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Background

In bird migrants, variation in the arrival timing at the 
migratory destination is proximately caused by onset of the 
seasonal migration (Jahn et  al. 2013; Stanley et  al. 2012; 
Tøttrup et  al. 2012; Schmaljohann et  al. 2016; Yamaura 
et  al. 2016; Ouwehand and Both 2017), total migration 
distance (Visser et al. 2009), and total speed of migration 
(Nilsson et al. 2013). The latter is a function of travel speed 
(Liechti and Schaller 1999; Liechti 2006), i.e., the migra-
tory distance covered between daily locations on travel 
days, i.e., excluding stopovers, (Nilsson et  al. 2013), and 
total stopover duration (Knudsen et al. 2011; Nilsson et al. 
2013). Stopovers are resting and refueling phases that most 
migrants make in between their migratory flights (Alerstam 
et al. 2003; Delingat et al. 2006; Åkesson and Hedenström 
2007). Because the rate of accumulating energy (refu-
eling) during stopover is slower than the rate of energy 
expenditure during migratory flights (Alerstam and Lind-
ström 1990; Hedenström and Alerstam 1997; Alerstam 
2011), only a minor proportion of time and energy is allo-
cated to the migratory flights (Hedenström and Alerstam 
1997; Green et  al. 2002; Wikelski et  al. 2003; Schmaljo-
hann et al. 2012). Hence, variation in total stopover dura-
tion of a migratory journey affects total speed of migration 
to a larger extent than variation in travel speed. Although 
the latter can be significantly increased by wind assistance 
(Liechti and Bruderer 1998; Liechti and Schaller 1999; 
Weber and Hedenström 2000; Chevallier et al. 2010; Sham-
oun-Baranes et al. 2010), stopovers remain the most crucial 
periods of the migratory journey affecting most strongly 
arrival timing at the migratory destination (Nilsson et  al. 
2013). Quantifying the relative contributions of different 
intrinsic (e.g., body condition) and extrinsic factors (e.g., 
temperature) to variation of stopover duration is therefore 
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important, and will directly indicate the mechanisms how 
total speed of migration is affected by environmental condi-
tions encountered en route. Many studies have done so and 
have shown that there is a complex interplay of intrinsic and 
extrinsic factors jointly affecting departure probability from 
a stopover site (Moore and Kerlinger 1987a; Richardson 
1990; Woodrey and Moore 1997; Yong and Moore 1997; 
Liechti and Bruderer 1998; Yong et  al. 1998; Weber and 
Hedenström 2000; Erni et al. 2002a; Bolshakov et al. 2003; 
Jenni and Schaub 2003; Liechti 2006; Tsvey et  al. 2007; 
Bauer et al. 2008; Duriez et al. 2009; Goymann et al. 2010; 
Chernetsov 2012; McLaren et al. 2013; Smith and McWil-
liams 2014; Deppe et al. 2015; Dossmann et al. 2015; Hen-
kel and Taylor 2015; Mitchell et  al. 2015; Schmaljohann 
et  al. 2017) within the endogenously controlled migration 
program (Berthold 1996; Gwinner 1996, 2009; Ramenof-
sky and Wingfield 2006; Bairlein et al. 2015a).

In this review, we take a simplified approach and discuss 
only the effect that body condition may have on the stopo-
ver departure decision. We not only focus on songbirds, but 
also consider studies on waders, swans, geese, ducks, and 
soaring birds. We excluded seabirds and swifts from our 
review, as relating individual body condition to stopover 
behavior of these groups is extremely difficult due to their 
offshore (Jouventin and Weimerskirch 1990; Weimerskirch 
and Wilson 2000; Shaffer et al. 2006) and/or airborne life-
style (Åkesson et al. 2012, 2016; Liechti et al. 2013).

Songbirds usually have a stop-and-go strategy (Delingat 
et  al. 2006; Åkesson and Hedenström 2007) and perform 
broad-front migration (Newton 2008), but they may con-
centrate in coastal regions (Alerstam 1990; Bruderer and 
Liechti 1998; Fortin et  al. 1999; Archibald et  al. 2017). 
There is evidence from single site studies that songbirds 
show no to little stopover site fidelity (Drost 1941; Dier-
schke 2002; Catry et  al. 2004), though site fidelity might 
increase when birds require specific habitats for refueling 
(Cantos and Tellerìa 1994). Songbirds can be grouped 
into daytime and nighttime migrants. The former migrates 
either solitarily or in loose flocks, but not in family units. 
They usually depart from stopover sites to resume migra-
tion shortly after sunrise and continue flying until midday; 
afterwards migration intensity often considerably drops 
(Dorka 1966; Alerstam 1990; Newton 2008). Nocturnal 
songbird migrants usually migrate on their own and are 
not guarded by parents or conspecifics. Radar observations 
on some nights demonstrated that birds with similar wing 
beat frequency, air speed, and flight altitude migrated in 
loose flocks (Larkin and Szafoni 2008), though it remains 
unknown whether birds aggregated because they selected 
the same conditions for migration or whether they migrated 
as a unit. Nevertheless, it is generally assumed that noctur-
nal songbird migrants ‘entirely’ rely on an innate migra-
tion program to find their wintering grounds on their 

first autumn migration (Bairlein et  al. 2015a). Nocturnal 
migrants usually set off within the first 1–3 h after sunset 
and land before sunrise (Dorka 1966; Gauthreaux 1971; 
Bruderer 1994; Bruderer and Liechti 1995, 1999; Schmal-
johann et  al. 2007b). There are, however, deviations from 
this pattern; some individuals set off much later in the night 
(Müller et  al. 2016), some prolong their migratory flights 
into the day when experiencing favorable wind conditions 
(Schmaljohann et  al. 2007a), and some depart earlier or 
land later to be able to cross ecological barriers non-stop 
(Bairlein et  al. 2012; DeLuca et  al. 2015; Adamík et  al. 
2016; Ouwehand and Both 2016). Waders usually seek spe-
cific areas to accumulate large energy stores for the upcom-
ing migratory flights (Piersma et  al. 2005; Lisovski et  al. 
2016), depart in flocks around sunset (Piersma et al. 1990a, 
b), time their departures in relation to wind (Leyrer et  al. 
2009; Gill et al. 2009; Conklin and Battley 2011), and fly 
long stretches of their migration route non-stop (Gill et al. 
2009; Klaassen et  al. 2011; Battley et  al. 2012). The lat-
ter might be terminated early when encountering unfavora-
ble wind conditions (Shamoun-Baranes et  al. 2010). As 
in waders, swans, geese and ducks have specific areas for 
refueling (Green et al. 2002; Arzel et al. 2006). Although 
some species cover long distances non-stop, they usually 
do not migrate more than one day in row (Pennycuick et al. 
1996; Green et al. 2002; Clausen et al. 2003; Miller et al. 
2005; van Wijk et al. 2012; Shariatinajafabadi et al. 2013). 
In swans and geese, families usually migrate together. 
Most soaring birds migrate in loose flocks only during 
daytime periods when thermals are available (Kerlinger 
1989; Liechti et al. 1996; Spaar and Bruderer 1996, 1997b; 
Bohrer et al. 2011), though some raptors switch to flapping 
flight before or after this period, during headwind condi-
tions and more often when being young (Spaar and Bru-
derer 1997a; Bohrer et  al. 2011; Sapir et  al. 2011; Rotics 
et al. 2016).

The first objective of our review is to give a brief over-
view on how body condition, in our case the current energy 
stores of a migratory bird, can be evaluated at a stopo-
ver site and how stopover duration is estimated. This is 
important because we should be aware of the advantages 
and disadvantages of different methods used to estimate 
these traits. Our other objective is to review the current 
knowledge of how energy stores and changes in these 
affect the probability of a bird departing from a stopover 
site to resume migration. Recently, radio-tracking studies 
have shown that sometimes migrants leave a stopover site 
not to continue migration, but to either search for another 
nearby stopover site (Mills et al. 2011; Taylor et al. 2011; 
Stach et  al. 2015) or perform exploratory flights, likely 
for assessing wind conditions aloft (Schmaljohann et  al. 
2011). Based on these findings we scrutinize as our next 
objective whether leaving a stopover site indicates that the 
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bird has actually resumed migration. Finally, we discuss 
why birds terminate their migratory flight, as this provides 
some insights about the energy loss of the previous migra-
tory flight. This trait has been so far mostly neglected, but 
together with bird’s arrival condition it might be signifi-
cant for explaining in more detail why energy stores and/
or changes in these are relevant for the departure decision 
in some but not all birds (Morris 1996; Eikenaar and Bair-
lein 2014; Eikenaar et al. 2014a). With these critical views 
we do not intend to criticize, let alone reject the findings 
of former studies by others or ourselves, but we would like 
to highlight some future perspectives of stopover ecology 
research.

How to measure energy stores in bird migrants

The term “body condition” describes the physiological 
state of an individual. It is assumed that variation in this 
state will affect to a certain extent the behavior of a bird, 
in our case the departure probability from a stopover site, 
cf. Brown (1996). The physiological properties most com-
monly considered in migration studies are a bird’s fat 
content (Kaiser 1993) and muscle size (Bairlein 1994), 
i.e., protein in skeletal muscle (Jenni and Jenni-Eiermann 
1998). The pectoral muscle comprises about 50% of total 
skeletal muscle of a bird (Ward 1969); in migrants the 
size of the pectoral muscle changes in course of migra-
tion (Dietz et  al. 1999a, b; Battley et  al. 2000; Lindström 
et al. 2000). Glycogen is the third type of energy store, but 
its contribution to the overall energy stores is low (Jenni 
and Jenni-Eiermann 1998) and in comparison to the other 
two types rarely estimated on the individual level, but see 
Marsh (1983). Other measurements of body condition 
include muscle damage (Guglielmo et al. 2001), metaboli-
cally available water (Klaassen 2004), and oxidative state 
(Jenni-Eiermann et  al. 2014; Skrip et  al. 2015; Eikenaar 
et al. 2017). Here we will focus on the amount of fat and 
protein, because these together describe well the energy 
stores (~95% fat and ~5% protein) available to the individ-
ual bird to use for migratory flights and maintenance (Jenni 
and Jenni-Eiermann 1998; McWilliams et al. 2004).

The available energy stores of a bird can be estimated 
internally or externally. By extracting fat and protein from a 
bird’s body, one obtains precise estimates for both, but dead 
individuals must be used (Johnson et al. 1985; Brown 1996; 
Piersma et  al. 1999; Battley et  al. 2000; Bauchinger and 
Biebach 2001; Bauchinger and McWilliams 2009). A non-
invasive method to estimate bird’s energy stores internally 
is quantitative magnetic resonance, which only requires a 
few minutes of scanning a live bird and provides informa-
tion on dry fat, wet lean mass, and total water (Guglielmo 
et  al. 2011). Another non-invasive method is ultrasound 

(examination duration about 5–15 min), employed to, for 
example, monitor changes in organ size, e.g., pectoral mus-
cle as the main reserve of protein (Newton 1993; Dietz 
et  al. 1999a; Lindström et  al. 2000). A bird’s fat content 
can be roughly estimated with this method but is subjective 
(Sears 1988).

There are several approaches how to estimate the 
energy stores externally. As different morphometric indi-
ces of body condition were recently critically reviewed 
by Labocha and Hayes (2012), we briefly summarize the 
different approaches mentioned by them and add some 
more. Weighing body mass is a simple method with a 
high repeatability and generally explains about 50% of the 
variation in fat (Labocha and Hayes 2012). To correct for 
the effect of between-individual variation in body size, 
body mass is divided by a structural body size measure-
ment. For this wing chord, tail length, bill length or tarsus 
length are often used. However, body mass and structural 
body size are commonly correlated with each other (Hayes 
and Shonkwiler 2001), so that, e.g., comparisons of dif-
ferently sized birds may not capture the real difference in 
their energy stores (Labocha and Hayes 2012). Some stud-
ies used the residuals of the model explaining variation in 
body mass by variation in structural body size (Labocha 
and Hayes 2012), but there are several statistical and bio-
logical concerns about this approach (Green 2001; Schulte-
Hostedde et al. 2005). To account for these, the scaled mass 
index was recently introduced (Peig and Green 2009). Fat 
score (Helms and Drury 1960; Kaiser 1993) and mus-
cle sore (Gosler 1991; Bairlein 1994) qualify the relative 
amount of visible subcutaneous fat and the relative size of 
the pectoral muscle. From these scores, the energy stores 
can be modeled (Salewski et al. 2009). Based on informa-
tion of dissected birds or birds with a fat and muscle score 
indicating hardly any visible energy stores, the lean body 
mass of a bird can be estimated. The relative difference of 
bird’s actual body mass to its lean body mass is simplified 
as the energy stores of that bird (Alerstam and Lindström 
1990; Lindström and Alerstam 1992; Dänhardt and Lind-
ström 2001; Bayly 2006, 2007; Tsvey et al. 2007; Schaub 
et al. 2008; Schmaljohann and Naef-Daenzer 2011; Bulyuk 
2012). If a bird’s body mass was estimated at the end of 
a stopover day, this energy store was often termed “even-
ing fuel load” and when the estimate was derived from 
shortly before the actual departure event “departure fuel 
load”. Difference in the evening to evening estimates of 
energy stores relative to bird’s lean body mass describes 
the rate of accumulating energy for that period (Alerstam 
and Lindström 1990). Thus, it integrates what the bird 
experienced over the considered time period expressed as 
the amount of energy stores temporally gained or lost. In 
contrast to all other methods, abdominal profiles estimate 
the energy stores based on body’s shape between legs and 
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the tail as observed in the field so that the observer does 
not have direct contact with the birds (Owen 1981; Bowler 
1994; Boyd and Fox 1995; Wiersma and Piersma 1995; 
Clausen et  al. 2003; Duriez et  al. 2009). Although some 
studies have verified that this approach seems to be valid 
(Féret et al. 2005; Madsen and Klaassen 2006; Moriguchi 
et al. 2006), production of eggs (Brown 1996), bird’s pos-
ture (Owen 1981), and an observer effect (Féret et al. 2005) 
have to be considered. This index is mostly used for swans, 
geese, and waders.

How to identify when birds arrive at and depart 
from their stopover sites

When studying how energy stores at arrival and/or on eve-
nings are related to the departure probability of a bird, we 
should be aware that each method to estimate arrival and 
departure events provides a certain temporal uncertainty.

Many studies on stopover ecology were carried out 
in coastal areas, peninsulas, or islands (Moore and Ker-
linger 1987b; Moore et  al. 1990; Kuenzi et  al. 1991; 
Moore and Yong 1991; Yong et  al. 1998; Dierschke and 
Delingat 2001, 2003; Bolshakov et  al. 2003; Schmaljo-
hann and Dierschke 2005; Bayly 2006, 2007; Bulyuk and 
Tsvey 2013; Schmaljohann et  al. 2013; Smolinsky et  al. 
2013; Deppe et  al. 2015; Dossmann et  al. 2015; Mitchell 
et al. 2015; Sjöberg et al. 2015; Woodworth et al. 2015) or 
at oases in deserts which are similarly isolated as islands 
in the sea (Bairlein et  al. 1983; Biebach 1985; Bairlein 
1985a, b; Biebach et  al. 1986; Bächler and Schaub 2007; 
Salewski and Schaub 2007; Salewski et al. 2007, 2010) but 
only few at inland sites surrounded by benign landscape 
(Cohen et  al. 2012, 2014; Woodworth et  al. 2014). This 
spatial bias exists because isolated areas at or in the sea/
deserts usually support few breeding individuals and are 
species poor, meaning that most birds occurring at these 
areas during migration are “real” migrants and not local 
breeders. Furthermore, due to the transition from land to 
sea high numbers of birds arrive at these areas at certain 
weather conditions (Newton 2008) and there commonly is 
a high turn-over rate (Schmaljohann et al. 2013). In stopo-
ver studies, researchers often simply treat trapped birds as 
having arrived on the same day owing, e.g., to the apparent 
large variation in daily numbers of observed migrants pre-
sent at the study site (Dierschke et al. 2005; Schmaljohann 
and Dierschke 2005; Schmaljohann et al. 2013). If formerly 
marked birds are not re-sighted in the research area during 
daily routine surveys, researchers commonly assume that 
these birds have departed between the last and the current 
routine survey (Dierschke et  al. 2005; Schmaljohann and 
Dierschke 2005; Schmaljohann et al. 2013). Stopover dura-
tion is, therefore, often simplified as the difference between 

the estimated “arrival day” and the day of last re-sighting 
(Dierschke et al. 2005; Schmaljohann and Dierschke 2005; 
Schmaljohann et al. 2013). This estimate is usually called 
“minimum stopover duration” (Schaub et al. 2001).

This approach might be applicable for species which 
are easily observed, e.g., geese, swans, waders, and that 
rest in open and isolated habitats (Madsen 2001; Gillings 
et al. 2009; Lourenço et al. 2010; Navedo et al. 2010; Lok 
et al. 2015). In others, e.g., small land birds stopping over 
in more complexly structured habitats, pelagic seabirds or 
aerial birds feeding on the wing (swifts, swallows, some 
raptors), it is rather difficult to identify the space covered 
and time spent at stopover, because detection probability 
can be rather low (Bächler and Liechti 2007) and birds can 
leave the trapping site but stay in the stopover area (Bächler 
and Schaub 2007). As birds could have arrived in the study 
area before first sighting/capture and stayed longer after 
last re-sighting, the uncertainty in estimated arrival and 
departure date leads to an underestimation of the actual 
stopover duration (Schaub et  al. 2001). This uncertainty 
can be reduced by modeling stopover durations with indi-
vidual re-sightings using Cormack–Jolly–Seber (CJS) cap-
ture–recapture models (Cormack 1964; Jolly 1965; Seber 
1965; Schaub et  al. 2001; Arizaga et  al. 2011; Schmaljo-
hann et  al. 2013). How much these estimates of stopover 
duration still vary from the true stopover durations depends 
among others on the frequency of the re-sightings (Bächler 
and Schaub 2007; Salewski and Schaub 2007) and local 
movements (Bächler and Schaub 2007).

Another approach to estimate stopover duration is based 
on site-specific recaptures in high mist-nets. Here noctur-
nally migrating birds are initially captured and ringed at 
a stopover site during daytime. This date is treated as the 
arrival date of the bird. The date of their recapture in high 
mist-nets during the night then indicates their departure 
date (Bolshakov et  al. 2000, 2003; Bulyuk 2012; Bulyuk 
and Tsvey 2013). As recapture probability in such high 
mist-nets is rather low, a high number of daytime captures 
is required to achieve a reasonable number of nighttime 
recaptures (Bolshakov et  al. 2003). As in the other meth-
ods, it remains unknown when birds had actually arrived at 
the stopover site. An additional issue is whether nocturnal 
flights resulting in captures in the high mist-nets served to 
explore wind conditions aloft (Liechti 2006; Schmaljohann 
et al. 2011) or to leave the stopover site.

By marking birds with radio tags within a large-scale 
array of radio-tracking stations covering the specific stopo-
ver landscape for a certain species (Taylor et al. 2011) and/
or on isolated islands (Goymann et  al. 2010; Schmaljo-
hann et al. 2011; Crysler et al. 2016) one can discriminate 
between these two motivations to perform nocturnal flights.

True stopover duration of individual birds can, however, 
only be determined when birds are marked before reaching 
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the stopover site. Some studies have started to provide 
such precise data by individually following marked birds 
throughout single to several migratory flights (Wikelski 
et  al. 2003; Bairlein et  al. 2015b), by tracking migratory 
movements in a high spatiotemporal resolution (Mandel 
et  al. 2008; Bouten et  al. 2013) or by setting up a large-
scale array of digital automated radio-tracking stations so 
that birds tagged at one site can be continuously tracked 
during consecutive migratory flights and/or picked up at 
another radio-tracking station (Brown and Taylor 2015; 
Deppe et  al. 2015; Dossmann et  al. 2015; Mitchell et  al. 
2015; Woodworth et al. 2015; Crysler et al. 2016). Tracking 
devices transmitting bird’s location via satellite connection 
in real time to the researcher can so far only be used with 
relatively large species (Fiedler 2009; Bridge et al. 2011). 
For such species it is, however, generally difficult to esti-
mate their energy stores at arrival and departure because of 
the difficulty of catching the individual birds. Abdominal 
profiles estimates might be an option for swans, geese, and 
waders (Wiersma and Piersma 1995; Clausen et  al. 2003; 
Prop et al. 2003; Duriez et al. 2009).

The above-listed disadvantages pertaining to the differ-
ent methods lead to uncertain estimates of stopover dura-
tion. This increases the variation in estimated energy stores 
at arrival and departure which in turn reduces the power to 
find potential effects of energy stores on departure prob-
ability. Although we cannot easily solve the problem of 
identifying when a bird arrived at certain stopover sites for 
most species, we can at least increase the accuracy of when 
a stopover is terminated by tracking individual birds.

How do energy stores and rate of accumulating 
energy affect departure decisions

Fat and protein are the main energy stores required for 
locomotion. As the size of energy stores limits the duration 
of any locomotion, birds with no or small energy stores are 
unlikely to resume migration before having accumulated a 
sufficient amount of energy to fly at least some hours. In 
contrast, birds with high-energy stores might depart at any 
time. Thus, it seems obvious that energy stores will have a 
paramount effect on the departure decision.

This effect was indeed observed in many studies on 
songbirds, waders, geese, ducks, and other species irre-
spective of how energy stores were estimated: body mass 
relative to body size (Safriel and Lavee 1988), fat class 
(Meissner 1998; Dierschke and Delingat 2001; Goymann 
et  al. 2010; Cohen et  al. 2014; Smith and McWilliams 
2014; Deppe et  al. 2015; Dossmann et  al. 2015; Wood-
worth et  al. 2015), fuel load (Rabøl and Peterson 1973; 
Cherry 1982; Moore and Kerlinger 1987b; Loria and 
Moore 1990; Bairlein 1985b; Biebach et al. 1986; Morris 

1996; Schmaljohann et al. 2013; Cohen et al. 2014; Stach 
et al. 2015) or abdominal profile (Prop et al. 2003). How-
ever, there are also many studies on the same bird groups 
which failed to show this effect in relation to body mass 
(Holmgren et  al. 1993), body mass relative to body size 
(Safriel and Lavee 1988), fat class (Kuenzi et al. 1991; Ska-
gen and Knopf 1994; Lyons and Haig 1995; Morris et al. 
1996; Dierschke and Delingat 2001; Salewski and Schaub 
2007; Schaub et al. 2008), fuel load (Ellegren 1991; Dier-
schke and Delingat 2001; Tsvey et al. 2007), and abdomi-
nal profile (Duriez et al. 2009). The biological significance 
of actual energy store on the departure decision from a 
stopover site, therefore, appears to remain controversial 
(Jenni and Schaub 2003).

In the studies where energy stores were not positively 
related to departure probability, intrinsic factors (sex, age, 
molt, endogenous time program) and extrinsic factors 
(competition, predation, temperature, habitat quality, wind, 
season) likely play an important role for the departure deci-
sion (Morris 1996; Erni et  al. 2002a; Jenni and Schaub 
2003; Wikelski et  al. 2003; Liechti 2006; Duriez et  al. 
2009; Chernetsov 2012; Cohen et al. 2012, 2014; Schmal-
johann et al. 2013; Smith and McWilliams 2014; Eikenaar 
et al. 2016). These factors might have either a direct effect 
on a bird’s departure decision, e.g., rain (Erni et al. 2002b; 
Schaub et al. 2004) or wind (Liechti 2006), or influence the 
rate at which energy is accumulated during stopover (see 
below). As the rate of accumulating energy stores deter-
mines the time until a certain energy level is reached at 
stopover, this rate itself was suggested to affect the depar-
ture probability in bird migrants (Alerstam and Lindström 
1990; Jenni and Schaub 2003; Hedenström 2008; Alerstam 
2011). Estimating the true rate of energy accumulation in 
free-flying birds is rather difficult (Delingat et  al. 2009), 
because ideally body mass of a given individual is recorded 
every evening after its food intake during its entire stopo-
ver. This type of data was collected for several songbird 
and one hummingbird species by attracting wild birds to 
artificial feeding stations with balances for self-weighting 
(Fig. 1a). Although supplementary feeding might influence 
the feeding behavior of birds, rates of accumulating energy 
and amount of energy stored were generally not higher than 
those observed under natural feeding conditions, reviewed 
by Schmaljohann et  al. (2013). Further, Fig.  1b indicates 
that field estimates were generally within the same order 
of magnitude as the theoretically predicted values based on 
an upper limit to daily metabolisable energy intake (Lind-
ström 1991). The high rates were likely an overestimation 
though, because of undigested food items ingested shortly 
before reading the evening body mass. Between individual 
variation in the rate of accumulating energy has further 
been explained with individual-specific refueling efficiency 
(Corman et  al. 2014; Eikenaar et  al. 2016), time within 
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season (Bauchinger and Klaassen 2005; Eikenaar et  al. 
2016), food quality and gut length (Van Gils et al. 2008), 
nocturnal energy loss associated with ambient temperature 
(Wikelski et al. 2003; Maggini and Bairlein 2013), preda-
tion risk (Schmaljohann and Dierschke 2005), competi-
tion (Lindström et al. 1990; Moore and Yong 1991; Moore 
et al. 2003), but see Carpenter et al. (1983) and Dierschke 
et al. (2005), time (days) before departure (Fransson 1998b; 
Bayly 2007), and the position along the migration route 
(Fransson et  al. 2001). It should be noted that the high 
refueling rates in the sedge warbler (Acrocephalus schoe-
nobaenus) data (Fig.  1b) are accounted for by their spe-
cific migration strategy (Bayly 2007). They are thought to 
migrate without additional feeding from northwest Europe 
to their sub-Sahelian wintering grounds. Hence, when 
encountering superabundant food supply in form of reed 
aphids, they intensively exploit this food source by show-
ing high rates of accumulation and resuming migration 

with large energy stores in preparation for the long stretch 
with few feeding opportunities (Bibby and Green 1981). 
The high values in the study of Dierschke et al. (2005) are 
explained by a different way of calculating the rate of accu-
mulating energy in comparison to the others, see Fig. 1b.

Within optimal migration theory, it is predicted for birds 
minimizing the overall time spent on migration that the rate 
of accumulating energy is the crucial determinant of depar-
ture decision from a stopover site (Alerstam and Lindström 

Fig. 1   a An individually colour-ringed northern wheatear (Oenanthe 
oenanthe) perched at a bowl with mealworms (Tenebrio molitor). 
Balance’s display was read with a telescope the moment before the 
bird approached the bowl and when the bird was feeding mealworms. 
By subtracting the former reading from the latter the current body 
mass of the bird was estimated, for further information see Schmal-
johann and Dierschke (2005). Photo: Heiko Schmaljohann. b Rates 
of accumulating energy (presented as boxplots) during entire stopover 
of free-flying birds being attracted to balances for reading body mass 
by ad libitum supplied food. Rates of accumulating energy were cal-
culated based on bird’s body mass on the evening of departure sub-
tracted from its body mass at arrival (“date of capture”, i.e., time of 
capture or first evening body mass) relative to its lean body mass and 
the number of stopover days. In Dierschke et al. (2005) the rate was 
calculated as the difference between evening body mass on departure 
night and morning body mass of first stopover divided by bird’s lean 
body mass and number of stopover days (§). Sample size is given 
above the corresponding boxes. Boxes present 5, 25, 50, 75, and 95% 
percentiles and outliners (open circles). The grey area indicates the 
theoretically predicted maximum rate of accumulating energy for a 
songbird of 10–30  g after Lindström (1991). c Departure fuel load 
over rates of accumulating energy. Departure fuel load is the differ-
ence between bird’s body mass on the evening of departure (“last 
resighting”) and its lean body mass relative to its lean body mass. 
Study species in which departure fuel load and rate of accumulating 
energy significantly correlated with each other: □ rufous humming-
bird (Selasphorus rufus), birds stayed 1–2 weeks at the stopover site 
(Carpenter et  al. 1983); ○ reed warbler (Acrocephalus scirpaceus), 
birds stayed at least 3 days (Bayly 2006); + sedge warbler (A. sch-
oenobaenus), birds stayed at least 1 day (Bayly 2007); Χ bluethroat 
(Luscinia svecica), birds stayed at least 4 days (Lindström and Aler-
stam 1992); ◇ northern wheatear (Oenanthe oenanthe) on Helgoland 
in autumn, birds stayed at least 4 days (Schmaljohann and Dierschke 
2005) and △ in spring (males only), birds stayed at least 3 days 
(Dierschke et al. 2005), *on Iceland in autumn, birds stayed at least 
1 day (Delingat et al. 2008). Study species/sexes in which both traits 
did not correlate: ■ whitethroat, birds stayed at least 3 days (Sylvia 
communis) (Fransson 1998a); ● European robin (Erithacus rubec-
ula), birds stayed at least 3 days (Dänhardt and Lindström 2001); ▲ 
female northern wheatears on Helgoland in spring, birds stayed at 
least 3 days (Dierschke et al. 2005), ♦ northern wheatears in Alaska, 
birds stayed at least 1 day (Schmaljohann et al. 2013)

▸
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1990). The so-called time minimizers are assumed to 
exploit the stopover sites where experiencing a high rate 
of accumulating energy stores and finally depart with high 
fuel loads. If the currently experienced rate of accumula-
tion drops below a certain level, indicating a slow overall 
migration speed, they are thought to leave the stopover site. 
Consequently, energy stores at departure are expected to 
correlate positively with the rate of accumulating energy 
stores in these time minimizers (Alerstam and Lindström 
1990; Lindström and Alerstam 1992; Hedenström and 
Alerstam 1997). In the studies providing individual esti-
mates on both traits, this pattern was found in most (Car-
penter et al. 1983; Lindström and Alerstam 1992; Fransson 
1998a; Dierschke et  al. 2005; Schmaljohann and Dier-
schke 2005; Bayly 2006, 2007; Delingat et al. 2006, 2008; 
Schmaljohann et  al. 2013) but not all species (Dänhardt 
and Lindström 2001) and not in both sexes (Dierschke 
et  al. 2005; Delingat et  al. 2006) (Fig.  1c). Although this 
highlights the potential importance of the rate of accumu-
lating energy stores for the departure decision (Jenni and 
Schaub 2003; Hedenström 2008; Schaub et al. 2008; Aler-
stam 2011), little is known how daily rates of accumulating 
energy affect the actual departure probability.

To get to grips with this we re-analysed existing data 
on migratory northern wheatears (Oenanthe oenanthe) 
(Schmaljohann and Dierschke 2005). These birds are typi-
cal nocturnal songbird migrants that spent their non-breed-
ing period in sub-Sahelian Africa (Bairlein et  al. 2012; 
Schmaljohann et  al. 2016). For this study, data were col-
lected on Helgoland, a small offshore island in the Ger-
man Bight, in autumn 2001. Stopover duration of color-
ringed northern wheatears was considered as the difference 
between “arrival day” and the day of last sighting. The 
resighting probability the day following ringing was 83% 
(for all birds pooled the number of days with observations 
divided by the number of days between ringing and last 
observation). Remote weighing of color-marked birds sup-
plied with ad libitum food (mealworms, Tenebrio molitor) 
provided individual data on rate of accumulating energy 
(Fig. 2b) and evening energy stores (Fig. 2c). The rate was 
only calculated when evening (max. 2 h before sunset) body 
mass estimates were recorded on two consecutive eve-
nings. This difference was then divided by bird’s lean body 
mass. Evening energy stores were expressed as the differ-
ence between bird’s evening body mass and its lean body 
mass relative to its lean body mass; for further details see 
Schmaljohann and Dierschke (2005). The day of last sight-
ing at a feeding location indicated departure from Helgo-
land on that night. Based on these data Schmaljohann and 
Dierschke (2005) demonstrated that fuel load at departure 
was positively correlated with the average rate of accumu-
lating energy during the stopover duration suggesting that 
northern wheatears behaved in accordance with the time 

minimization hypothesis (Alerstam and Lindström 1990; 
Lindström and Alerstam 1992). Here we analysed the data 
in a different and novel way. Instead of considering values 
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Fig. 2   a Minimum stopover duration as estimated by colour-ring 
observations on Helgoland for the 40 northern wheatears (Oenanthe 
oenanthe) that stayed at least one day on the island after the day of 
catching; data from Schmaljohann and Dierschke (2005). Median 
stopover duration was 2.5 days. b, c Departure probability of these 40 
northern wheatears was modeled for each day of stopover with a gen-
eralized linear mixed effect model, bird as a random factor to account 
for multiple readings of the same bird during its stay, with functions 
of the R package “lme4” (Bates et al. 2014). If available, individually 
specific daily values of rate of accumulating energy (n = 96), evening 
fuel load (n = 106), and day of stopover (n = 126) were z transformed, 
all tested against each other for collinearity [which was not the case, 
vif < 1.29 (Babak 2013; Zuur et al. 2010)], and considered as explan-
atory variables. The 95% CrI of the possible two-way interactions all 
included zero and were, therefore, removed from the model. bBlack 
dots jittered in the vertical direction demonstrate stay (0) or depar-
ture (1). Rate of accumulating energy had a significant negative effect 
on departure probability with low values being associated with high 
departure probabilities; 95% credible interval (CrI): −1.29 to −0.22. 
Given are the fitted values (solid line), with the 95% CrI (dashed 
lines). To show the effect of rate of accumulating energy on departure 
probability, evening fuel load and day of stopover were set to their 
corresponding mean values. c Evening fuel load had a near significant 
positive effect on departure probability with high values tending to be 
associated with high departure probabilities; 95% CrI: −0.02–1.06; 
fitted values (solid line), 95% CrI (dashed lines). To show the effect 
of evening fuel load on departure probability, the other two variables 
were set to their corresponding mean values
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averaged over birds’ stopover, we related the daily rates 
of accumulating energy, evening energy stores, and bird’s 
stopover day (going from 1 to max. 10 days in this study, 
Fig. 2a) to the probability to resume migration in a general-
ized linear mixed effect model with bird as a random factor 
to account for multiple readings of the same bird during its 
stay, see Fig. 2 for more information. In this study, the rate 
of accumulating energy significantly negatively affected the 
departure probability (Fig. 2c). Birds experiencing a loss of 
energy stores or a low rate of accumulating energy had a 
high probability of leaving Helgoland, whereas high rates 
were observed in birds staying on the island. In accordance 
with former studies, the departure probability seemed to 
increase with energy stores (Goymann et al. 2010; Schmal-
johann et al. 2013), although the effect was not significant 
in the current re-analysis (Fig. 2c).

Ours and previous data thus suggest that there might 
be a simple departure rule: birds having arrived at a new 
stopover site may have low energy stores and may initially 
experience low rate of accumulating energy because of 
search and settling costs (Alerstam and Lindström 1990; 
Hedenström and Alerstam 1997). If abiotic (weather) and 
biotic (food supply, competition) conditions are favourable, 
an individual will accumulate fuel at a high rate which 
will, initially, decrease its probability to depart. Once suf-
ficient energy stores are accumulated to at least support 
the next migratory flight bout, the rate of accumulating 
further energy is reduced (Fransson 1998b; Delingat et al. 
2006). Then, if environmental conditions are additionally 
favourable, the individual bird is likely to depart. Under 
the circumstances that an individual is unable to accumu-
late fuel, it will, given favourable weather conditions, have 
a high probability to leave the stopover site. Some support 
for these departure rules comes from cage experiments on 
wild northern wheatears in which Eikenaar and Schläfke 
(2013) showed that birds having high energy stores did not 
refuel, but showed high amounts of nocturnal migratory 
restlessness. Migratory restlessness in this species is a good 
approximation for departure probability (Eikenaar et  al. 
2014b). In contrast, birds with little energy stores showed 
high rates of accumulating energy, but showed little noc-
turnal migratory restlessness (Eikenaar and Schläfke 2013). 
A similar behavioural rule was suggested by Schaub et al. 
(2008) using body mass change between first and last cap-
ture relative to the time elapsed for describing the rate of 
accumulating energy. Their data suggested that birds expe-
riencing a medium rate of accumulating energy had the 
highest departure probability (Schaub et al. 2008). Regard-
less of the differences between our model and that of 
Schaub et al. (2008), which could be related to the way how 
the rate of accumulating energy was estimated (Delingat 
et al. 2009), Schaub et al. (2008) and our analysis (Fig. 2b) 
provide strong correlative evidence that this rate is indeed 

a significant factor influencing in a non-linear relationship 
the probability of an individual to depart.

In addition to other intrinsic and extrinsic factors mod-
ulating the decision when to resume migration within the 
endogenously controlled migratory program (Jenni and 
Schaub 2003; Bairlein et  al. 2015a), there are two more 
important aspects likely affecting departure decisions that 
have been largely neglected in stopover ecology studies: 
first, leaving a stopover site does not always involve truly 
resuming migration. Second, do the reasons why birds ter-
minate their migratory flight affect their refueling behavior 
and departure decisions?

Leaving a stopover site does not always involve 
truly resuming migration

We define here stopover as any time period spent on the 
ground between migratory flights, i.e., from the point of 
time when a migratory flight was terminated until the 
point of time when the next migratory flight begins. Dur-
ing this time a bird, e.g., sleeps, rests, preens itself, seeks 
shelter, feeds and/or searches for a site within the cur-
rent stopover landscape with higher temperatures (Wikel-
ski et  al. 2003) or better refueling conditions (Mills et  al. 
2011; Taylor et al. 2011; Stach et al. 2015). Birds might do 
so by moving from bush to bush (Baird and Nisbet 1960) 
or by ascending and flying up to some tens (or even more) 
of kilometers (Mills et al. 2011; Taylor et al. 2011; Brown 
and Taylor 2015; Stach et  al. 2015). These are the two 
extreme behaviors set at opposing ends of a continuum and 
any behavior between these extremes could be regarded as 
local movements towards more favorable stopover sites and 
thus be disregarded as migration. We adopt here the term 
first mentioned by Taylor et  al. (2011) and summarize all 
these movements as “landscape movements”, in contrast to 
migratory flights (Fig. 3). Flight movements contrasting to 
the seasonally appropriate migratory direction, commonly 
termed reverse migration (Alerstam 1978; Richardson 
1978, 1982; Liechti 1993), in our opinion also belong to 
“landscape movements”. They were explained by inaccu-
racy in the orientation skills of birds (Komenda-Zehnder 
et al. 2002; Zehnder et al. 2002), as an energy-saving strat-
egy to reduce costs for thermoregulation (Wikelski et  al. 
2003), as a reaction when facing an ecological barrier 
(Bruderer and Liechti 1998) with low energy stores (Åkes-
son et al. 1996; Sandberg and Moore 1996; Sandberg et al. 
2002; Deutschlander and Muheim 2009; Schmaljohann and 
Naef-Daenzer 2011; Smolinsky et  al. 2013; Deppe et  al. 
2015; Nilsson and Sjöberg 2016), as a reaction to strong 
competition and high predation risk (Nilsson and Sjöberg 
2016) and they appear more often in young than in adults 
birds (Nilsson and Sjöberg 2016).
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Clearly thus, if a bird leaves the current stopover site, 
it does not necessarily mean that it has actually resumed 
migration. Likewise, new arrivals could have terminated a 
migratory flight or a landscape movement. Although dis-
tinguishing between landscape movements and migratory 
flights is difficult on the level of the individual, the flight 
direction from a stopover being directed towards the sea-
sonally appropriate migratory direction might be a good 
first indication that migration was resumed (Fig.  3). To 
estimate the seasonally appropriate migratory direction, 
we can use ring recoveries (Bairlein et  al. 2014), stable 
isotopes (Rubenstein and Hobson 2004), a combination of 
both (Van Wilgenburg and Hobson 2011), genetic differ-
ences between populations (Bensch et al. 2002) and various 
tracking devices (Bridge et al. 2011; Fiedler 2009).

It seems that we, stopover ecologists, have not properly 
distinguished between landscape movements and migratory 
flights in the past. Landscape movements may serve either 
to search for a more appropriate stopover site (in terms of 
food, shelter, predation or navigation), or to assess weather 
conditions aloft, which may unintendedly get the birds to 
land at a different site. Hence, leaving a stopover site is not 
necessarily related to bird’s current energy stores. Thus, 
variation in the estimated energy stores of the “departing” 
birds was overestimated resulting in a lower power to find a 

significant effect and therefore yielding more type II errors 
in former studies than statistically expected. This may also 
have an effect on the predictions of the optimal migration 
theory which are based on the assumption that all birds that 
leave a stopover site, truly resume migration, and not relo-
cate within the stopover landscape. Separating the depar-
tures from a stopover site resulting in landscape movements 
from those serving the bird to actually resume migration is 
crucial, because this will increase the power to identify the 
importance of energy stores or other factors on departure 
decisions.

Why do birds terminate their migratory flight 
to arrive at a stopover site during migration?

The urge of a migrant to refuel depends on the current 
energy stores and the upcoming migratory flight, e.g., long 
non-stop flight vs. single daytime flight. Recent fasting-
refueling experiments with caged northern wheatears in 
migratory disposition additionally showed that the loss rate 
of energy stores had a significant positive effect on bird’s 
urge to refuel (Eikenaar and Bairlein 2014; Eikenaar et al. 
2014a). The authors, therefore, suggested that the energy 
loss during the previous migratory flight is also predic-
tive of a bird’s urge to refuel. Here we hypothesize that 
energy stores at arrival together with the amount of previ-
ous energy loss will describe well birds’ urge to accumulate 
energy in relation to its migration strategy (Eikenaar et al. 
2014a). If we had information about all three traits for an 
individual migrant, i.e., arrival energy stores, energy loss 
during the previous flight and the bird’s migration strategy, 
we would better understand how the rate of accumulating 
energy regulates departure probabilities in migratory birds 
(Schaub et al. 2008) (Fig. 2). Energy loss is, however, dif-
ficult to measure in free-flying birds because the energetic 
cost of a flight bout is a function of, among other things, 
airspeed (Pennycuick 1975; Hedenström 2002), actual body 
mass (Norberg 1995, 1996), flight style (Rayner 1999; 
Rayner et al. 2001), air density (Schmaljohann and Liechti 
2009), and the time of flying. To our knowledge, a study on 
New World Catharus thrushes (Wikelski et  al. 2003) and 
a study on northern bald ibis (Geronticus eremite) (Bair-
lein et  al. 2015b) are the only ones quantifying migrants’ 
energy expenditure during free-flight. In addition to the 
doubly labelled water approach used in these two studies, 
energy expenditure could be estimated by measuring heart 
beat rates in free-flying birds (Butler and Woakes 1980; 
Masman and Klaassen 1987; Butler et  al. 2000; Ward 
et al. 2002; Bowlin and Wikelski 2008; Sapir et al. 2010). 
Both methods are, however, not feasible when working at a 
specific stopover site, because individual birds have to be 
tagged somewhere away from the study site on the evening 

Fig. 3   A graphical description of landscape movements and migra-
tory flights. With a migratory flight a bird arrives at the initial land-
ing site within a certain stopover landscape. If abiotic (temperature, 
precipitation) and biotic (food availability, predation, competition) 
factors do not provide favourable conditions for resting and refuel-
ling, the bird moves on in search for better conditions. Such a search 
could include several short-term stays at different locations within 
the same stopover landscape. Moving away from the initial landing 
site and these shortly visited locations to others is not a resumption 
of migration. After Taylor et  al. (2011) these movements are called 
“landscape movements”. Eventually, the bird encounters favourable 
stopover conditions somewhere within the stopover landscape from 
where it later resumes migration and starts its next migratory flight. 
Landscape movements are not necessarily oriented towards a certain 
direction and can head in any direction from the initial landing site. 
Long movements towards the seasonally appropriate migratory direc-
tion might be indicative for resuming migration
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of their departure and later have to land at the study stopo-
ver site.

Below we present several different scenarios in which 
migrants terminate their migratory flight and for these 
qualify the extent of energy loss during the preceding flight 
and the urge to refuel (Table 1). For this we have to assume 
that diurnal/nocturnal migrants usually set off at the begin-
ning of the day/night and continue migration until midday/
close to the next sunrise (Dorka 1966; Bäckman et al. 2017; 
Müller et al. 2016).

1.	 When flying over benign habitat and during favorable 
weather, i.e., no strong headwind and no rain (Erni 
et al. 2002b; Schaub et al. 2004; Delingat et al. 2008), 
migrants will generally find suitable areas for refueling 
(Bairlein 1983, 1985b, 1991; Hutto 1985; Ormerod 
1990; Moore and Aborn 2000; Chernetsov 2006; Aler-
stam 2009; Jenni-Eiermann et  al. 2011). Migrants in 
general carry slightly larger energy stores than would 
be required for the upcoming migratory flight (Bair-
lein 1985b; Biebach et al. 1986; Bolshakov et al. 2003; 
Delingat et  al. 2006; Salewski et  al. 2010), possibly 
as a safety margin either for unexpected energetically 
more demanding migratory flights and/or because it is 
difficult to foresee future feeding conditions at upcom-
ing stopover sites (Schaub and Jenni 2001). Under 
such circumstances and the assumption that birds 
exploit most of the day/night for the migratory flight 
we hypothesize that migrants show a medium loss of 
energy stores and that they still have sufficient energy 
stores to weather unexpected unfavorable feeding con-
ditions at the current site for a few days. Thus, the urge 
to refuel is moderate and lean birds are only an excep-
tion.

2.	 Migrants approaching crucial stopover landscapes for 
refueling before crossing large-scale ecological bar-
riers and/or flying long stretches non-stop have to 
stopover somewhere within this landscape and thus 

terminate their migratory flight independent from 
the current energy stores, e.g., the coastal regions of 
large bodies of water (Smith et al. 2007; Johnson and 
Winker 2008; Bayly and Gómez 2011; Bayly et  al. 
2013), the border area of large deserts (Smith 1966; 
Fry et al. 1970; Dowsett and Fry 1971; Moreau 1972; 
Finlayson 1981; Bairlein 1991; Jones 1995; Ottosson 
et al. 2001, 2005; Maggini and Bairlein 2010a; Bayly 
et al. 2012; Trierweiler et al. 2014), and tidal mud flats 
(Battley et al. 2005; Piersma et al. 2005; Zwarts et al. 
1990). How to reach these crucial stopover landscapes 
might be endogenously controlled (Gwinner and 
Wiltschko 1978; Berthold and Querner 1981; Fransson 
et  al. 2001; Maggini and Bairlein 2010b; Bulte et  al. 
2017) or learnt (Harrington et  al. 1988; Reed et  al. 
1998; Fox et al. 2002; Kruckenberg and Borbach-Jaene 
2004). Hence, birds are unlikely to arrive at these stop-
over landscapes with fully depleted energy stores. For 
this scenario we hypothesize a medium loss of energy 
stores during the flight to the stopover landscape and 
sufficient energy stores to search within this landscape 
for a favorable stopover site. In contrast to scenario 1, 
birds have a strong urge to accumulate large amounts 
of energy in preparation for the upcoming high-energy 
demanding flight period.

3.	 Upon arrival at the “first” stopover landscapes after 
an energetically highly demanding flight migrants 
have lost a large fraction of their energy stores (Loria 
and Moore 1990; Moore and Yong 1991; Pilastro and 
Spina 1997; Yong and Moore 1997; Spina and Pilas-
tro 1999; Battley et  al. 2000; Ottosson et  al. 2002; 
Yohannes et  al. 2008; Maggini and Bairlein 2010a), 
might be physically exhausted (Schwilch et al. 2002), 
and may experience water stress when migrated at 
high temperatures (Biesel and Nachtigall 1987; Carmi 
et  al. 1992; Giladi and Pinshow 1999; Ward et  al. 
1999; Michaeli and Pinshow 2001), but see Schmaljo-
hann et al. (2008). Birds with fully depleted of energy 

Table 1   Different scenarios in which migrants terminate their migratory flight

For these scenarios birds’ current energy stores after terminating the migratory flight and their urge to refuel are predicted given the specific 
conditions of the different scenarios; for details see paragraph “Why do birds terminate their migratory flight to arrive at a stopover site during 
migration”

Scenarios Energy stores on landing Urge to refuel

1. Flying over benign habitat and with favorable weather Sufficient, low stores are exception Moderate
2. Arriving at crucial stopover landscape before barrier crossing/long non-stop flight Sufficient, low stores are exception Strong
3. Arrival after an energetically demanding flight Low Strong
4. Emergence landing due to wrong assessment of conditions prior departure High variation in energy stores Variable
5. Emergence landing due to deteriorating conditions en route
 (a) Immediately aborting flight (a) High (a) Low
 (b) No initial option to land (b) Low (b) Strong
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stores stay and refuel at the surroundings of the first 
site (Maggini and Bairlein 2010a), while others with 
some remaining energy stores might search for a spe-
cific stopover site. In both cases the urge to accumulate 
energy and recover is strong and bird’s energy stores 
are more depleted than in the other scenarios.

4.	 If departure of a migratory flight was not well timed 
with respect to the bird’s energy stores and wind condi-
tions, a bird may deplete its energy stores and/or could 
get physically exhausted, so that it has to land earlier 
than intended. Such emergency landings could hap-
pen anywhere and anytime during migration, which 
increases the variation in the energy stores we find in 
arriving migrants and which increases birds’ urge to 
refuel at the stopover site.

5.	 Birds usually time their departure from a stopover 
site to avoid unfavorable weather conditions for the 
next migratory flight bout (Erni et  al. 2002b; Schaub 
et  al. 2004; Delingat et  al. 2008; Deppe et  al. 2015). 
If the weather conditions deteriorate during the night 
because of heavy rainfall and/or increasing headwind, 
birds likely terminate their flight early. If, in this sce-
nario, birds are able to land, less energy has been used 
than during a normal migratory flight, and the urge to 
refuel will be small. However, if such a change in the 
weather condition occurs over an ecological barrier, 
birds either reverse to a former site or continue until 
landing is possible. Under these circumstances birds 
often have to invest much more energy for flying than 
usual and arrive in a depleted state so that they have a 
high urge to refuel and only little energy stores left.

Depending on the scenarios why birds terminate their 
migratory flight and in relation to their migration strat-
egy, energy stores and the urge to refuel can differ sub-
stantial between species and individuals. These differ-
ences significantly affect the importance of energy stores 
and the rate of accumulating energy for the departure 
decision within an individual. Regarding the distribu-
tion of migrating birds on land, the majority of birds land 
most of the times at conditions described under scenario 
(1), less often as described under scenario (4), and even 
less frequently as described under the other scenarios. 
Nevertheless, scenarios (2), (3), and (5) are biologically 
important, because most stopover ecology studies are 
performed at coastal areas or islands, where birds land 
under such scenarios on a regular basis. Although in 
many instances it may not be possible to determine why 
a bird has landed at a stopover site, this knowledge would 
very much facilitate formulating clear hypotheses of how 
energy stores and rates of accumulating energy influ-
ence bird’s departure probability, given the species-/bird-
group-specific migration strategy.

Conclusion

Our review shows that to better understand the relation-
ship between energy stores and departure from stopo-
ver, several issues need to be tackled in future stopover 
ecology studies. The large-scale radio-tracking systems 
in North and South America (Brown and Taylor 2015; 
Deppe et al. 2015; Dossmann et al. 2015; Mitchell et al. 
2015; Woodworth et al. 2015; Crysler et al. 2016) or sat-
ellite transmitters revealing bird’s whereabouts at a high 
spatiotemporal resolution in real time provide an excel-
lent basis for this scientific task. With such systems we 
can identify when a bird arrives at a stopover site and 
whether leaving the site results in a migratory flight. Fur-
thermore, flight duration, wind conditions experienced 
en route, and/or heart rates (Bowlin and Wikelski 2008; 
Sapir et  al. 2010) allow estimating energy loss during a 
given migratory flight. Investigating a bird’s energy loss 
during the previous flight bout, its arrival condition, and 
combining this knowledge with its migration strategy will 
significantly increase our understanding on the factors 
controlling the departure probability at a stopover site. 
Still, whether the phenotypic reaction norm of a migrant 
in response to energy stores or the rate of accumulating 
energy studied at one stopover site reflects the behavioral 
reaction pattern along its entire migration route is ques-
tionable. This seems unlikely, because birds encountering 
an ecological barrier adjust their departure decision to 
the specific ahead conditions (Schmaljohann and Naef-
Daenzer 2011; Smolinsky et al. 2013; Deppe et al. 2015; 
Schmaljohann et  al. 2017) and because the remaining 
migration distance to the migratory destination influences 
bird’s movement ecology (Alerstam 2001; Karlsson 
et al. 2012; Schmaljohann et al. 2017) and with that also 
its departure decision (Schmaljohann et  al. 2017). Ide-
ally, in addition to the traits mentioned above, individual 
migrants’ breeding areas and the wintering grounds are 
known so that we can pinpoint each individual’s location 
within its migration route.
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