves, expir-
ing saturated air from the thoracic spiracles (Bailey 1954), 
thereby risking an increase in haemolymph osmotic con-
centration (Willmer 1986). Pollen foragers may avoid this 
physiological stress by abandoning food collection at far 
lower air temperatures than nectar foragers (Cooper et al. 
1985). In M. subnitida, accordingly, we observed nectar col-
lection up to Ta−shade ≤ 37 °C (Maia-Silva et al., unpublished 
data), whereas pollen foragers stopped their activity already 
at Ta−shade ≤ 33 °C (Maia-Silva et al. 2015) under natural 
conditions in the Brazilian tropical dry forest (Fig. 6).

Interestingly, M. subnitida, which are found only in hot 
semi-arid environments, is far more affected by heat than the 
honey bee, which presently can be found on every continent 
except Antarctica from temperate climate zones to desert 
environments (Michener 2007). The critical thermal maxi-
mum of A. mellifera is close to 50 °C (Kovac et al. 2014), 
and foragers are capable of sustaining flight at Tth values up 
to 49 °C (Coelho 1991). In the Brazilian tropical dry forest, 
correspondingly, Africanized honey bees can be observed 
foraging in full sunlight even around noon, when M. sub-
nitida colonies long ceased food collection (MH, personal 
observation). However, despite the elevated heat resistance 
of individuals, the majority of A. mellifera colonies abandon 
the hottest and driest parts of the semi-arid regions of north-
eastern Brazil as soon as the environmental stress increases 
(Winston 1992; Freitas et al. 2007), whereas M. subnitida 
colonies persist. Thus, heat tolerance of foraging bees, albeit 
facilitating food collection in hot climates, is not necessarily 
associated with a species’ capacity to maintain long-lived 
colonies in tropical dry forests. So, what is the secret of 
success of M. subnitida?

Strategies of stingless bee colonies 
to overcome extended drought periods

For social bees, the key to survival in tropical dry forests is 
not so much the heat resistance of foragers as it is the abil-
ity to maintain perennial colonies despite extended dearth 

periods. Given the restricted ability of stingless bees to 
migrate temporarily to better foraging grounds (Engels and 
Imperatriz-Fonseca 1990), species native to these challeng-
ing environments have evolved special strategies to over-
come several months, or even years, of food scarcity.

Selectivity for high‑profit food sources

Crucial for sustaining social bee colonies through drought 
periods is a constant supply of food for both adults and 
brood. Thus, during periods of resource abundance, 
meliponine colonies need to collect huge amounts of nec-
tar and pollen and store them within the nest for posterior 
use (Roubik 1982). Although stingless bees are considered 
generalist foragers, collecting from a wide array of plants 
(Roubik 1989; Biesmeijer and Slaa 2006), many species 
forage predominantly at the most lucrative sources, such as 
mass flowering trees or plants with poricidal anthers (Wilms 
et al. 1996; Ramalho 2004). Mass flowering plants, on the 
one hand, produce a large number of new flowers each day 
over a short period of time, often less than a week (Bawa 
1983; Augspurger 1980). Mostly, individuals bloom syn-
chronously, which results in an excessive supply of floral 
resources for flower visitors (Bawa 1983). When collecting 
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at this kind of plant, social bees encounter a high spatial 
density and abundance of a single type of resource and can, 
thus, quickly replenish or even increase their food stores 
within the nest (Wilms et al. 1996; Wilms and Wiechers 
1997; Ramalho 2004). Flowers with poricidal anthers, on 
the other hand, produce an excessive amount of pollen that 
is liberated through small terminal pores or apical slits when 
vibrated (Buchmann 1983). Here, flower visitors need to be 
capable of vibrating the flowers efficiently to retrieve the 
rich floral reward (Buchmann 1983). Among the bees, sting-
less bees of the genus Melipona are well known to perform 
this so-called “buzz pollination” (Nunes-Silva et al. 2010) 
and, therefore, can take advantage of these profitable pollen 
sources when available.

Colonies of M. subnitida show a strong selectivity for 
such high-profit food sources and, consequently, a narrower 
food niche breadth than Melipona species native to other 
biomes (Maia-Silva et al. 2014). In their natural habitat, 
M. subnitida was found to collect pollen at only few of the 
pollen sources available during the year (14 pollen types 
collected, 62 plant species with pollen reward in bloom; 
Maia-Silva et al. 2015, 2018; for very similar results see). 
The top six pollen sources, which accounted for more than 
90% of the total harvest, were plants with poricidal anthers 
(Fabaceae, Caesalpinioideae: Senna obtusifolia, Chamae-
crista duckeana, and C. calycioides) and mass flowering 
trees (Fabaceae, Mimosoideae: Pityrocarpa moniliformis, 
Mimosa arenosa/M. caesalpiniifolia, Anadenanthera colu-
brina) (Fig. 7). Among these, A. colubrina is of particu-
lar importance for bees in the Brazilian tropical dry forest. 
Whereas P. moniliformis and Mimosa spp. bloom in the 
rainy season, during which pollen sources are abundant, A. 
colubrina produces flowers during a very short time window 
in the dry season (Maia-Silva et al. 2015), allowing the colo-
nies to replenish part of their pollen reserves.

The mechanisms underlying the selectivity for certain 
plant species by generalist foragers like stingless bees are 
largely unknown. One possibility is that the foraging prefer-
ences of bees are associated with their olfactory experience 
during the larval stages (Ramírez et al. 2016). In stingless 
bees, different from honey bees, brood cells are mass provi-
sioned with larval food from the storage pots prior to ovipo-
sition (Michener 1974; Sakagami 1982). During their entire 
development, therefore, the larvae are constantly exposed 
to the scents from the larval food within the sealed brood 
cells, which may trigger a neural bias for these scents as 
adults (Oleskevich et al. 1997; Ramírez et al. 2016). This 
may cause a positive feedback, eventually narrowing down 
the food niche breadth of a colony over the years. In M. 
subnitida, high-profit food sources available during years 
of extreme drought may constitute the onset of such a feed-
back cycle: (1) in dry years, or over several years in the case 
of supra-annual droughts, colonies are able to store food 

only from plants that bloom even under these severe cir-
cumstances; (2) the most abundant food in the storage pots 
and, consequently, in the larval food is from high-profit food 
sources that reliably bloom in dry years; (3) the scents of the 
most abundant plants dominate the olfactory environment 

Fig. 7  Selectivity for high-profit pollen sources. a Relative fre-
quency of the botanical origin of pollen loads collected from forag-
ers of four colonies o M. subnitida during 13 months in an area of 
native caatinga vegetation (N = 191 pollen loads analysed; Maia-
Silva et al. 2015). A, Chamaecrista duckeana (Fabaceae, Caesalpin-
ioideae); B, Pityrocarpa moniliformis (Fabaceae, Mimosoideae); C, 
Mimosa arenosa/M. caesalpinifolia (Fabaceae, Mimosoideae); D, 
Senna obtusifolia (Fabaceae, Caesalpinioideae); E, Anadenanthera 
colubrina (Fabaceae, Mimosoideae); F, C. calycioides (Fabaceae, 
Caesalpinioideae); G, M. tenuiflora (Fabaceae, Mimosoideae); H, 
Desmanthus type (Fabaceae, Mimosoideae); I, Senna sp. (Fabaceae, 
Caesalpinioidae); J, Eucalyptus sp. (Myrtaceae); K, Psidium guajava 
(Myrtaceae); L, S. trachypus (Fabaceae, Caesalpinioideae); M, S. 
uniflora (Fabaceae, Caesalpinioideae); N, Turnera subulata (Turner-
aceae). Highlighted are the six most frequent pollen types, compris-
ing more than 90% of the total pollen income; grey-filled bars, plants 
with poricidal anthers; shaded bars, mass flowering trees; open bars, 
others. b Flowers of the six most frequent plant species
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in the brood cells; (4) as adults, the search behaviour of 
the bees is biased towards these reliable high-profit food 
sources, even in the presence of other resources; (5) an 
increasing proportion of foragers collect food from at the 
reliable high-profit source; (6) the relative abundance of 
food from reliable high-profit sources increases in the stor-
age pots.

Immediate reaction to changes in foraging 
environment

The Brazilian tropical dry forest is characterised through 
long, hot dry seasons and equally hot, yet often very short 
rainy seasons at unpredictable time intervals (Andrade et al. 
2017). Since the availability of the vast majority of floral 
resources is associated with precipitation (Machado et al. 
1997; Quirino and Machado 2014; Maia-Silva et al. 2015), 
stingless bees living in this habitat have to replenish their 
food reserves within a narrow time window. Owing to the 
climatic unpredictability, however, it is impossible for bees 
to foresee beginning and duration of either rainy or dry sea-
son. Thus, within sometimes less than 3 months, stingless 
bees have to hoard sufficient food to sustain their colonies 
during posterior droughts of unknown length.

Being adapted to the environmental uncertainties of 
the Brazilian tropical dry forest, colonies of M. subnitida 
react almost immediately to ambient factors indicating the 
availability of floral resources with an increase in foraging 
effort (Fig. 8). Both the number of returning foragers and the 
daily collection period were found to increase significantly 
with rising relative humidity and precipitation (Maia-Silva 
et al. 2015). As known from other meliponine species, this 
increase in the colonies’ foraging effort was probably due 

to increase in individual activity (more foraging trips per 
bee each day) as well as an increase in the number of col-
lecting bees through recruitment of additional foragers (Eltz 
et al. 2001; Hofstede and Sommeijer 2006; Barth et al. 2008; 
Schorkopf et al. 2016). As soon as forage availability in the 
environment declined, however, colonies diminished their 
food collection to virtually zero (Maia-Silva et al. 2015). 
This decrease in worker activity, on the one hand, reduces 
the colonies’ energy consumption, thus economizing the 
stored honey reserves. On the other hand, the longevity of 
adults increases (Roubik 1982; Biesmeijer and Tóth 1998), 
which warrants the functioning of the colony for extended 
time periods and guarantees enough workforce for resuming 
foraging once floral food becomes available again.

Brood production regulated through pollen offer

In addition to diminishing their foraging activity in periods 
of resource scarcity, colonies of M. subnitida down-regu-
late their brood production to the minimum necessary for 
colony maintenance (Maia-Silva et al. 2015). This reaction 
to environmental adversities is not at all unique to stingless 
bees from the Brazilian tropical dry forest. Similarly, species 
occurring in regions with pronounced seasonal changes in 
southern Brazil decrease or even interrupt their brood pro-
duction during the cold season yet increase it quickly once 
the environmental conditions improve (Ribeiro et al. 2003; 
Borges and Blochtein 2006). In those stingless bees, how-
ever, the reproductive diapause is triggered mainly by abi-
otic environmental factors, like temperature and day length 
(Ribeiro et al. 2003). In M. subnitida, by contrast, changes 
in brood-cell production are associated primarily with the 
quantity of stored pollen (Maia-Silva et al. 2016), which, in 

Fig. 8  Influence of environ-
mental factors on the colony 
activity of M. subnitida in 
the Brazilian dry forest. The 
monthly variation of abiotic and 
biotic environmental variables 
results in variations of the bees’ 
foraging activity, food storage, 
and brood-cell construction 
rate. Grey-filled arrows, positive 
correlations between factors; 
RAIN, precipitation; RH, aver-
age relative humidity; CONST, 
brood-cell construction rate; 
STORAGE, food reserves in 
the nest
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turn, depends on the colonies’ foraging success (Maia-Silva 
et al. 2015) (Fig. 8).

This tight link between pollen storage and brood produc-
tion in M. subnitida and other stingless bees (Roubik 1982; 
Maia-Silva et al. 2016) is due to the mass provisioning of 
brood cells found in this bee group. A decline in pollen 
availability within the nest instantly reduces the possibility 
to provision new brood cells and, thus, results in a decrease 
of brood production (Roubik 1982; Biesmeijer et al. 1999; 
Maia-Silva et al. 2016). An increase in pollen storage, on 
the other hand, triggers the construction and provisioning of 
new brood cells (Maia-Silva et al. 2016) (Fig. 8). However, 
once an egg has been laid on top of the larval food, the brood 
cell is sealed by the workers, and larval development occurs 
independently of any posterior fluctuations in pollen supply 
(Michener 1974; Sakagami 1982).

Slowing down or even interrupting the production of 
new brood cells under unfavourable environmental condi-
tions diminishes the use of stored pollen (Roubik 1982). 
However, it also results in a progressive decline in adult 
population. This, in return, reduces the consumption of 
the colonies’ energy reserves. Thus, after several months 
of drought, it is possible to observe M. subnitida colonies 
comprising only a few dozen adults, yet still containing 
at least one or two pollen storage pots and several honey 
pots (Hrncir and Maia-Silva, unpublished data). The fact 
that these colonies recover rapidly as soon as the environ-
mental conditions improve indicates that this bee species is 
capable of efficiently increasing brood production despite a 
strongly reduced workforce. Key to this population recovery 
may be an increased pollen load capacity of the workers at 
the end of the dry season. In M. quadrifasciata, workers 
from weak colonies were found to carry larger amounts of 
pollen per unit of body weight than workers from strong 
colonies (Ramalho et al. 1998). The consequent elevated 
pollen intake per worker in weak colonies may facilitate the 
increase in brood production and, thus, colony recovery after 
long periods of dearth (Ramalho et al. 1998).

Colony aestivation: a key to survival 
in tropical dry forests

The superorganism concept regards social insect colonies in 
analogy to individual organisms concerning their organiza-
tion and evolutionary principles, where groups of interde-
pendent units (insects, cells) cooperate to propagate their 
genes (Seeley 1989; Moritz and Southwick 1992; Hölldobler 
and Wilson 2009). The survival and reproductive success 
of the superordinate unit (colony, organism) relies on the 
coherent functioning of its subunits (Moritz and Southwick 
1992). In line with this view, we can compare stingless bee 
colonies in tropical dry forest environments to animals that 

enter a dormant state in response to environmental stress. 
During dormancy, activity of animals is minimal, and 
their metabolic rate is reduced to a low level (Withers and 
Cooper 2010). Although dormancy is frequently associated 
with hibernating animals in cold temperate climate zones, 
hypometabolic states also are an important survival strategy 
for amphibians inhabiting tropical arid and semi-arid envi-
ronments (Carvalho et al. 2010). During aestivation, these 
animals sharply reduce their energy expenditure so that sup-
plies may last over the dry period, which, sometimes, may 
encompass more than a year (Carvalho et al. 2010). Because 
aestivation in amphibians in semi-arid regions occurs under 
unpredictable rain patterns, environmental cues, such as 
increasing levels of soil water potential in response to rain-
fall, are important for fine tuning the emergence in aestivat-
ing amphibians (Tracy et al. 2007). However, endogenous 
rhythms may play an equally important role, given that aes-
tivating females need to prepare their ovaries prior to the 
onset of the rains to guarantee reproductive success during 
the short rainy season (Carvalho et al. 2010).

So far, nothing is known about the contribution of endog-
enous rhythms to the survival and reproductive strategy of 
M. subnitida or other stingless bees native to tropical dry 
forests. In any case, colonies should anticipate the end of 
a dry season and accelerate their brood production rate in 
time to profit maximally from the increase in floral resource 
availability. Given that brood development time in M. sub-
nitida is more than 35 days (Koedam et al. 2005), colonies 
would need to boost brood production at least 1 month prior 
to the onset of the main blooming season in the Brazilian 
tropical dry forest. Physogastric queens have little influence 
on this process (Ribeiro 2002). Rather, it is the workers that 
control the brood production rate by stimulating queens to 
increase her oogenesis through feeding and increasing brood 
cell construction (Wheeler 1996; Ribeiro 2002). Environ-
mental cues that may trigger this anticipating boost in brood 
production are the increase in relative humidity together 
with initial, light rains at the beginning of the rainy sea-
son (Maia-Silva et al. 2015). Thus, in analogy to aestivating 
amphibians, who increase their metabolic investment prior 
to emergence (Carvalho et al. 2010), M. subnitida colonies 
presumably increase their brood production rate, using up 
their remaining food reserves, as soon as they experience 
the first rainfall. The time lag until the emergence of the new 
workers is largely compensated for by delays in blooming. 
Although plants in the Brazilian tropical dry forest react 
quickly to changes in precipitation, flowering of herbaceous 
species initiates several days to weeks after the initial rain-
falls (Lima et al. 2007), while that of trees may delay even 
up to 3 months (Machado et al. 1997; Lima and Rodal 2010).

Income breeding, the rapid translation of elevated food 
abundance into reproductive output, is an adaptive strategy 
of aestivating animals to optimise their reproduction after 
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extended drought periods (Winnie et al. 2006). In M. sub-
nitida, analogously, the production not only of workers but, 
more importantly, of sexual offspring increases with a gain 
in food reserves (Koedam et al. 2005). Gynes in Melipona 
species are usually produced all year round (Sakagami 1982; 
Engels and Imperatriz-Fonseca 1990). The proportion of ferti-
lized eggs that turn into potential queens, between 5 and 20%, 
is independent of food storage conditions (Koedam 1999; 
Koedam et al. 2005; Velthuis et al. 2005). Consequently, the 
increase in gyne number in the rainy season is a by-product of 
the general gain in female brood under elevated pollen store 
conditions (Roubik 1982; Velthuis et al. 2005; Maia-Silva 
et al. 2015). The increase in male production in Melipona 
colonies, by contrast, is mainly due to an elevated laying rate 
of unfertilized eggs by workers as soon as resource condi-
tions improve (Koedam 1999; Van Veen et al. 2004). In any 
case, the elevated food supply in the rainy season translates 
directly into sexual offspring in M. subnitida (Koedam 2005), 
therewith increasing the chances of colony reproduction after 
several months of aestivation.

The reduction in brood production and adult activity over 
the dry months reduces considerably the nutritional demands 
of stingless bee colonies, therewith saving food reserves for 
colony reactivation at the end of the dry season. A major 
problem with this strategy, however, is the repeated occur-
rence of supra-annual droughts in the Brazilian tropical dry 
forests (Marengo et al. 2017). Owing to the reduced food 
offer through several years, colonies remain in their state of 
conservative brood production over extended periods of time, 
resulting in a progressive population decline down to the point 
of no return. This, in fact, might be the principal obstacle for 
stingless bees to colonize tropical dry forests. Here, the capac-
ity of M. subnitida to re-establish fully functional colonies 
from nests containing only few dozens of workers through 
a quick reaction to precipitation-driven increase in resource 
availability may give this meliponine species the necessary 
competitive edge.
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