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of their migratory programme at any relevant point during 
their journeys.
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Introduction

Migratory birds display remarkable behavioural and physi-
ological changes in their migratory programme to accomo-
date the challenges they face during their journeys between 
wintering and breeding grounds. The fact that many first-
year migratory birds undertake successful migration alone 
strongly implies that many of these behavioural and physio-
logical changes are associated with circannual clock-based 
mechanisms entrained by the ambient photoperiod (Gwin-
ner 1996) and genetic programs (Berthold 1974; Gwinner 
1996). This “migratory syndrome” consists of a package of 
tightly integrated adaptive traits (Piersma et al. 2005) and 
can be observed even in captivity without access to exter-
nal cues.

On a bird’s migratory journey, positional (or “map”) 
information is of vital importance, e.g. to dynamically 
adapt behaviour and/or physiology. However, genetic pro-
grams and endogenous circannual rhythms alone will be 
affected by navigational mistakes (e.g. Rabøl 1978) and 
intrinsic (e.g. fuel load) as well as extrinsic (e.g. wind) 
factors (Schmaljohann and Naef-Daenzer 2011) and will, 
therefore, not be accurate enough to provide reliable infor-
mation on geographical position and thus require the use of 
fine-tuning mechanisms from external cues. One of these 
cues, which could theoretically help a bird to determine its 
geographical position, is the Earth’s magnetic field. Indeed, 
prominent aspects of the birds’ migratory programme, 
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biannual migratory journeys. Moreover, magnetic field 
effects on prominent aspects of the migratory programme 
of birds, such as migratory restlessness behaviour, fuel 
deposition and directional orientation, implicate that geo-
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(“map”) information. While the magnetic “compass” in 
migratory birds is likely to be based on radical pair-forming 
molecules embedded in their visual system, the sensory 
correlates underlying a magnetic “map” sense currently 
remain elusive. Behavioural, physiological and neurobio-
logical findings indicate that the sensor is most likely inner-
vated by the ophthalmic branch of the trigeminal nerve and 
based on magnetic iron particles. Information from this 
unknown sensor is neither necessary nor sufficient for a 
functional magnetic compass, but instead could contribute 
important components of a multifactorial “map” for global 
positioning. Positional information could allow migra-
tory birds to make vitally important dynamic adaptations 
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such as migratory restlessness behaviour, fuel deposi-
tion, and/or directional orientation have been shown to be 
modified by magnetic fields (Perdeck 1958; Mewaldt 1964; 
Beck and Wiltschko 1988; Wiltschko and Wiltschko 1992; 
Fransson et  al. 2001; Kullberg et  al. 2003; Thorup et  al. 
2007; Boström et  al. 2010; Henshaw et  al. 2010; Kishki-
nev et al. 2015; Bulte et al. 2017). Thus, in addition to the 
well-known magnetic “compass” sense (Wiltschko and 
Wiltschko 1972; Cochran et  al. 2004; Zapka et  al. 2009), 
it is conceivable that birds could use magnetic “map” or 
“signpost” parameters for global positioning and to adapt 
their behaviour accordingly.

How does a magnetic map work?

Generating a map based on geomagnetic field parameters 
is not far-fetched. Apart from naturally occuring magnetic 
anomalies and irregular daily changes, which will set a 
lower limit of > 10 km for the accuracy of a magnetic map 
(Mouritsen 2013, 2015), in many regions on Earth, mag-
netic parameters (declination, inclination and/or intensity) 
form a more or less consistent grid of isolines, whose values 
gradually and predictably change (see e.g. Boström et  al. 
2012). To use this grid as a basis for a map, birds will have 
to sample and store magnetic values from various locations 
on exploratory flights around their home area (Mukhin 
et  al. 2005) and during various stages of their migration. 
Theoretically, a magnetic map could work in two different 
ways. Either, a bird would detect the alignments of geo-
magnetic parameters, and form a mental grid by extrapolat-
ing the learned magnetic gradients onto its species-specific 
migratory range (Phillips 1996). Based on this information, 
the bird could use locally perceived magnetic parameters 
to determine its approximate geographical position on its 
mental magnetic map and derive the required compass 
direction leading to the desired goal at any timepoint dur-
ing its migratory journey (Benhamou 2003). Alternatively, 
a bird could store absolute values of geomagnetic param-
eters from its goal area. Once being over unknown terri-
tory, it would head off in a random direction to measure, 
how magnetic parameters change, and would choose a par-
ticular direction, once the perceived magnetic parameters 
approach those of the goal (“trial and error” hypothesis; 
Benhamou 1997). However, displacement experiments 
showing that birds can correct their orientation when tested 
inside Emlen funnels (Chernetsov et al. 2008b; Kishkinev 
et al. 2013, 2015) following a displacement speaks against 
the “trial and error” hypothesis, since the birds would not 
be able to move far enough in the funnel to detect any mag-
netic gradients. None of both hypotheses has been unequiv-
ocally shown to explain the mechanisms used by free-flying 
migratory birds (for review, see Kishkinev 2015).

Some migratory birds seem to use magnetic 
parameters to increase fat deposition prior 
to geographical obstacles or longer than expected 
journeys

Fuel deposition plays a vital role during migration. Migra-
tory birds will have to store additional amounts of fat when, 
e.g. being faced with an ecological barrier, which prevents 
them finding food. This requires that birds can determine 
their geographical position prior to the obstacle so that they 
do not miss their chance to refuel. Fransson et  al. (2001) 
and Kullberg et  al. (2003) could show that first-autumn 
Thrush Nightingales (Luscinia luscinia) can use geomag-
netic cues to fine-tune their migratory fuel deposition: 
experimental birds constantly held in the local geomagnetic 
field of Sweden showed significantly less gain in body mass 
compared to individuals which were gradually “moved” by 
mimicking the respective geomagnetic field parameters 
along their southbound migratory route. Their body masses 
peaked when being virtually displaced to Northern Egypt, 
which is an important stopover site just before the cross-
ing of the Sahara desert. These body mass increases largely 
corroborate observations of increased fuelling rates prior 
to geographical obstacles in various free-flying bird spe-
cies (e.g. Bairlein 1991, 2003; Delingat et al. 2006, 2008; 
Yohannes et  al. 2009). Likewise, Northern Wheatears 
(Oenanthe oenanthe) were shown to cope with a longer, 
albeit “virtual” migratory journey, by increasing their 
migratory fuel deposits after being magnetically displaced 
north of their breeding range in southern Sweden during 
autumn migration (Boström et  al. 2010). It should, how-
ever, be noted, that such effects may differ between species 
with different migration and fuelling strategies (Kullberg 
et al. 2007; Bulte et al. 2017).

Some migratory birds increase their restlessness 
behaviour in response to an apparent lack 
of geographical progress

Migratory restlessness is a prominent behavioural aspect 
of the migratory program and reflects a bird’s innate urge 
to migrate during its migratory cycles (Berthold 1988a; 
Eikenaar et al. 2014, 2016; Schmaljohann et al. 2015). The 
amount of migratory restlessness behaviour expressed by 
captive birds has been shown to correlate with the migra-
tory distance a species or population has to migrate in the 
wild (Berthold et  al. 1972; Berthold 1973, 1974, 1988b; 
Berthold and Querner 1981; Gwinner 1990; Maggini and 
Bairlein 2010; Bulte and Bairlein 2013).

An impact of geomagnetic field parameters on the 
amount of migratory restlessness behaviour was recently 
suggested to occur in Northern Wheatears: birds from a 
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Norwegian population held in a magnetic field, which was 
gradually changed to simulate their natural species-specific 
migratory route from southern Norway to Mauritania (Bak-
ken et al. 2006), decreased their amount of migratory rest-
lessness, whereas conspecifics constantly kept in the local 
geomagnetic field of Northern Germany during autumn 
migration significantly increased their amount of migra-
tory restlessness behaviour with progression of the migra-
tory season (Bulte et al. 2017). These findings were inter-
preted as the birds’ attempt to compensate for the lack of 
geographical progress during migration.

Experienced migratory birds are capable 
of correcting for geographical displacements 
and magnetic information seems to be involved

Migratory birds can perform true navigation, i.e. they are 
able to determine the correct heading which leads them 
to their target destinations even from unfamilar locations 
(Berthold 1991; Mouritsen and Mouritsen 2000; Mouritsen 
2003; Holland 2014). This ability requires, besides a “com-
pass” (to set the migratory direction towards the goal), a 
“map”, which tells the bird its approximate position rela-
tive to the goal (Berthold 1991; Mouritsen and Mourit-
sen 2000; Mouritsen 2003; Holland 2014). The strongest 
evidence for true navigation abilities have been obtained 
from geographic displacements when migratory birds were 
translocated away from their species-specific migratory 
routes. Experienced free-flying European Starlings (Stur-
nus vulgaris; Perdeck 1958), Golden-crowned Sparrows 
(Zonotrichia atricapilla; Mewaldt 1964), White-crowned 
Sparrows (Zonotrichia leucophrys nuttalli; Mewaldt 1964; 
Thorup et  al. 2007) and Eurasian Reed Warblers (Acro-
cephalus scirpaceus; Chernetsov et  al. 2008b; Kishkinev 
et  al. 2013) were shown to correct for large geographical 
displacements. Furthermore, Pied Flycatchers (Fidecula 
hypoleuca) have been reported to shift their orientation 
(initiate a “Zugknick”) when geomagnetic parameters were 
used to simulate their natural migration route at about the 
appropriate time (Beck and Wiltschko 1988, but see; Cher-
netsov et  al. 2008a). Likewise, Garden Warblers (Sylvia 
borin) seemed to reverse their migratory direction when 
being exposed to a horizontal magnetic field, which simu-
lated an equator crossing (Wiltschko and Wiltschko 1992; 
but see; Schwarze et al. 2016). Lesser Whitethroats (Sylvia 
curruca) magnetically displaced south of their breeding 
area showed a seasonally appropriate northward orienta-
tion (Henshaw et  al. 2010), and Eurasian Reed Warblers 
(Acrocephalus scirpaceus) corrected for a 1000-km virtual 
eastward magnetic displacement in spring (Kishkinev et al. 
2015). Thus, in various components of their migratory pro-
gram, birds apparently seemed to have used local magnetic 

field parameters as a “map” sense to estimate their approxi-
mate geographical position, and/or as a “signpost” to trig-
ger adaptive changes in their behaviour and/or physiology.

Two magnetic senses for two different tasks

By which mechanism do migratory birds obtain positional 
information from the Earth’s magnetic field? A string of 
studies with Eurasian Reed Warblers (Acrocephalus scir-
paceus) recently provided direct indications of putative 
neuronal correlates underlying a magnetic “map” sense 
in migratory birds. First, Chernetsov et  al. (2008b) could 
show that Eurasian Reed Warblers were able to compensate 
for a 1000-km eastward displacement by switching their 
northeasterly migratory direction in Rybachy on the Baltic 
coast to Northwest when tested near Moscow. Further stud-
ies suggested that an innate clock-based “jetlag” mecha-
nism was not sufficient to explain the compensatory behav-
iour observed after the physical displacement (Kishkinev 
et al. 2010), but that geomagnetic information only is suf-
ficient to induce a reorientation response (Kishkinev et al. 
2015). Furthermore, Eurasian Reed Warblers with surgi-
cally ablated ophthalmic branches of the trigeminal nerves 
(V1) failed to compensate for a physical geographical dis-
placement. Instead they headed towards the same migratory 
northeasterly direction as before the displacement (Kishki-
nev et al. 2013).

Studies using a strong, directed, magnetic pulse thought 
to remagnetise putative iron-based magnetoreceptors have 
reported deflected orientation responses (Beason and 
Semm 1996; Munro et al. 1997; Wiltschko et al. 2009; Hol-
land 2010). In a more detailed study, Holland and Helm 
(2013) reported that experienced migratory songbirds, 
which have already acquired a navigational map (Per-
deck 1958; Mouritsen 2003; Holland 2014), reacted with 
a directed, but deflected orientation response (Beason and 
Semm 1996; Munro et al. 1997; Wiltschko et al. 2009; Hol-
land 2010), whereas juvenile migratory songbirds, which 
had not yet established a map (Perdeck 1958; Mouritsen 
1998, 2003; Mouritsen and Mouritsen 2000; Holland 2014) 
were unaffected by the pulse treatments (Holland and Helm 
2013). To sum up, a growing body of evidence supports 
the existence of a magnetic “map” sense based on mag-
netic iron particles associated with the trigeminal system 
(for reviews, see Wiltschko and Wiltschko 2013; Mouritsen 
2015; Mouritsen et al. 2016; Hore and Mouritsen 2016).

This trigeminal-based magnetic sense was long pro-
posed to be based on iron-containing receptors (e.g. Wal-
cott et  al. 1979; Kirschvink and Gould 1981). Putative 
candidate structures were described at six specific spots 
with strictly bilateral symmetry along the lateral edges of 
the upper beak of various bird species, which is innervated 
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by V1 (Fleissner et al. 2003, 2007; Falkenberg et al. 2010). 
Although these structures later turned out to almost cer-
tainly be macrophages rather than magnetosensors (Treiber 
et al. 2012, 2013; Mouritsen 2012), the existence of a mag-
netic sensor associated with V1 is still supported by behav-
ioural and neurobiological evidence. For instance, in a 
conditioned-choice paradigm, pigeons were trained to dis-
tinguish between the presence/absence of a strong magnetic 
anomaly. The pigeons could do so, but when V1 was cut 
bilaterally, the correct choice rate decreased to chance level 
(Mora et al. 2004).

On the level of the central nervous system, signifi-
cantly increased expression levels of immediate early 
genes reflecting neuronal activation after magnetic stimu-
lation were observed in the principle (PrV) and spinal 
trigeminal (SpV) sensory brain nuclei of European Robins 
(Erithacus rubecula; Heyers et  al. 2010), homing pigeons 
(Columba livia; Lefeldt et al. 2014) and Northern Wheat-
ears (Oenanthe oenanthe; Elbers et  al. 2017). This mag-
netic field-triggered activation significantly dropped when 
either the magnetic field was compensated or when V1 
was cut (Heyers et al. 2010; Lefeldt et al. 2014). V1 carries 
purely sensory information and is the only non-olfactory 
nerve whose distal endings innervate the upper beak, parts 
of the facial skin and the nasal cavity. Neuronal connectiv-
ity studies across various bird species prove that PrV and 
SpV represent the primary brain targets of V1 terminals 
(e.g. Dubbeldam et al. 1976, 1979; Dubbeldam 1980; Wild 
1981, 1990; Bottjer and Arnold 1982; Bout and Dubbel-
dam 1985; Wild and Zeigler 1996; Wild et al. 2001; Heyers 
et al. 2010; Lefeldt et al. 2014).

In addition to the abovementioned magnetic “map” 
sense used to assess a bird’s approximate geographical 
position, birds are also able to derive directional informa-
tion from the Earth’s magnetic field for maintaining a con-
sistent heading (Wiltschko and Wiltschko 1972; Cochran 
et  al. 2004). This “compass” sense is almost certainly 
embedded in their visual system (for review, see Hore 
and Mouritsen 2016; Mouritsen et al. 2016). The primary 
sensors are located in both eyes (Hein et  al. 2010, 2011; 
Engels et al. 2012) and most likely belong to the flavopro-
tein group of cryptochrome proteins, which are expressed 
in subpopulations of specific retinal neurons, and which 
have been shown to absorb blue light and to form radical 
pairs upon photoexitation (Mouritsen et  al. 2004; Liedvo-
gel et  al. 2007b; Niessner et  al. 2011, 2016; Maeda et  al. 
2012; Bolte et al. 2016; Kattnig et al. 2016, for review, see, 
e.g. Hore and Mouritsen 2016). Retinally perceived mag-
netic information is transmitted to the brain via the thala-
mofugal visual pathway (Heyers et al. 2007) to a forebrain 
area called “Cluster N” (Mouritsen et  al. 2005). Cluster 
N is located in the anterior visual wulst and was shown 
to exhibit strong neuronal activation in various migratory 

bird species during magnetic compass orientation (Mourit-
sen et al. 2005; Heyers et al. 2007; Liedvogel et al. 2007a; 
Hein et al. 2010; Zapka et al. 2010). Lesioning of Cluster 
N (Zapka et al. 2009) but not sectioning of V1 (Beason and 
Semm 1996; Zapka et al. 2009) led to a dysfunctional mag-
netic compass, which strongly indicates a direct involve-
ment of Cluster N but not the trigeminal system in process-
ing of magnetic compass information (Zapka et al. 2009).

Conclusion

Various migratory bird species display magnetic field-
dependent changes in prominent aspects of their migratory 
programme. Depending on the respective species-specific 
migratory behaviour, ecology and migration strategy, these 
can include migratory fuel gain, the amount of migratory 
restlessness behaviour and/or the directionality of migra-
tion. In all cases, the birds apparently seemed to have used 
local magnetic field parameters as a “map” sense to esti-
mate their approximate geographical position, and/or as a 
“signpost” to trigger adaptive changes in their behaviour 
and/or physiology. Among the currently discussed hypoth-
eses on how birds could sense magnetic fields, a currently 
unknown, probably iron particle-based sensor innervated 
by the trigeminal nerve is the most likely candidate struc-
ture to sense magnetic “map” information. In contrast, the 
magnetic compass sense is almost certainly embedded in 
the birds’ visual system. We would like to finish with a cau-
tionary note: in view of the obvious evolutionary advantage 
of integrating information from all potentially relevant cues 
which could help the bird navigate successfully, it would be 
naïve to believe that magnetic cues only are the only map 
(and compass) cues used for navigation on a bird’s migra-
tory journey. Thus, the birds’ map sense and general navi-
gational skills almost certainly are multifactorial (Mourit-
sen et al. 2016; Chernetsov 2017).
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